
Citation: Yue, H.; Liu, J.; Tian, D.;

Zhang, Q. A Novel Anti-Risk Method

for Portfolio Trading Using Deep

Reinforcement Learning. Electronics

2022, 11, 1506. https://doi.org/

10.3390/electronics11091506

Academic Editors: Andrea Prati, Luis

Javier García Villalba and Vincent

A. Cicirello

Received: 18 April 2022

Accepted: 5 May 2022

Published: 7 May 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

electronics

Article

A Novel Anti-Risk Method for Portfolio Trading Using Deep
Reinforcement Learning
Han Yue, Jiapeng Liu *, Dongmei Tian and Qin Zhang

College of Economics and Management, China Jiliang University, Hangzhou 310018, China;
s20071201039@cjlu.edu.cn (H.Y.); z1907120102@cjlu.edu.cn (D.T.); s20071201042@cjlu.edu.cn (Q.Z.)
* Correspondence: jpliu@cjlu.edu.cn

Abstract: In the past decade, the application of deep reinforcement learning (DRL) in portfolio
management has attracted extensive attention. However, most classical RL algorithms do not
consider the exogenous and noise of financial time series data, which may lead to treacherous trading
decisions. To address this issue, we propose a novel anti-risk portfolio trading method based on
deep reinforcement learning (DRL). It consists of a stacked sparse denoising autoencoder (SSDAE)
network and an actor–critic based reinforcement learning (RL) agent. SSDAE will carry out off-line
training first, while the decoder will used for on-line feature extraction in each state. The SSDAE
network is used for the noise resistance training of financial data. The actor–critic algorithm we use is
advantage actor–critic (A2C) and consists of two networks: the actor network learns and implements
an investment policy, which is then evaluated by the critic network to determine the best action
plan by continuously redistributing various portfolio assets, taking Sharp ratio as the optimization
function. Through extensive experiments, the results show that our proposed method is effective and
superior to the Dow Jones Industrial Average index (DJIA), several variants of our proposed method,
and a state-of-the-art (SOTA) method.

Keywords: portfolio trading; deep reinforcement learning; deep learning; stacked autoencoder;
advantage actor–critic

1. Introduction

Portfolio trading aims to allocate resources in a way that maximizes returns while min-
imizing risk. Many prior studies have employed reinforcement learning (RL) algorithms
to address a variety of stock trading problems and have proved both the potential and
promising results of deep reinforcement learning (DRL) in financial markets [1–5].

RL combines the tasks of “forecasting” and “portfolio construction” into one integra-
tion step so as to closely combine the machine learning problem with the objectives of
investors. The process that traders use to invest in stocks to maximize profits is the same
as how the RL agents interact with the environment to obtain rewards and maximize the
cumulative reward. RL can also easily consider important constraints such as transaction
cost [6], market liquidity, and investors’ risk aversion.

However, the existing methods have some common limitations. When confronted
with a complex market environment, agents frequently struggle to find the optimal strategy.
Li [7] has proved that using feature preprocessing in a trading algorithm can obtain higher
transaction performance. More crucially, the stock market will be influenced by political,
economic, and natural disasters (such as COVID-19); in other words, the stock market
has externalities, and the impact of external shocks will cause the stock price to rise or
fall abnormally.

In this paper, we employed the autoencoder (AE) network in the RL framework. AE
has been used for noise resistance training in many fields to improve robustness. Qi et al. [8]
proposed a robust stacked autoencoder (R-SAE) based on maximal correntropy criteria

Electronics 2022, 11, 1506. https://doi.org/10.3390/electronics11091506 https://www.mdpi.com/journal/electronics

https://doi.org/10.3390/electronics11091506
https://doi.org/10.3390/electronics11091506
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/electronics
https://www.mdpi.com
https://doi.org/10.3390/electronics11091506
https://www.mdpi.com/journal/electronics
https://www.mdpi.com/article/10.3390/electronics11091506?type=check_update&version=2

Electronics 2022, 11, 1506 2 of 13

(MCC). The proposed method outperforms other machine learning methods on the MNIST
benchmark dataset in noise-proof ability. Li et al. [9] introduced a deep sparse autoencoder
with lossless and nonnegative constraints, which increases the model’s robustness and
the performance of anti-interference. Therefore, we propose a novel anti-risk portfolio
trading system based on DRL. The trading system consists of a stacked sparse denoising
autoencoder (SSDAE) and an actor–critic based RL agent. The noise resistance training is
performed on the financial data to extract the robust features, and the actor–critic algorithm
is based on advantage actor–critic (A2C) and consists of two networks in which the actor
network learns and implements the investment policy, which is then evaluated by the critic
network to determine the best action plan by continuously redistributing various portfolio
assets to maximize the expected return on investment. All the sample data for this study
were collected from Yahoo Finance. We tested our method on 24 Dow Jones stocks with
sufficient liquidity by comparing different state preprocessing methods. Experimental
results show that the proposed method is effective and better than a SOTA algorithm. The
contributions of this work are three-fold: (1). we propose a state preprocessing network
that employs SSDAE to perform anti-noise training on stock data to extract the robustness
features so as to improve the robustness of agent transaction decision making; (2). we have
performed extensive experiments to test the performance of our proposed method and
demonstrate that it outperforms other state preprocessing methods, such as PCA&DWT [7],
LSTM-AE [10], RSAE, Dow Jones Industrial Average index (DJIA), and a SOTA method [11];
and (3). the experimental results show that our proposed method performs better in
balancing benefits and risks and demonstrates the importance of state preprocessing in
reinforcement learning trading.

2. Preliminary
2.1. Problem Setup

We formulate the portfolio trading process as a generalized Markov decision process
(MDP), and the stock market state was reconstructed using the autoencoder technology.
MDP is defined as the tuple (S , A, p, r), where S is the state space, A is the action space,
p(st+1|st, at) represents the probability of selecting action at ∈ A from st ∈ S to the next
state st+1 ∈ S , and r(st, at, st+1) represents the direct reward of taking action at state s and
arriving at the new state st+1. The goal of RL agent is to maximize the cumulative income
while controlling the transaction cost and risk cost.

The goal was to find an optimal policy π∗:

π∗ = argmax
π

T

∑
t=0

E(st ,at)∼ρπ

[
γtr(st, at)

]
(1)

where ρπ indicates the distribution of state–action pairs that the RL agent will encounter
under the control of policy π.

For each policy π, you can define its corresponding Q-value function:

Vπ(st) = Eat∼π [Qπ(st, at)] (2)

2.1.1. State Space

The state space of our trading environment consisted of four parts [bt, ht, pt, Xt]. Each
letter is defined as follows:

• bt ∈ R+:available balance at current time step t.
• ht∈ Zn

+: shares owned of each stock at current time step t.
• pt ∈ Rn: close price of each stock at current time step t.
• Xt ∈ Rn: encoding features at current time step t.

Electronics 2022, 11, 1506 3 of 13

2.1.2. Action Space

The agent’s job in the portfolio trading problem is to figure out how much of each
stock to buy and sell. We do not enable investors to short assets in our action space; we do
not allow investors to borrow assets and then return them in the future; we do not allow
investors to borrow assets and then return them in the future. For a single stock, our action
space was defined as {−k,−1, 0, 1, . . . , k}, where k and −k represent the number of shares
we can buy and sell, and k ≤ hmax.hmax is a predefined parameter that sets the maximum
number of shares for each buying action; the action space was normalized to [−1, 1], which
also means that our action space was continuous, and after the action selection of each
state, we executed the sell action first and then the buy and hold action.

2.1.3. Reward Function

The reward function is the change in portfolio value caused by action in states st and
st+1.

r(st, at, st+1) = Rt+1 − Rt (3)

where Rt = bt+1 + pT
t+1ht+1 − ct denotes the portfolio values at t + 1 and t, respectively.

The portfolio value is the total stock value plus the balance, and ct is the transaction cost.
The reward function can also be set directly to the trade return [12,13], as follows:

Trs
t = ln

(
[Rt − Rt−s]

Rt−s

)
(4)

where Trs
t represents the realized logarithmic rate of the trade return in a period of time t,

and the length of the period is s.
Each deal entails transaction charges, which come in a variety of forms and are charged

differently by different brokers. We assume our transaction cost is ct = pT ∑D
d=1|kt| × λ.

We also use the existing financial technical indicators to trade off the return and risk, such
as the Sharpe ratio [1,14,15].

SHrt =
Trs

t − r f

(σ̂t)
2 (5)

where Trs
t − r f is the excess return in a period of trading; (σ̂t) =

√
252× 1

n−1 ∑n+i
t=i (Tr1

t − 1
s Trs

t)

is the standard deviation of the daily trade return multiplied by 2521/2 (252 is the approx-
imate number of trading days in a year and is the frequently used factor in the financial
field), i = {1, . . . , T}; r f is the risk-free rate of return; and Tr1

t is the daily return.

2.2. Trading mode

Assuming that we have $1 million and trade in D stocks, each stock in the portfolio
will be bought gradually, and the remaining funds after daily trading will be the balance b.

The trading environment assumptions are:

• The trading volume of the agent is very small compared to the size of the whole market,
so the agent’s trades do not affect the state transition of the market environment.

• The liquidity of the market is high enough that the orders can be rapidly executed at
the close price.

• The transaction cost is a fixed proportion λ of the trade volume of the day.

3. Methodology

In this section, we present how we depicted stock markets, an overview of SSDAE,
and an optimized method of DRL.

3.1. Depiction of Stock Markets

The stock market has the characteristics of a complex description, being non-stationary,
and low signal–to–noise ratio. The key issue in stock trading is to grasp the correct trading

Electronics 2022, 11, 1506 4 of 13

moment and perform the correct trading behavior according to the market situation. As for
the stock market, the commonly employed data is regular sequences, such as open price,
close price, high price, low price, and volume (OHCLV) data. In order to fully describe the
market, we added financial technical indicators. The technical indicators are very close
to the market, respond quickly to the short-term changes of the market, and are intuitive
and clear. The technical indicators that are currently popular in the stock market can be
classified into five categories: moving averages, volatility, trend, momentum, and volume.
Our initial features consisted of 11 + 5 features selected from the above five categories, as
well as OHCLV data. Table 1 shows all the technical indicators we used.

Table 1. Summary of financial technical indicators.

Type Financial Technical Indicators

Moving averages Simple Moving Average (SMA)
Moving averages The Exponential Moving Average (EMA)

Volatility Average True Range (ATR)
Volatility Williams Percent Range (WPR)

Trend Moving Average Convergence Divergence (MACD)
Trend Commodity Channel Index (CCI)

Momentum Relative Strength Index (RSI)
Momentum Awesome Oscillator (AO)
Momentum TSI Indicator (TSI)

Volume Force Index (FI)
Volume On-Balance Volume (OBV)

Simple moving average (SMA) is a fundamental technical indicator that is defined as

SMAt = (ct−n + · · ·+ ct−1 + ct)/n (6)

where ct represents the close data over a given time period and n represents the time span.
The exponential moving average (EMA) is a trend-following indicator that emphasizes

recent data above historical data. It is defined as an exponentially decreasing weighted
moving average as

EMAn(ct) =
2ct + (n− 1)EMAn(ct−1)

n + 1
(7)

The moving average convergence divergence (MACD) is an indicator that indicates
the difference between a long-term moving average and a short-term moving average. This
indicator keeps the advantages of moving averages while also avoiding the generation of
erroneous trade signals. MACD can be expressed as follows:

MACD = 2 ∗ (DIF− DEA) (8)

DIFt = EMA(12)t − EMA(26)t (9)

where DEA is the arithmetic mean of DIF over the time span. and EMA is defined in
Equation (7).

The Williams percentage range (WPR) is a dynamic technical indicator to judge
whether the market is overbought/oversold. WPR is very similar to the random oscillator.
The only difference is that the scale of WPR is from top to bottom, while the random
oscillator has internal smoothing.

WPR =
(HHt−n − ct)

(HHt−n − LLt−n)
× 100 (10)

where HHt−n and LLt−n represent the maximum value of the highest price and the mini-
mum value of the lowest price in the past n time intervals, respectively.

Electronics 2022, 11, 1506 5 of 13

The relative intensity index (RSI) is a price-following oscillator:

RSI = 100− 100/

(
1 +

∑n−1
i=0 ut−i

n
/

∑n−1
i=0 dt−i

n

)
(11)

where ut represents the upward price change at time t, and dt represents the downward
price change at time t.

The commodity channel index (CCI) measures the deviation between commodity
prices and their average statistical prices. The higher the index, the higher the price than
the average. The lower the price, the lower the average price.

CCI = (TPt − SMA (TP, n))/0.015MD (12)

where TP (typical price) represents the typical price, and its calculation formula is
TPt = (ht + lt + ct)/3; ht represents the highest price at time t; lt represents the low-
est price at time t; MD (mean deviation) is the average deviation of TPl and vt represents
the trading volume at time t.

The on-balance volume (OBV) is to quantify the trading volume, make a trend line,
cooperate with the stock price trend line, and speculate on the market atmosphere from the
change of price and the increase or decrease of trading volume.

OBVt =


OBVt−1 + vt, i f ct > ct−1
OBVt−1 − vt , i f ct < ct−1
OBVt−1 , otherwise

(13)

where vt represents the trading volume at time t.
The awesome oscillator (AO) calculates the difference between the simple moving

average of phase 34 and phase 5. The simple moving average used is not calculated using
the closing price but using the midpoint of each line. The AO is usually used to identify
trends or predict possible reversals.

AO = SMA(MEP, 5)− SMA(MEP, 34) (14)

where MEP is median price, and the formula is MEP = (high + low)/2
The force index (FI) is used to indicate the strength of an upward or downward trend.

The index measures the strength of bull potential at each increase and bear potential at
each decrease.

FI = EMA((ct − ct−n) ∗ vt, n) (15)

The true strength index (TSI) is a technical momentum oscillator used to identify
trends and reversals. The indicator may be useful for determining overbought and over-
sold conditions, indicating potential trend direction changes via centerline or signal line
crossovers and warning of trend weakness through divergence.

TSI(ct, r, s) =
EMA(EMA(mtm, r), s)

EMA(EMA(|mtm|, r), s)× 100
(16)

where mtm = ct − ct−1, r is usually set to 25, and s is set to (12).

3.2. Overview of SSDAE

Raw financial data can only indicate patterns or characteristics of market dynamics to
a limited extent, so it is not ideal for direct input to RL agents. However, putting all price
data and technical indicators into the state space will lead to complex design and delay.
Delay is a key factor in algorithmic trading. Most studies simplify the state space by using
only OHCLV data [14]. A better solution is to reduce the dimension through the feature
extraction method. Therefore, we propose using an autoencoder network to extract features

Electronics 2022, 11, 1506 6 of 13

from raw financial data and encoder features with robustness information. Figure 1 depicts
the SSDAE autoencoder network’s structure. xi indicates the input data of the ith node,
and h(i)k indicates the input data of the kth node of the Nth hidden layer. The arrow in the
network represents the connection weight between two adjacent layer nodes.

Electronics 2022, 11, x FOR PEER REVIEW 6 of 13

delay. Delay is a key factor in algorithmic trading. Most studies simplify the state space
by using only OHCLV data [14]. A better solution is to reduce the dimension through the
feature extraction method. Therefore, we propose using an autoencoder network to ex-
tract features from raw financial data and encoder features with robustness information.
Figure 1 depicts the SSDAE autoencoder network’s structure. 𝑥௜ indicates the input data
of the ith node, and ℎ௞(௜)indicates the input data of the kth node of the Nth hidden layer.
The arrow in the network represents the connection weight between two adjacent layer
nodes.

Figure 1. The structure of SSDAE autoencoder network.

3.2.1. Sparse Denoising Autoencoder (SDAE)
Considering that the stock market is also influenced by external factors such as social

networks, politics, and natural disasters (such as COVID-19); in order to make RL agents
more robust after training, we naturally introduced denoising autoencoder (DAE)) [15]
and sparse autoencoder (SAE) to reconstruct original financial data, the first to eliminate
accidental events and the second to minimize external factors.

The Autoencoder (AE) [16] is a type of unsupervised machine learning; the AE can
be regarded as a three-layer neural network. The feedforward functions of the AE can be
defined as follows: 𝑦 = 𝑓ఏ(𝑥) = 𝑠(𝑊𝑥 + 𝑏) 𝑧 = 𝑔ఏ(𝑦) = 𝑠(𝑊ᇱ𝑦 + 𝑏ᇱ) (17)

where 𝑠(𝑥) is the activation function. In this paper, we use the sigmoid function 𝑠(𝑡) =(1 + exp(−𝑡)) − 1; W is the weight matrix; b is the bias vector; and 𝑊ᇱ, 𝑏ᇱ, 𝑊 , and 𝑏
are initialized with random values.

The AE only relies on the strategy of minimizing reconstruction errors for network
training, which may cause the network to learn only the copy of the original input. Con-
sidering that the stock market is also influenced by external factors such as social

Figure 1. The structure of SSDAE autoencoder network.

3.2.1. Sparse Denoising Autoencoder (SDAE)

Considering that the stock market is also influenced by external factors such as social
networks, politics, and natural disasters (such as COVID-19); in order to make RL agents
more robust after training, we naturally introduced denoising autoencoder (DAE)) [15]
and sparse autoencoder (SAE) to reconstruct original financial data, the first to eliminate
accidental events and the second to minimize external factors.

The Autoencoder (AE) [16] is a type of unsupervised machine learning; the AE can
be regarded as a three-layer neural network. The feedforward functions of the AE can be
defined as follows:

y = fθ(x) = s(Wx + b)
z = gθ(y) = s(W ′y + b′)

(17)

where s(x) is the activation function. In this paper, we use the sigmoid function
s(t) = (1 + exp(−t)) − 1; W is the weight matrix; b is the bias vector; and W ′, b′, W,
and b are initialized with random values.

The AE only relies on the strategy of minimizing reconstruction errors for network
training, which may cause the network to learn only the copy of the original input. Consid-
ering that the stock market is also influenced by external factors such as social networks,
politics, and natural disasters (such as COVID-19), in order to make RL agents more robust
after training, we naturally introduced a denoising autoencoder (DAE) [15] and sparse

Electronics 2022, 11, 1506 7 of 13

autoencoder (SAE) to reconstruct original financial data; the first is to eliminate accidental
events, and the second is to minimize external factors.

Based on the AE, DAE adds noise to the input layer data (randomly zeroing the
input layer nodes) to make the whole encoder network more robust. It passes on the
original input vector x to noise processing result x̃. The random selection unit was forcibly
set to 0 according to a certain proportion, and then used the data x̃, so as to train better
anti-noise ability.

The SAE adds conditional restrictions on the AE, ρ̂j = ρ. The network units were
randomly activated to prevent the encoder from working with a low reconstruction error
at each point, which also makes the whole encoder network more robust. ρ is the spar-
sity parameter (generally a smaller value close to 0). In order to achieve this limitation,
the objective function introduced an additional penalty factor, namely relative entropy
(Kullback–Leibler divergence), which is a method to measure the difference between two
distributions. The principle is shown in:

KL
(
ρ ‖ ρ̂j

)
= ρ log

ρ

ρ̂j
+ (1− ρ) log

1− ρ

1− ρ̂j
(18)

where KL is expressed in ρ, ρ̂j is the relative entropy between two Bernoulli random
variables with mean value. When ρ̂j = ρ, KL

(
ρ ‖ ρ̂j

)
= 0, and the size of KL increases

with the difference between ρ and ρ̂j increasing monotonically; and when ρ̂j approaches 0
or 1, the relative entropy becomes infinite, so minimizing the penalty factor can make ρ̂j
approach ρ.

Given the raw financial training data set D = {(xi, yi)}, where i = 1, 2, . . . , N and N
denotes the total number of training samples, the SDAE was trained by a backpropagation
algorithm to minimize the following sparsity regularized reconstruction loss function:

JSDAE(w, b) =
1
m

m

∑
i=1

(
1
2
‖ hw,b(x̃)(i) − y(i) ‖2

2

)
+ β

s

∑
j=1

KL
(
ρ ‖ ρ̃j

)
+

λ

2

(
‖W ‖2

F + ‖W ′ ‖2
F

)
(19)

where β is the sparsity term parameter, and λ is the weight decay term parameter.

3.2.2. Stacked Sparse Denoising Autoencoders (SSDAE)

To enhance the learning ability of the autoencoder network, the method of increasing
the number of network layers was generally adopted. The error back propagation algo-
rithm was used in the majority of our existing shallow neural networks, including ordinal
autoencoder networks. When the number of layers is increased, the propagation error
decreases, and the gradient disappearance problem becomes more frequent. This issue was
avoided by using a stacked autoencoder. Figure 1 shows the SSDAE network structure
of N hidden layers. At present, the SSDAE network still adopts the greedy layer-by-layer
training method [16], which mitigates the step dispersion phenomena to a certain extent.
That is, the first hidden layer is pre-trained. Then, the output of the first layer is used
to pre-train the second layer. This procedure is repeated for the remaining layers. After
all layers have been pre-trained, the network used for encoding in each layer is erased,
leaving only the decoding network of each layer. Then, using the BP algorithm, all layers
are fine-tuned until the network’s ideal parameters are reached. The SSDAE network
converts the original input into the nth layer’s extracted features. The SSDAE network’s
loss function during the fine-tuning stage is as follows:

JSSDAE(w, b) =
1
m

m

∑
i=1

(
1
2
‖ hw,b(x̃)(i) − y(i) ‖2

2

)
+

λ

2

2l

∑
l=1

(
‖Wl ‖2

F

)
(20)

where Wl is the weight of the lth layer in the SSDAE. The sparsity term was omitted because
the pretrained weights were employed as regularization to our network.

Electronics 2022, 11, 1506 8 of 13

Considering that some studies have focused on the accuracy of AE-predicted and -
reconstructed financial sequence data [17–21], and the effectiveness of feature extraction can
only be judged according to the results of strategy performance, we ignored the accuracy
verification of AE reconstruction data in this paper.

3.3. Optimization via Reinforcement Learning—Advantage Actor–Critic Learning

There are currently only a handful of quantitative studies that employ the actor–
critic algorithm. The authors of [11] conducted a comparison of three actor–critical al-
gorithms: proximal policy optimization (PPO), advantage actor critical (A2C), and deep
deterministic policy gradient (DDPG). Experimental results indicated that A2C outper-
forms other algorithms. As a result, this paper employed A2C and implemented it using
stable-baselines3 [22]. The framework of our proposed model is described in Figure 2.

Electronics 2022, 11, x FOR PEER REVIEW 8 of 13

where 𝑊௟ is the weight of the lth layer in the SSDAE. The sparsity term was omitted be-
cause the pretrained weights were employed as regularization to our network.

Considering that some studies have focused on the accuracy of AE-predicted and -
reconstructed financial sequence data [17–21], and the effectiveness of feature extraction
can only be judged according to the results of strategy performance, we ignored the accu-
racy verification of AE reconstruction data in this paper.

3.3. Optimization via Reinforcement Learning—Advantage Actor–Critic Learning
There are currently only a handful of quantitative studies that employ the actor–critic

algorithm. The authors of [11] conducted a comparison of three actor–critical algorithms:
proximal policy optimization (PPO), advantage actor critical (A2C), and deep determinis-
tic policy gradient (DDPG). Experimental results indicated that A2C outperforms other
algorithms. As a result, this paper employed A2C and implemented it using stable-base-
lines3 [22]. The framework of our proposed model is described in Figure 2.

Figure 2. Overview of the proposed model.

The A2C algorithm[23] proposed by OpenAI is the synchronous variant of Google’s
Asynchronous Advantage Actor Critic (A3C) algorithm [24]. It has been demonstrated
that A2C performs similarly to A3C but with less implementation and execution complex-
ity. The A2C is different from other actor–critic algorithms in that it improves the policy
gradient updates. A2C uses the advantage function instead of the original return in the
critical network, which can be used as an indicator to measure the quality of the selected
action value and the average value of all actions. In addition to estimating the advantage
function, the critic network also calculates the value function. This means that by evalu-
ating how excellent an action is and how good it can be at the same time, the policy net-
work’s large variance is decreased, and the model becomes more robust. In large batch
sizes, synchronous gradient updates are more cost-effective, faster, and superior. The
A2C’s stability properties make it ideal for stock trading.

We updated our policy based on the value function:

∇𝐽ఏ(𝜃) = 𝔼[෍ ∇ఏlog 𝜋ఏ(𝑎௧ ∣ 𝑠௧)𝐴(𝑠௧, 𝑎௧)்
௧ୀଵ (21)

Figure 2. Overview of the proposed model.

The A2C algorithm [23] proposed by OpenAI is the synchronous variant of Google’s
Asynchronous Advantage Actor Critic (A3C) algorithm [24]. It has been demonstrated that
A2C performs similarly to A3C but with less implementation and execution complexity.
The A2C is different from other actor–critic algorithms in that it improves the policy
gradient updates. A2C uses the advantage function instead of the original return in the
critical network, which can be used as an indicator to measure the quality of the selected
action value and the average value of all actions. In addition to estimating the advantage
function, the critic network also calculates the value function. This means that by evaluating
how excellent an action is and how good it can be at the same time, the policy network’s
large variance is decreased, and the model becomes more robust. In large batch sizes,
synchronous gradient updates are more cost-effective, faster, and superior. The A2C’s
stability properties make it ideal for stock trading.

We updated our policy based on the value function:

∇Jθ(θ) = E[
T

∑
t=1
∇θ log πθ(at | st)A(st, at) (21)

Electronics 2022, 11, 1506 9 of 13

where πθ(at | st) is the policy network. A(st, at) is the advantage function and can be
written as

A(st, at) = qπ(st, at)−Vπ(st),
or

A(st, at) = r(st, at, st+1) + γVπ(st+1)−Vπ(st)
(22)

where Vπ(s) is the value expectation of the executor network in a certain state, qπ(s, a) is
the maximum value obtained by selecting action a in a certain state, Vπ(s) ≤ qπ(s, a), and
updated policy π′(s) = argmaxaqπ(s, a). The following is evidence of strategy improvement:

vπ(s) ≤ qπ(s, a) = E[Rt+1 + γvπ(St+1)|St = s, At = π′(s))]
= Eπ [Rt+1 + γvπ(St+1)|St = s] ≤ Eπ , [Rt+1 + γqπ(St+1, π′(St+1))|St = s]
= Eπ [Rt+1 + γEπ , (Rt+2 + γvπ(St+2)|St+1]|St = s]
= Eπ

[
Rt+1 + γRt+2 + γ2vπ(St+2)

∣∣St = s
]

≤ Eπ

[
Rt+1 + γRt+2 + γ2Rt+3 + γ3vπ(St+3)

∣∣St = s
]
· · · · · · ≤ vπ′(s)

(23)

According to the greedy strategy of a = argmaxaqπ(s, a), the new strategy obtained
by updating all states must make each state’s value equal to or greater than its value before
the update. As demonstrated above, the strategy of RL must be improved after each round
of renewal.

4. Experiments
4.1. Dataset Descriptions

We provide a summary of a real-world datasets of our experiments in Table 2. All the
data used in this work is available on Yahoo Finance and Google Finance.

Table 2. Training, validation, and test sets.

Market Start Date End Date Type

The US
2014/01 2019/01 Training set
2019/01 2020/01 Validation set
2020/01 2022/01 Test set

4.2. Evaluation Metrics

We used six performance measurement metrics to evaluate the back test results:

• Cumulative return (CR): is the total amount earned by an RL agent during the trading
period, excluding transaction costs.

• Maximum drawdown (MDD) [25]: refers to the maximum loss percentage from peak
to trough during the trading period.

• Sharp ratio (SR): Sharp ratio [26] is used to measure the rate of return that trading
strategies can achieve when confronted with a unit of risk. It is the most commonly
used mainstream standardized metric for evaluating portfolio strategies’ performance.
Equation (5) has illustrated the calculating formula.

• Calmar ratio (CMR): Calmar ratio [27] is used to measure the risk by using the concept
of MDD.

• Alpha: Alpha value is used to measure the excess return obtained by the model relative
to the benchmark within the trading range. The greater the alpha value, the more
capable it is of generating additional returns in comparison to the benchmark. The
calculation process of alpha value is shown in:

Alpha = Rp −
[

R f + βp

(
Rm − R f

)]
(24)

where Rp is the yield of the model, βp is the beta value of the model, and Rm is the
yield of the benchmark strategy.

Electronics 2022, 11, 1506 10 of 13

• Beta: Beta value is an indicator used to assess the systemic risk of the model relative
to the benchmark. If the beta value is greater than one, the volatility of the model
is greater than the benchmark; if the beta value is less than one, the volatility of the
model is less than the benchmark; and if the beta value is equal to one, the volatility
of the model is the same as that of the benchmark. The computation method is
illustrated below:

Beta = Cov
(

Rp, Rm
)
/σ2

m (25)

where Cov is the covariance, and σ2
m is the variance of the benchmark strategy.

CR and alpha values are to evaluate the profitability of RL agent separately; MDD
and beta values are used to measure the ability of risk control; SR is a risk adjusted return,
which can consider the performance, comprehensive income, and risk of the strategy.

4.3. Experimental Details

Our stock portfolio trading environment was based on OpenAI gym [28]. In order to
better test the anti-risk performance of strategies, we chose to test the time set, including
the time period of the COVID-19 outbreak. Finally, the parameters that needed to be set in
advance are summarized in Tables 3 and 4. To prevent inadequate learning such as local
minimum and overfitting, dropout and gradient were applied.

Table 3. Summary of RL agent’s parameters.

Parameters Value

trading window size (s) 20
risk-free rate of return

(
r f

)
A2C_learning_rate

1%
0.0007

A2C_ n_steps 5

Table 4. Summary of SSDAE parameters.

Structure Parameters Value Learning Parameters Value

Hidden layer 1 12 Batch size 100
Hidden layer 2 9 Epoch of pre-training 50
Hidden layer 3 6 The sparsity 10−8

Hidden layer 4 3 The regularization term 10−5

4.4. Discussion of Comparison Methods

It was also difficult to compare the results of our proposed method with other studies
due to the difference in transaction variety, mode, environment, and RL algorithm. All
comparative methods are trained and traded under the same trading environment, trading
rules, and parameters. For comparison with our proposed model, in addition to the
DJIA index, we selected an advanced portfolio management strategy from the current
literature to compare the performance that was an open-source method that does not use
feature extraction and improves performance by integrating multiple agents [11]. We also
implemented several variants or simplified versions of SSDAE to investigate the roles of
several key components: we chose RSAE [29], which lacked a sparse and denoise network
compared with our proposed method; LSTM-AE [10], a method of extracting time series
information for financial series; and a machine learning method using PCA and wavelet
denoising technology [7].

4.5. Results and Analysis

As shown in Figure 3 and Table 5, the SSDAE agent performs best in all measurement
indicators. It was observed that our proposed method outperforms the DJIA index and
the SOTA method without state preprocessing in all measurement indicators. This demon-
strates the advanced nature of our proposed method in RL trading algorithm. Compared

Electronics 2022, 11, 1506 11 of 13

with the variants (LSTM-AE, PCA&DWT) or simplified version (RSAE), our method shows
that it does better in balancing benefits and risks: In terms of CR and Alpha, the SSDAE
agent outperforms other state preprocessing approaches, hitting 88.5% (CR) and 0.28 (al-
pha). In the beta values and MDD (%), they reached 0.69 and −21.7, respectively. Finally,
from the perspective of comprehensive income and risk, there is no doubt that SSDAE
agent performs best in terms of SR and CMR, which are 1.37 and 1.71 respectively.

Electronics 2022, 11, x FOR PEER REVIEW 11 of 13

the SOTA method without state preprocessing in all measurement indicators. This
demonstrates the advanced nature of our proposed method in RL trading algorithm.
Compared with the variants (LSTM-AE, PCA&DWT) or simplified version (RSAE), our
method shows that it does better in balancing benefits and risks: In terms of CR and Alpha,
the SSDAE agent outperforms other state preprocessing approaches, hitting 88.5% (CR)
and 0.28 (alpha). In the beta values and MDD (%), they reached 0.69 and −21.7, respec-
tively. Finally, from the perspective of comprehensive income and risk, there is no doubt
that SSDAE agent performs best in terms of SR and CMR, which are 1.37 and 1.71 respec-
tively.

Figure 3. The cumulative wealth on DJIA.

Table 5. The results in different RL methods.

 CR (%) MDD (%) SR CMR Alpha Beta
SSDAE 88.5 −21.7 1.37 1.71 0.28 0.69

RSAE [29] 67.7 −33.9 0.99 0.87 0.16 1.01
LSTM-AE [10] 62.3 −36.3 0.91 0.75 0.14 1.06
PCA&DWT [7] 36.3 −33.1 0.71 0.05 0.05 0.94

SOTA [11] 49.1 −29.2 0.89 0.76 0.10 0.90
DJIA 26.9 −37.1 −0.17 0.35 0.00 1.00

The most significant feature of our proposed method was the risk control ability com-
pared with other methods. This shows that extracting robust features from anti-noise
training can improve the anti-risk ability of trading strategy. The same as the conclusion
of the research on the prediction of financial sequences using an autoencoder method [30],
our experiment also found that the use of autoencoder technology can reduce the noise of
the features of stock markets. In general, noise resistance training is very important for
the RL trading system.

5. Conclusions
In this paper, according to the characteristics of the exogenous nature, complexity,

and noise of financial time series data, we proposed an anti-risk portfolio trading system
based on DRL. It consists of an SSDAE autoencoder and an advantage actor–critic based

Figure 3. The cumulative wealth on DJIA.

Table 5. The results in different RL methods.

CR (%) MDD (%) SR CMR Alpha Beta

SSDAE 88.5 −21.7 1.37 1.71 0.28 0.69
RSAE [29] 67.7 −33.9 0.99 0.87 0.16 1.01

LSTM-AE [10] 62.3 −36.3 0.91 0.75 0.14 1.06
PCA&DWT [7] 36.3 −33.1 0.71 0.05 0.05 0.94

SOTA [11] 49.1 −29.2 0.89 0.76 0.10 0.90
DJIA 26.9 −37.1 −0.17 0.35 0.00 1.00

The most significant feature of our proposed method was the risk control ability
compared with other methods. This shows that extracting robust features from anti-noise
training can improve the anti-risk ability of trading strategy. The same as the conclusion of
the research on the prediction of financial sequences using an autoencoder method [30],
our experiment also found that the use of autoencoder technology can reduce the noise of
the features of stock markets. In general, noise resistance training is very important for the
RL trading system.

5. Conclusions

In this paper, according to the characteristics of the exogenous nature, complexity,
and noise of financial time series data, we proposed an anti-risk portfolio trading system
based on DRL. It consists of an SSDAE autoencoder and an advantage actor–critic based
RL agent. By comparing the trading performances of different state preprocessing methods,
including two variants methods, a simplified version, a SOTA method, and the benchmark

Electronics 2022, 11, 1506 12 of 13

DJIA, we found that the impact of anti-noise training on the trading strategy trained
by RL agent is positive and promising. Results also illustrate the importance of state
preprocessing in reinforcement learning. The advantages of the proposed method are
its expansibility, applicability, flexibility, and speed to train, but its interpretability needs
further discussion. We will explore using better risk measurement tools such as value-at-
risk [31] and conditional-value-at-risk [32] to design newly effective reward functions and,
considering the excessive trading volume of the strategy, optimize the transaction cost in
the trading process, which is also an issue that needs attention.

Author Contributions: Conceptualization, Formal Analysis, Data Analysis, Data Interpretation,
Literature Search, Software, Methodology, and Writing—Original draft, H.Y.; Developed the contextu-
alization of the state of the art, Conceptualization, Funding Acquisition, and Project Administration,
J.L.; Resources, Supervision, Validation, and Writing—review and editing, D.T.; Literature Search,
Investigation, Writing—review and editing, Proofreading, and Visualization, Q.Z. All authors have
read and agreed to the published version of the manuscript.

Funding: This research was funded by [the National Social Science Foundation of China] grant
number [18BGL224] and the APC was funded by [the National Social Science Foundation of China]
grant number [18BGL224].

Data Availability Statement: The stock price and trading volume data that support the findings of
this study are available from Yahoo Finance [32].

Acknowledgments: We acknowledge the financial support from the National Social Science Founda-
tion of China (18BGL224).

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Almahdi, S.; Yang, S.Y. An Adaptive Portfolio Trading System: A Risk-Return Portfolio Optimization Using Recurrent Reinforce-

ment Learning with Expected Maximum Drawdown. Expert Syst. Appl. 2017, 87, 267–279. [CrossRef]
2. Bertoluzzo, F.; Corazza, M. Testing Different Reinforcement Learning Configurations for Financial Trading: Introduction and

Applications. Procedia Econ. Financ. 2012, 3, 68–77. [CrossRef]
3. Deng, Y.; Bao, F.; Kong, Y.; Ren, Z.; Dai, Q. Deep Direct Reinforcement Learning for Financial Signal Representation and Trading.

IEEE Trans. Neural Netw. Learn. Syst. 2017, 28, 653–664. [CrossRef] [PubMed]
4. Fischer, T.G. Reinforcement Learning in Financial Markets—A Survey; FAU Discussion Papers in Economics: Erlangen, Germany, 2018.
5. Jiang, Z.; Liang, J. Cryptocurrency Portfolio Management with Deep Reinforcement Learning. In Proceedings of the 2017

Intelligent Systems Conference (IntelliSys), London, UK, 7–8 September 2017; IEEE: New York, NY, USA, 2017; pp. 905–913.
6. Zhang, Y.; Zhao, P.; Li, B.; Wu, Q.; Huang, J.; Tan, M. Cost-Sensitive Portfolio Selection via Deep Reinforcement Learning. IEEE

Trans. Knowl. Data Eng. 2020, 34, 236–248. [CrossRef]
7. Li, L. An Automated Portfolio Trading System with Feature Preprocessing and Recurrent Reinforcement Learning. arXiv 2021,

arXiv:2110.05299.
8. Qi, Y.; Wang, Y.; Zheng, X.; Wu, Z. Robust Feature Learning by Stacked Autoencoder with Maximum Correntropy Criterion. In

Proceedings of the 2014 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), Florence, Italy, 4–9
May 2014; IEEE: New York, NY, USA, 2014; pp. 6716–6720.

9. Li, W.; Shang, Z.; Gao, M.; Qian, S.; Zhang, B.; Zhang, J. A Novel Deep Autoencoder and Hyperparametric Adaptive Learning for
Imbalance Intelligent Fault Diagnosis of Rotating Machinery. Eng. Appl. Artif. Intell. 2021, 102, 104279. [CrossRef]

10. Jung, G.; Choi, S.-Y. Forecasting Foreign Exchange Volatility Using Deep Learning Autoencoder-LSTM Techniques. Complexity
2021, 2021, 6647534. [CrossRef]

11. Yang, H.; Liu, X.-Y.; Zhong, S.; Walid, A. Deep Reinforcement Learning for Automated Stock Trading: An Ensemble Strategy. In
Proceedings of the First ACM International Conference on AI in Finance, New York, NY, USA, 15–16 October 2020; pp. 1–8.

12. García-Galicia, M.; Carsteanu, A.A.; Clempner, J.B. Continuous-Time Reinforcement Learning Approach for Portfolio Management
with Time Penalization. Expert Syst. Appl. 2019, 129, 27–36. [CrossRef]

13. Xu, K.; Zhang, Y.; Ye, D.; Zhao, P.; Tan, M. Relation-Aware Transformer for Portfolio Policy Learning. In Proceedings of the
Twenty-Ninth International Conference on International Joint Conferences on Artificial Intelligence, Yokohama, Japan, 7–15
January 2021; pp. 4647–4653.

14. Théate, T.; Ernst, D. An Application of Deep Reinforcement Learning to Algorithmic Trading. Expert Syst. Appl. 2021, 173, 114632.
[CrossRef]

15. Vincent, P.; Larochelle, H.; Bengio, Y.; Manzagol, P.-A. Extracting and Composing Robust Features with Denoising Autoencoders.
In Proceedings of the 25th International Conference on Machine Learning, Helsinki, Finland, 5–9 July 2008; pp. 1096–1103.

http://doi.org/10.1016/j.eswa.2017.06.023
http://doi.org/10.1016/S2212-5671(12)00122-0
http://doi.org/10.1109/TNNLS.2016.2522401
http://www.ncbi.nlm.nih.gov/pubmed/26890927
http://doi.org/10.1109/TKDE.2020.2979700
http://doi.org/10.1016/j.engappai.2021.104279
http://doi.org/10.1155/2021/6647534
http://doi.org/10.1016/j.eswa.2019.03.055
http://doi.org/10.1016/j.eswa.2021.114632

Electronics 2022, 11, 1506 13 of 13

16. Hinton, G.E.; Osindero, S.; Teh, Y.-W. A Fast Learning Algorithm for Deep Belief Nets. Neural Comput. 2006, 18, 1527–1554.
[CrossRef] [PubMed]

17. Mohanty, D.K.; Parida, A.K.; Khuntia, S.S. Financial Market Prediction under Deep Learning Framework Using Auto Encoder
and Kernel Extreme Learning Machine. Appl. Soft Comput. 2021, 99, 106898. [CrossRef]

18. Bi, Q.; Yan, H.; Chen, C.; Su, Q. An Integrated Machine Learning Framework for Stock Price Prediction. In Proceedings of the
China Conference on Information Retrieval, Xi’an, China, 14–16 August 2020; Springer: Cham, Switzerland, 2020; pp. 99–110.

19. Bao, W.; Yue, J.; Rao, Y. A Deep Learning Framework for Financial Time Series Using Stacked Autoencoders and Long-Short Term
Memory. PLoS ONE 2017, 12, e0180944. [CrossRef] [PubMed]

20. Xu, Y.; Chhim, L.; Zheng, B.; Nojima, Y. Stacked Deep Learning Structure with Bidirectional Long-Short Term Memory for Stock
Market Prediction. In Proceedings of the International Conference on Neural Computing for Advanced Applications, Shenzhen,
China, 3–5 July 2020; Springer: Singapore, 2020; pp. 447–460.

21. Gündüz, H. Stock Market Prediction with Stacked Autoencoder Based Feature Reduction. In Proceedings of the 2020 28th Signal
Processing and Communications Applications Conference (SIU), Gaziantep, Turkey, 5–7 October 2020; IEEE: New York, NY, USA,
2020; pp. 1–4.

22. Ross, S.; Mineiro, P.; Langford, J. Normalized Online Learning. arXiv 2013, arXiv:1305.6646.
23. Zhang, Y.; Clavera, I.; Tsai, B.; Abbeel, P. Asynchronous Methods for Model-Based Reinforcement Learning. arXiv 2019,

arXiv:1910.12453.
24. Mnih, V.; Badia, A.P.; Mirza, M.; Graves, A.; Lillicrap, T.; Harley, T.; Silver, D.; Kavukcuoglu, K. Asynchronous Methods for Deep

Reinforcement Learning. In Proceedings of the International Conference on Machine Learning, New York, NY, USA, 19–24 June
2016; pp. 1928–1937.

25. Magdon-Ismail, M.; Atiya, A.F. Maximum Drawdown. Risk Mag. 2004, 17, 99–102.
26. Sharpe, W.F. Mutual Fund Performance. J. Bus. 1966, 39, 119–138. [CrossRef]
27. Young, T.W. Calmar Ratio: A Smoother Tool. Futures 1991, 20, 40.
28. Brockman, G.; Cheung, V.; Pettersson, L.; Schneider, J.; Schulman, J.; Tang, J.; Zaremba, W. Openai Gym. arXiv 2016,

arXiv:1606.01540.
29. Soleymani, F.; Paquet, E. Financial Portfolio Optimization with Online Deep Reinforcement Learning and Restricted Stacked

Autoencoder—DeepBreath. Expert Syst. Appl. 2020, 156, 113456. [CrossRef]
30. Sun, H.; Rong, W.; Zhang, J.; Liang, Q.; Xiong, Z. Stacked Denoising Autoencoder Based Stock Market Trend Prediction via K-

Nearest Neighbour Data Selection. In Proceedings of the International Conference on Neural Information Processing, Guangzhou,
China, 14–18 November 2017; Springer: Cham, Switzerland, 2017; pp. 882–892.

31. Jorion, P. Value at Risk: The New Benchmark for Managing Financial Risk; McGraw-Hill: New York, NY, USA, 2000.
32. Rockafellar, R.T.; Uryasev, S. Conditional Value-at-Risk for General Loss Distributions. J. Bank. Financ. 2002, 6, 1443–1471.

[CrossRef]

http://doi.org/10.1162/neco.2006.18.7.1527
http://www.ncbi.nlm.nih.gov/pubmed/16764513
http://doi.org/10.1016/j.asoc.2020.106898
http://doi.org/10.1371/journal.pone.0180944
http://www.ncbi.nlm.nih.gov/pubmed/28708865
http://doi.org/10.1086/294846
http://doi.org/10.1016/j.eswa.2020.113456
http://doi.org/10.1016/S0378-4266(02)00271-6

	Introduction
	Preliminary
	Problem Setup
	State Space
	Action Space
	Reward Function

	Trading mode

	Methodology
	Depiction of Stock Markets
	Overview of SSDAE
	Sparse Denoising Autoencoder (SDAE)
	Stacked Sparse Denoising Autoencoders (SSDAE)

	Optimization via Reinforcement Learning—Advantage Actor–Critic Learning

	Experiments
	Dataset Descriptions
	Evaluation Metrics
	Experimental Details
	Discussion of Comparison Methods
	Results and Analysis

	Conclusions
	References

