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Abstract: As the installed energy storage stations increase year by year, the safety of energy storage
batteries has attracted the attention of industry and academia. In this work, an intelligent fault
diagnosis scheme for series-connected battery packs based on wavelet characteristics of battery
voltage correlations is designed. First, the cross-cell voltages of multiple cells are preprocessed using
an improved recursive Pearson correlation coefficient to capture the abnormal electrical signals.
Secondly, the wavelet packet decomposition is applied to the coefficient series to obtain fault-related
features from wavelet sub-bands, and the most representative characteristic principal components
are extracted. Finally, the artificial neural network (ANN) and multi-classification relevance vector
machine (mRVM) are employed to classify and evaluate fault mode and fault degree, respectively.
Physical injection of external and internal short circuits, thermal damage, and loose connection failure
is carried out to collect real fault data for model training and method validation. Experimental results
show that the proposed method can effectively detect and locate different faults using the extracted
fault features; mRVM is better than ANN in thermal fault diagnosis, while the overall diagnosis
performance of ANN is better than mRVM. The success rates of fault isolation are 82% and 81%, and
the success rates of fault grading are 98% and 90%, by ANN and mRVM, respectively.

Keywords: battery fault diagnosis; recursive correlation coefficient; artificial neural network; rele-
vance vector machine

1. Introduction

Li-ion batteries are extensively used in electric vehicles (EVs) and their safety has
aroused wide concerns [1]. Most of the spontaneous combustion incidents of EVs are con-
firmed to be caused by battery failures [2], which can be induced by mechanical damage [3],
electrical overload [4], and thermal abuse [5]. For the safe operation of EVs, it is critical to
accurately identify the fault state of battery packs. In response, diverse fault diagnosis and
control techniques were reported to improve the safety of battery systems [6].

Model-based diagnostic methods estimate battery state of health by establishing a
physical characteristic model or identifying the residuals between measured and model
parameters. To describe the thermal runaway process, Ouyang et al. [7] proposed an
energy transfer image method to quantify the reaction of battery materials, which makes
the chain reaction mechanism of thermal runaway and internal short-circuit fault clearer.
In [8], Dey et al. detected and evaluated thermal failure levels based on a one-dimensional
temperature field model and a partial differential equation observer. Hashemi et al. [9]
estimated and modeled the parameters of the battery with the machine learning technique
to achieve accurate fault diagnosis. These methods rely too much on the model’s accuracy,
and most of the models are affected by noise, interference, and unmolded characteristics.
Although physical coupling models have improved reliability and accuracy, they consume
mass simulation and computing resources and thus are only suitable for online real-time
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applications [10]. Seo et al. [11] proposed a model-based switching method to estimate the
abnormality of cell resistance for internal short-circuit detection.

Knowledge-based diagnostic methods try to understand fault mechanisms and rely
on long-term accumulated knowledge and experience. Xiong et al. in [12] proposed a rule-
based detection method for over-discharge detection using established temperature voltage
rules whereby a failure warning is directly given by a Boolean expression. Muddappa
et al. [13] incorporated voltage, temperature and SOC residuals into fuzzy rules to detect
various fault types, including over-charge/discharging and abnormal aging. Huber et al.
in [14] introduce optical inspection means for the classification of battery separator defects,
and expert knowledge and machine learning were used in the diagnosis process. Though
this method can achieve high accuracy and robustness, the involved dedicated instruments
are expensive.

Data-driven diagnostic methods try to obtain potential fault features and patterns
by directly analyzing system-running data without the requirement of accurate analytical
models or the understating of complicated fault mechanisms. Chen et al. [15] realized
battery failure detection by evaluating the local deviation of observed data using a local
outlier factor based on the Grubbs criterion. In [16], Yao et al. simulated the battery charging
and discharging process in a vibration environment to observe voltage fluctuations and
then used the entropy transfer to realize the detection of connection faults. Hong et al. [17]
proposed a thermal runaway prediction scheme based on the big data and information
entropy, and the location of thermal faults in the battery pack can be accurately located.
Machine learning techniques were also extensively explored in battery fault diagnosis
benefitting from the competent capability in nonlinear characteristic approximating and
automatic decision making [18]. Yao et al. [19] exploited the grid search support vector
machine using features extracted by a modified signal covariance matrix, whereby battery
fault states can be identified timely and efficiently. Xie et al. [20] downsized the dimensions
of randomly selected features of time-domain statistics with principal component analysis
and the refined features are fed into a relevance vector machine to make diagnostic decisions
on battery faults. To achieve sensitive battery anomaly detection, Schmid et al. [21] devised
a robust studentized outlier sample method to select the principle feature components
derived from cross-cell monitoring data. Ojo et al. [22] proposed an approach relying
on the long short-term memory neural network, in conjunction with an alteration to the
walk-forward technique, to accurately estimate battery surface temperature for thermal
fault diagnosis. Yang et al. [23] used the artificial neural network to estimate short-circuit
current and then predicted the maximum temperature increase as well as internal and
surface temperature distribution of the faulty cell based on a 3D electro-thermal coupling
model. In [24], Xue et al. determined the diagnostic coefficient based on the statistical
distribution of the operational data from a cloud monitoring platform, and three screening
methods were designed to detect and locate battery faults. Hong et al. [25] utilized the
classical deep learning algorithm, i.e., long short-term memory recurrent neural network, to
accurately predict battery voltage, which provided data support for battery fault diagnosis.

Though acceptable results on battery fault diagnosis were reported, there are still
many problems regarding the fault diagnosis of large-scale battery packs. For example, the
inconsistency inside battery packs makes accurate characteristic modeling tough work, and
thus the robustness of model-based diagnostic methods is unsatisfactory; classical data-
driven methods suffer from the random load dynamics which can make decision-making
strategies often give false alarms. This paper proposes an intelligent model-free diagnostic
scheme: the cross-level voltages inside the pack are monitored and recursively correlated
to filter load dynamics, and then artificial neural networks (ANN) and multi-classification
relevance vector machine (mRVM) are employed to realize adaptive fault distinguish and
evaluation. The main innovative contributions are listed as follows:

• Physical fault injection experiments on battery packs to collect a realistic fault dataset;
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• Enhance fault location capability through cross-cell voltage, and improved recursive
Pearson correlation (RPC) to shield fault-irrelevant dynamics such as measurement
noise and load fluctuations;

• Extract and refine fault features from wavelet sub-bands of RPC sequences, with which
ANN- and mRVM-based fault diagnosis frameworks are constructed.

2. Sensor Topology and Signal Preprocessing
2.1. Cross-Level Voltage

As shown in Figure 1, cross-cell sensors, i.e., V1~Vn, measure the sum potentials of
two neighbor batteries, whereby various fault signals can be covered effectively.

Figure 1. Connection of battery pack and sensors.

2.2. Recursive Pearson Correlation (RPC)

The classical Pearson correlation cannot work in real-time for online correlation analy-
sis and is less sensitive to short-term anomalies. Therefore, recursive and forgetting mecha-
nisms are introduced to obtain the correlation between two sequences of X = (x1, x2, · · ·)
and Y = (y1, y2, · · ·) as:

r(X, Y)i =
wPk −QkRk√

wSk −Qk
2
√

wTk − Rk
2

(1)



xi = V1 + ϕi + Ni, yi = V2 + ϕi + Mi
Pi = Pi−1 + xiyi − xi−wyi−w

Qi = Qi−1 + xi − xi−w
Ri = Ri−1 + yi − yi−w

Si = Si−1 + xi
2 − xi−w

2

Ti = Ti−1 + yi
2 − yi−w

2

(2)

where i is time epoch, ω is window size, x and y are cross-cell voltages, ϕ is a square
wave to eliminate oscillations caused by minor noises or interferences during system static
state, and N and M are Gaussian white noises. w is used to maintain a proper length of
data to avoid the short-term features being overwhelmed and to accommodate certain
dynamics. By introducing the small square signal ϕ, the oscillation of r(x, y)i caused by
measurement error in a steady-state can be alleviated. The height and width of ϕ needs
to be adjusted with respect to the real-time load. On this basis, the improved correlation
coefficient can effectively alleviate false alarms caused by load fluctuations while retaining
critical information.
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3. Fault Diagnosis Methodology
3.1. Method Overview

As shown in Figure 2, this paper presents a generic fault diagnostic scheme. The
RPC time series of neighbor voltages are disassembled into multiple sub-bands by wavelet
transform, and fourteen indexes are gathered from the bottomed sub-bands to reflect
system state information. PCA is used to refine these indexes to principal components (PC)
which are fed to ANN and mRVM as inputs for model training and resultant models can
be applied for online fault diagnosis. As for fault degree, the severity of faults is classified
into four levels: no fault (healthy), minor, moderate, and critical.

Figure 2. Schematic diagram of the proposed diagnosis framework.

3.2. Wavelet Packet Transform (WPT)

Fourier transform cannot give signal time-domain information; the multi-resolution
mechanism of wavelet analysis can decompose time-frequency effectively. WPT derives a
family of wavelets from the primary basis function:

Ψ(j, k) =
1

2j/2 Ψ
(

t− 2jk
2j

)
(3)

where 2j and 2j are responsible for the scaling and moving in the time domain, respectively.
For x(t), the decompositions are:

C(j, k) =
1

2j/2

∫
x(t)Ψ∗

(
t− 2jk

2j

)
dt (4)

where C(j, k) is the basis function. From the top layer signal, each parent layer can be
divided into two orthogonality sequences as:{

H(z) = h0 + h1z−1 + · · ·+ hL−1z−(L−1)

G(z) = g0 + g1z−1 + · · ·+ gL−1z−(L−1) (5)

Thus, two neighbor sequences can be obtained by the following recursion:
c2p

l+1(n) =
√

2∑
k

h(k)cp
l (2n− k)

c2p+1
l+1 (n) =

√
2∑

k
g(k)cp

l (2n− k)
(6)
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where N is the length of the discrete sequence, and n = 0, 1, 2, · · · , N − 1.

3.3. Principle Component Analysis (PCA)

As shown in Table 1, in each DWPT sub-band of the RPC sequence, fourteen statistical
indexes are designed to characterize fault characteristics. Since not all these indexes are
helpful for fault diagnosis, PCA is employed to extract the most representative principal
components. Given the feature matrix X = { xn,m|m = 1, 2, . . . , M, n = 1, 2, . . . , N}, each
column is normalized as:

x̃m =
x−mean(x)√

var(x)
(7)

where var(x) means variance. Then the covariance matrix is:

C =
1
M

X̃X̃T (8)

Table 1. Statistics of WPT sub-bands.

Index Specification Index Specification

p1 max|x| p8 p1/p5

p2
N
∑

n=1
x(n)/N p9 p1/p4

p3
N
∑

n=1
|x(n)|/N p10

N
∑

n=1
(x(n)− p2)

2/N

p4
(

N
∑

n=1

√
|x(n)|/N

)2
p11

N
∑

n=1

(
x(n)−p2√

p10

)3
/N

p5

√
N
∑

n=1
x(n)2/N p12

N
∑

n=1

(
x(n)−p2√

p10

)4
/N − 3

p6 p5/p3 p13 max|x(n)| −min|x(n)|
p7 p1/p3 p14

N
∑

n=1
(x(n)− p2)

3/N

Arrange the eigenvectors of C according to their eigenvalues and the first k rows
form a transformation matrix P. The original matrix X can be compressed into the
k-dimensional matrix:

Y = PX (9)

In addition, a cumulated contribution ap can be defined as:

ap =
∑k

i=1 λi

∑M
k=1 λi

(10)

where λi is the eigenvalue. After this, the dimension of the original matrix can be
significantly reduced, which is beneficial to the training and testing of the subsequent
diagnosis model.

3.4. ANN-Based Diagnostic Model

Neurons are the core functional elements of the ANN and are organized in a particular
connection mode. Take the ith neuron as an example to exemplify the relationship between
data vector X = [x1, x2, . . . , xn]

T and weight vector W = [w1, w2, . . . , wn]
T . The input–

output relation of a neuron i is:

neti =
n

∑
j=1

wijxj − k (11)

yi = f (neti) (12)
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where xj is the input, wij is the connection weight from neuron j to i, k represents a bias,
f is the activation transfer function, and net is the net activation. In order to improve the
classification performance, a multi-layer ANN model is designed. The first active function
is linear:

fl(x) = kx + c (13)

The second active function is the s-type function:

fs(x) =
1

1 + e−ax (0 < fs(x) < 1) (14)

where fs(x) can map the input of neurons to the interval (0, 1). The training rule of adaptive
learning based on gradient descent makes the generalization ability of the network better
and reduces the difficulty of determining the optimal network structure. In this paper, two
ANN models are instantiated to determine fault type and evaluate fault level, respectively.

3.5. mRVM-Based Diagnostic Model

mRVM simplifies decision-making by removing uncorrelated points using auto-
mated correlation decisions to obtain sparse models. mRVM extends RVM to multi-
classification problems by introducing auxiliary regression targets and weight param-
eters. Moreover, probabilistic likelihoods are given as the confidence of classification
given dataset X = {xi, ti}(i = 1, 2, . . . , N), where t is the label for each sample category,
K = (k1, k2, . . . , kn), K ∈ RN∗N , kn is the similarity between the input sample n and other
samples. An auxiliary variable Y ∈ RL∗N is used as the mRVM regression objective, and
model parameters w ∈ RN∗L are introduced as the weight parameter, which follows the
normal distribution of (0, a−1

nl ). A ∈ RN∗L belongs to the scale matrix, then the noise model
can be obtained as:

yln|ωl , kn ∼ Nyln

(
ωT

l kn, 1
)

(15)

Convert regression targets in (15) to label categories:

tn = i, yni > ynj, ∀i 6= j (16)

The probability output of class members is:

P( t = i|ω, Kn) = εp(u)

{
∏
j 6=i

Φ
(

u +
(
ωi −ωj

)Tkn

)}
(17)

where µ follows the standard Gaussian distribution, Φ is the Gaussian cumulate distribu-
tion, and the probability of ω is given as:

P(ω|Y) ∝ P(Y|ω)P(ω|A) ∝
L

∏
l=1

N
((

KKT + Al

)−1
KyT

l ,
(

KKT + Al

)−1
)

(18)

According to (18), the MAP estimator is:

ω̂ = argmaxW P(W|Y, A, K) (19)

The maximum posterior estimation weight is updated as:

ω̂l =
(

KKT + Al

)−1
KyT

l (20)

The posterior probability distribution of prior parameters of the weight vector ω is:

P( A|ω) ∝ P(W|A)P( A|p, q) ∝
L

∏
l=1

N

∏
n=1

G

(
p + 1

2
,

ω2
nl + 2q

2

)
(21)
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Then, features and the corresponding labels are fed to train the model. Here in this
work, the classic type-II maximum likelihood method [26] is employed to train the model
by incrementally adding samples to the model and finally some relevance vectors are
reserved as the skeleton of the sparse model based on a contribution criterion. Then, when
new features appear, the probability of each candidate’s result can be given. In this paper,
two mRVM models are instantiated for fault type isolation and fault level evaluation,
respectively.

4. Experimental Setup

As Figure 3 depicts, in order to obtain real fault data, a platform is built up with two
battery test cabinets, a battery pack with four Li-ion cells (NCM, 3.7 V, 4 Ah) in series, a
fault-injection module and a host computer. The load current is the Federal Urban Driving
Schedule (FUDS). Herein, one test cabinet (60 V/50 A, 0.1% FS) is responsible for pack
charging and discharging, and the other test cabinet (5 V/200 A, 0.02% FS) has four channels
which are used to measure the potentials of the four cells. Four kinds of faults including
internal short-circuit (ISC), external short circuit (ESC), poor cell connection (PCC) and
thermal damage (THD) are simulated with the configuration in Table 2. The fault-injection
module controls a motor and several relays to simulate PCC fault and ESC fault: PCC fault
is simulated by intermittently connecting the inter-cell resistor which is passively driven by
the vibration from the motor; ESC is simulated by contacting cell electrodes with different
ESC resistors by the relays. ISC is induced by electric abuse of overcharge and THD is
simulated with a heat gun in which jet heat flows on the cell surface.

With the abuses in Table 2, different failures can be induced. A total of 600 data samples
including four failure modes (PCC, ISC, THD, ESC) and no-fault mode are measured for
fault type classification (FTC). Moreover, fault degree is defined in four levels: healthy,
minor fault, moderate fault, and critical fault, and 600 data samples are also collected for
fault degree evaluation (FDE).

Figure 3. Physical view of experimental setup.
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Table 2. Abuse configuration to induce different faults.

Type Degree Abuse of Operational Details

Number of overcharges Overcharge capacity (%)

ISC
I 4 130
II 7 140
III 10 130

ESC resistance (mΩ) Duration (s)

ESC
I 20 0.1, 0.3, 0.6
II 50 0.1, 0.3, 0.6
III 100 0.1, 0.3, 0.6

Inter-cell resistance (Ω) Motor voltage (V)

PCC
I 20 10~15
II 20 16~24
III 20 25~31

Temperature (◦C) Heating time (min)

THD
I 300 3
II 400 4
III 450 5

5. Experimental Verification
5.1. Feature Extraction

According to experiment data, the RPC curves of different faults may have similar
characteristics, therefore, it is difficult to obtain direct evidence in the original RPC se-
quences for fault isolation and evaluation. Therefore, the WPT is introduced to analyze the
sequences. More abundant details can be obtained as decomposition goes deep. By check-
ing signal decomposition performance concerning the sensitivity to fault anomaly with
different configurations, Daubechies’ basis function is selected to analyze the sequences
with five-layer decomposition at three lengths of 50, 100, and 300, respectively. Among
the 32 sub-bands, four sub-bands with the most efficacious features are retained. From the
indexes in Table 1, a vector containing 3 × 4 × 14 = 168 elements can be obtained. Here,
the PCA is used to reduce the dimension of the vectors. When the number of remained
PCs increases to 18, the cumulative weight reaches 94.2%. That is, the information included
in the raw features can be effectively refined into fewer components.

Here, mRVM training tests are carried out to evaluate the deduction of PC number.
As the remained PCs increase from 1 to 13, the average accuracy increases from 60.9% to
96.1%, and the average remained relevance vectors increases from 87 to 183, i.e., 11.1%
and 23.3% of the samples, respectively. When 3 PCs remain, the accuracy rate is 91.0%,
from which, as the PCs increase from 3 to 13, the accuracy rate only increases slightly
by 5.1% while the relevance vectors increase twice. Although more input features can
improve classification performance, the sparsity of the model is impaired, resulting in high
computational complexity and poor generalization. In order to balance model overfitting
and classification accuracy, 3 PCs are retained for the subsequent training and testing.

5.2. Fault Diagnosis Based on ANN
5.2.1. Fault Isolation

A multi-layer ANN is constructed for fault isolation and trained with the adaptive
learning rule of gradient descent. The first hidden layer has ten neurons using the linear
activation function, and the second hidden layer is configured with three neurons using the
sigmoid activation function. Different training samples, iteration times, target errors, and
training speeds in the ANN system can cause differences in recognition performance. As
shown in Table 3, the optimal model with the maximum number of iterations of 2000 and
the learning rate of 0.01 are selected. Then, three vector sets containing 500 FTC samples
are fed into the model for training.
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Table 3. Training recognition rate of the model using different parameters.

Learning Rate

Iterations
500 1000 1500 2000 2500

0.005 77% 85% 82% 83% 83%
0.01 83% 83% 82% 86% 82%
0.02 83% 84% 82% 83% 83%
0.05 84% 85% 82% 84% 83%

Another 100 FTC samples of data are used as test samples. Figure 4 shows the
classification performance of the five fault states in different colors: (circular, connection
fault), (sphere, ESC fault), (square, ISC fault), (starriness, thermal fault) and (triangle, no
fault). The samples with distinct colors are the misjudged ones. As can be seen, only a few
samples are misjudged. In Figure 4a, there are six “PCC” samples that are misjudged as
other faults. In Figure 4b, only one “ESC” sample is misjudged as “PCC”. In Figure 4c,
two “ISC” samples are misjudged as “No fault”. In Figure 4d, most “THD” samples are
misjudged as other faults and the success rate is only 33.67%. In Figure 4e, only one sample
is misjudged. In summary, thermal faults are the most difficult to identify, and the success
rate of fault isolation for all cases is 82%.

Figure 4. Cont.
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Figure 4. Fault isolation performance based on ANN: (a) PCC; (b) ESC; (c) ISC; (d) THD; (e) No fault.

5.2.2. Fault Grading

A total of 500 FDE samples are used to train the ANN. Then, another 100 FDE samples are
fed into the resultant model to give grading results. In Figure 5, the marks with different colors
have different meanings: round-grade IV fault (critical), spherical-grade III fault (moderate),
square-grade II fault (minor), triangle-grade I no fault (healthy). Figure 5a shows that the
distributions of different fault degrees are relatively independent and the overall success rate
is relatively high. The results in Figure 5b–e show that only a few data are misjudged. In
conclusion, the overall success rate of identifying the severity of the fault is 98%.

Figure 5. Cont.
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Figure 5. Fault grading performance based on ANN: (a) Overview; (b) Critical fault; (c) Moderate
fault; (d) Minor fault; (e) Healthy.

5.3. Fault Diagnosis Based on mRVM
5.3.1. Fault Isolation

In order to deal with the nonlinearity of feature space, the Gaussian function is used
as the kernel function of mRVM in this work. The involved parameters are determined
based on the gradient descending rule. Each fault type is given a posteriori probability
as confidence, indicating the degree to which it belongs. The maximum confidence is
determined as the classification result. Figure 6a–e show the fault classification results on
different FTC data samples, and different shape markers represent different faults. There
are two small sphere colors in Figure 6a, which mean erroneous judgments. Figure 6b
shows some “ESC” samples are misjudged as “PCC”, while in Figure 6c, a small number of
“ISC” samples are judged as “No fault” or “PCC”. In Figure 6d, several “THD” samples are
determined as other fault types, with a successful isolation rate of 35%. In Figure 6e, only
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one sample is misjudged. To sum up, thermal faults are the most difficult to identify, and
the overall success rate of fault isolation is 81%.

Figure 6. Fault isolation performance based on mRVM: (a) PCC; (b) ESC; (c) ISC; (d) THD; (e) No fault.
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5.3.2. Fault Grading Based on mRVM

Similarly, 500 and 100 FDE samples are used to train and test the mRVM model,
respectively. Figure 7a–e show the classification results, in which the shapes with distinct
colors are misjudged ones. Most types of misjudged faults are prone to be underestimated
regarding severity. For example, three of the “critical fault” samples in Figure 7b are judged
to be “No fault”, and four of the “moderate fault” samples in Figure 7c are judged to
be “minor fault”. In Figure 7d, a few “minor fault” samples are judged to be “No fault”.
Nevertheless, some faults are overestimated, such as in Figure 7e, one “health” sample is
judged as “minor fault”. In conclusion, the success rate of identifying the severity of all
cases is 90%.

Figure 7. Cont.
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Figure 7. Fault grading performance based on mRVM: (a) Overview; (b) Critical fault; (c) Moderate
fault; (d) Minor fault; (e) Healthy.

Table 4 lists the performance statistics of all the above fault isolation and grading
experimental results by items and in total. In summary, ANN is superior to mRVM though
mRVM is more consistent in different isolation cases, and most notably in fault grading.
mRVM is outclassed by ANN in all cases but it is worth noting that both models cannot
deal with THD isolation very well because different intensities of thermal abuse may cause
similar damage to the cell and the anomalous features tend to be clustered.

Table 4. Statistics of diagnosis performance (success rate %) with the ANN and mRVM models.

Isolation Grading

ANN mRVM ANN mRVM

PCC 57% 90% Critical 95% 91%
ESC 93% 90% Moderate 100% 78%
ISC 82% 80% Minor 100% 94%

THD 64% 70% No fault 100% 94%
No fault 98% 95%

Total 82% 81% 98% 90%

6. Conclusions

This paper presents two online diagnosis schemes for common faults in battery packs
based on machine learning techniques. Neighbor cell voltages in a pack are correlated
with the improved Pearson correlation coefficient whereby system electrical anomalies
can be sensed and load fluctuation and noise can be effectively eliminated. The wavelet
packet transform is then used to perform time-frequency decomposition on the correlation
sequences. The characteristics of decomposed sub-bands are obtained and refined as key
principle features by PCA-based dimension-reduction. Then the ANN and mRVM models
are employed to use the extracted features for fault diagnosis. The experimental results
show that the proposed methods have good performance in fault detection, classification,
and evaluation. For mRVM, the success rate of fault isolation is 81%, and the success rate
of fault grading is 90%. For ANN, the success rate of fault isolation and grading is 82%
and 98%, respectively. Although the overall diagnosis performance of ANN is superior to
mRVM in most cases, mRVM gives better results regarding the most intractable thermal
fault identification. In our future work, we will further study the recognition of thermal
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fault patterns and utilize more advanced classification models to achieve more robust
diagnosis performance.
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