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Abstract: In software-defined networking (SDN), the control layers are moved away from the
forwarding switching layers. SDN gives more programmability and flexibility to the controllers.
OpenFlow is a protocol that gives access to the forwarding plane of a network switch or router over
the SDN network. OpenFlow uses a centralized control of network switches and routers in and
SDN environment. Security is of major importance for SDN deployment. Transport layer security
(TLS) is used to implement security for OpenFlow. This paper proposed a new technique to improve
the security of the OpenFlow controller through modifying the TLS implementation. The proposed
model is referred to as the secured feedback model using autoregressive moving average (ARMA) for
SDN networks (SFBARMASDN). SFBARMASDN depended on computing the feedback for incoming
packets based on ARMA models. Filtering techniques based on ARMA techniques were used to filter
the packets and detect malicious packets that needed to be dropped. SFBARMASDN was compared
to two reference models. One reference model was Bayesian-based and the other reference model
was the standard OpenFlow.

Keywords: software-defined network; network security; OpenFlow controller; ARMA; empirical
technique; Bayesian network

1. Introduction

Internet softwarization is the future of the Internet and has an impact on network in-
novation towards network improvement and enhancement. Software-defined networking
(SDN) is known for its near-to-optimal solutions regarding network design and implemen-
tation. SDN is considered an appropriate environment to become immune to malicious
attacks. SDN separates control functionalities and forwarding functionalities. Controller
modules are responsible for control decision functionalities, while the switch modules
are responsible for forwarding functionalities. A typical SDN architecture is composed of
north-bound interfaces, a management layer, a control layer, a data layer, and east–west-
bound interfaces. Moreover, the management layer consists of a set of network applications
that manage the control logic of the SDN. The control layer contains a set of controllers that
forward different rules and policies to the data layer through the southbound interface.
The data layer represents the forwarding network elements on the network [1].

SDN architecture has different types of interfaces, such as a northbound interface, an
east–west-bound interface, and southbound interfaces. The northbound interface controls
the connection between the controller module and the application. It is responsible for
the communication between control layer and the management layer. Moreover, the east–
west-bound interface allows communication between multiple controllers through message
passing. The southbound interfaces facilitate the interaction between the control layer and
the data layer [2–5].

OpenFlow is one of the most popular protocols that pushes policies to the forwarding
plane. Security of SDN has been under investigation since OpenFlow is considered to be
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the first standard communications interface designed by the Open Network Foundation
(ONF). OpenFlow security relies on the optional implementation of transport layer security
(TLS) that is considered to be vulnerable to malicious attacks. Methods for increasing SDN
reliability has been studied in various research works, such as [1,6–10].

This work proposed a novel model to add secure capabilities to SDN networks using
feedback control techniques based on ARMA models. The proposed approach was based
on feedback control techniques using autoregressive moving average (ARMA) models.
The proposed model is referred to as the secured feedback model using autoregressive moving
average (ARMA) for SDN networks (SFBARMASDN). Extensive comparisons were conducted
to compare the proposed model SFBARMASDN to two reference models. The first reference
model is based on Bayesian networks to provide security capabilities and is referred to as
the secured standard using Bayesian networks for SDN (SSBNSDN). The second reference
model is referred to as the standard OpenFlow [11].

The reason behind using the ARMA model in the proposed model was that in classi-
cal engineering environments, the relationships between outputs and inputs are studied
through physical laws that are referred to as the first-principle techniques. The main barrier
for using first-principle modeling in the computing system domain was that some unrealis-
tic assumptions were made. For that reason we used empirical approaches for developing
transfer functions through the autoregressive moving average (ARMA) approach [12]. The
proposed feedback control system model relied on having a tuning parameter that was
easy to control. This tuning parameter had an influence on a controlled output parameter.
The system aimed to ultimately achieve a certain target value for the controlled output
parameter. The controlled output parameter was a parameter that was needed to be con-
trolled but could not be adjusted directly; hence, the tuning parameter came into place.
The tuning parameter could be directly tuned and had an impact on the controlled output
parameter. In this work the tuning parameter used was the current value of the security
level of the system. The controlled output parameter was the enhanced security level of the
system. Feedback controllers used the ratio between outputs and inputs. This was defined
mathematically through transfer functions [13].

For the purposes of the SDN server, the level of security attainment was used to
characterize the performance of the system. This metric provided a way to manage trade-
offs between the achieved security level and the target security level.

Thus, rather than proceeding from first principles, this research used an empirical approach.
Obviously, the SDN system in question was highly discrete and nonlinear. However, for the
purposes of control, a linear system model was desired. This model was an approximation of
the real system at best, but, for control, approximate models often suffice.

The server had many available tuning parameters. Tuning parameters are the parame-
ters that affect the different resources utilized by the system. Some of these tuning controls
must be fixed at installation time, while others can be changed on-line while the server is
operating. The tuning parameters were considered as the control input in this work and
the current value of the security level of the system.

The main reference model used in this work was based on Bayesian networks (BNs).
BNs are considered to be probabilistic models that use graphical representations for knowl-
edge. A BN is a domain that deals with uncertain domains. The main strength of a BN
is that it applies probability theory to control model complexities. BN nodes are repre-
sented as random variables, while edges are represented as conditional probabilities for
the appropriate random variables. A major weakness of BNs is the need to fully specify the
probability distributions for the network, and this number is high [14].

The paper is organized as follows. Section 2 presents related work. Section 3 describes
the SSBNSDN reference model. Section 4 presents the SFBARMASDN proposed model.
Section 5 presents the experimental results. Finally, Section 6 presents the conclusion and
future work.
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2. Related Work

This section briefly discusses the OpenFlow protocol. The OpenFlow protocol is
considered as the de facto SDN protocol for SDN. OpenFlow is implemented at both the
SDN interface and the SDN controller. It is responsible for forwarding packets in the
forwarding plane for all SDN network elements [15]. OpenFlow is categorized into three
categories: (1) switch category; (2) channel category; and (3) controller category [16].

The switch has flow tables with flow entry lists. For each arriving packet, the switch
matches packets based on the flow table. Selection is performed based on the highest
available priority that matches the packet header. In case of similar priorities, the selected
flow is not defined. If the packet does not match the row table, then it should be discarded.
If the packet does not have a missing flow entry, then the appropriate policies should be
followed. OpenFlow channel is an interface that enables controllers to connect to OpenFlow
switches. This interface guarantees that the controller makes the following operations:
(1) configures the switch; (2) receives various events from the switch; and (3) sends packets
to the switch.

Types of messages that are allowed in these channels are controller to switch messages,
switch to controller messages to update the controller about network status, and messages
by either switches or controllers in emergency cases. In the literature controllers are
considered to be either centralized or distributed. An OpenFlow controller is classified as a
centralized controller that maintains policies and instructions among network elements.
Policies determine the way to manage packets without matching flow entries and also
manage the switch flow table by updating flow entries securely. TLS is used as the default
security mechanism for the OpenFlow controller since the standard OpenFlow does not
provide security [14,15,17–20].

The OpenFlow switch is able to establish a connection and communicate with various
controllers. The reliability of the SDN network could be improved through utilizing mul-
tiple controllers by resisting failures. OpenFlow switches start by connecting all existing
controllers although the messages to be sent should only be sent to the appropriate switch.
Several research teams have investigated various security issues for OpenFlow [21–24].
Agborubere et al. [24] proposed a model to improve OpenFlow and TLS communications
security. The model summarized the TLS security issues by recommending techniques
to improve the TLS. The authors of [24] focused on securing the OpenFlow controller
through classifying different types of attacks using a BN classifier for TLS. SDN controllers
dynamically add or remove policies and rules. Administrators configure the network and
deploy new protocols through the controllers. Therefore, the management of SDN greatly
increases the programmability and flexibility of the network.

Meng et al. [14] proposed a management model based on Bayesian models for insider
attackers in healthcare environments. Tseng et al. [17] proposed a new model called
ControllerSEPA. ControllerSEPA is considered as a lightweight plugin project to protect
the network against intruders. Uchupala et al. [8] proposed an application-aware network
based on the spanning tree technique in addition to the shortest path routing network for
various scenarios. Craiget et al. [23] presented a method for using bloom filters in software-
defined networks (SDN) to reduce the state of packet delivery while removing false positive
forwarding. Song et al. [18] proposed a technique for an SDN control plane to assign a
group of the event processing modules to switches. Authors in this work suggested using
switches for dealing with the OpenFlow events rather than the controllers. Qiu et al. [22]
suggested using global flow tables for global flow collection, computation of all the paths
for network, and also for global flow storing. Xiong et al. [19] proposed a queuing model for
analyzing OpenFlow-based SDNs. Silva et al. [21] proposed an extension to the OpenFlow
protocol to include flexible time-triggered real-time communication services. The proposed
model extended the capabilities of the OpenFlow protocol to support real-time reservations.



Electronics 2022, 11, 1513 4 of 14

3. SSBNSDN Reference Model

This section describes the reference model used in this paper. The reference model is
referred to as the secured standard using Bayesian networks for SDN (SSBNSDN) [25]. SSBNSDN
has security features implemented into the OpenFlow controller. SSBNSDN uses a Bayesian
network model for packet filtering decisions in addition to filtering rules matching tech-
niques. SSBNSDN implements packet filters through utilizing security features of OpenFlow
controllers. SSBNSDN inspects packets based on their individual characteristics.

SSBNSDN depends on the process of packet inspection using BN classifiers to determine
whether the packet is a malicious packet or not. SSBNSDN performs the filtering process by
following the occurrence of the repeated attacks to a specific target with a certain probability.
This is used as an indication that the host is being attacked. In this scenario, the policy
is to store the attacking packet information in the flow table to be discarded. SSBNSDN
uses a Ryu framework for handling OpenFlow since it has conformance with OpenFlow
specifications [15].

OpenFlow switches receive a packet on their input ports, and hence matching pro-
cesses are performed to match the incoming packets to their corresponding entries in the
flow table. In the case that the packet does not exist in the flow table, the packet is sent to
the controller for more inspection and processing. SSBNSDN uses packet filtering rules to
be able to discard malicious packets.

This includes the information found in the packet header, whether a protocol that
is encapsulated is being used, source and destination ports, an ICMP message type, and
packet ingress and egress interfaces. In case of a packet hit scenario (i.e., matching occurs),
the packet is considered as a green packet. If it is a packet miss scenario (i.e., no matching),
the packet is considered as a red packet and, hence, is discarded.

SSBNSDN defines the problem as a set R = (r1, r2, . . . , rn) of orthogonal instances of the
random variables (R1, R2, . . . , Rn). As a result, the network N that best matches R could be
found. One of the common approaches used for scoring is the Bayesian score approach.
The score works by computing the probability of the data given the directed acyclic graph.
Maximizing the Bayesian score using M is an NP-hard problem that could be solved using
heuristic techniques. SSBNSDN computes the scores as shown in Equation (1). It represents
the probability of the graph.

S(N : R) = logP(N|R) = logP(R|N) + logP(N) + M (1)

R|N denotes the average data over parametric assignments to N. SSBNSDN comprises
a directed acyclic graph (DAG). DAG is composed of a set of nodes, one node is dedicated
to each random variable. DAG contains a set of directed edges in additional to a set
of conditional probability distributions. Equation (2) defines the conditional probability
distribution of each node as a function of its parents.

P(Xi|Parents(Xi)) (2)

A conditional probability table (CPT) represents a conditional distribution that gives
a distribution for Xi for all possible combinations of the parents’ values. Intuitively, the
conditional probability for Boolean Xi that has k Boolean parents gives up to 2k different
possible rows for all the combinations of the parent values. Each possibility requires a
probability of P for Xi to be true and a probability of 1− P for Xi to be false. The joint
probability distribution coan be represented as shown in Equation (3).

P(X1, . . . , Xn) =
n

∏
i=1

P(Xi|Parents(Xi)) (3)

SSBNSDN utilizes a centralized OpenFlow controller model that establishes a pattern
of trust among nodes and also detects untrusted devices for dynamic thresholds. Threshold
values are adjusted by the administrator. SSBNSDN classifies the input packets into two
classes through filters: safe packets class and unsafe packets. SSBNSDN assumes that if the
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probability of an IP destination address is greater than a certain threshold it is considered
as an unsafe packet, otherwise it is a safe packet. The security evaluation of SSBNSDN
is implemented through Python script to add the necessary security functionalities to
the current version of the OpenFlow controller. The network attack workloads were FOI
datasets. Three different FOIs datasets were used and results were consistent.

Wireshark was used to monitor inbound and outbound packets. The experiments were
conducted using a Mininet emulator version 2.1.1+ installed on an Oracle VirtualBox. A VM
was connected to the network using network address translation (NAT). Moreover, the SSH
facilitates used the VM to run multiple software packages simultaneously. Three different
FOI datasets were used. Results were consistent. The OpenFlow controller security features
were applied using two different packet filtering techniques: (1) simple packet filtering
techniques that use rules to inspect packet properties; and (2) Bayesian network (BN) filters
that observe unusual packet patterns in addition to possible DDoS attacks. BN filtering
decisions were performed through keeping track of the repeated attacks on the same host
or the same IP destination address with a probability value of 0.8. This was assumed to
be an indication of attack occurrence. In such situations, the packet pattern was saved
in the flow table to be scheduled for dropping. In this article, the Ryu framework was
utilized to handle OpenFlow. The Ryu framework has high conformance with OpenFlow
configurations. If it was a hit scenario where the packet matches the filtering rules, it was
referred to as a green packet, otherwise it was referred to as a red packet.

A BN model starts by inspecting the incoming packets. If the incoming packet matches
permission rules in the flow tables, then the packet routes. If the incoming packet does not
match any permission rules from the flow tables, then packet filtering is used. If the packet
is a safe packet (green packet), the packet goes to packet filtering using a BN classifier. If
the packet is a red packet, the flow tables are updated to be eventually discarded.

4. SFBARMASDN Proposed Model

In this section, the proposed model is discussed. The proposed model is referred
to as secured feedback control using auto regressive moving average for SDN (SFBARMASDN).
SFBARMASDN is based on feedback control theoretic techniques. SFBARMASDN works in
two phases. (1) The system identification phase, which is responsible for mathematically
modeling the system; and (2) the control law phase that is responsible for detecting the safe
and unsafe packet classes based filtering schemes.

Figure 1 depicts the block diagram for the feedback control system utilized by the
proposed model SFBARMASDN. SFBARMASDN added security levels to the SDN through
filtering based on ARMA approaches. The output was a higher secure system. After a time
slot, the system could became vulnerable to attacks and might return back again to the
unsecured state. The observer module detected the level of vulnerability and compared
the security level to a threshold value. If the value exceeded the threshold value, then
controller’s control law took the appropriate action to rectify the malicious behavior.

Figure 1. Block diagram for the feedback control system for the SFBARMASDN model.
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Figure 2 shows the feedback control system for the SFBARMASDN model. The controller
module had a control function that modified the tuning parameter. The actuator module
was responsible for executing the appropriate actions based on ARMA approaches. The
vulnerable system was referred to as the controlled system module. The observer module was
used to detect the current status of the security level of the SDN. The output was fed back
to the comparator to be compared to a certain reference value. The reference value was
assumed to be 90% in this model.

Figure 2. Feedback control system for the DFBCP model.

The system identification phase focused on using linear regression to model SDN
elements. The generic time domain of the ARMA model is expressed in Equation (4) in
terms of the output of the module, y(t), as a function in the input, x(t). The output was
expressed as a series of the inputs. ARMA model had n series of the weighted values of
the previous output and m weighted values of input values, as shown in Equation (4).
The values of i and j were the index values for the previous output and the input values,
respectively.

y(t) =
n

∑
i=1

ai × y(t− i) +
m

∑
i=0

bj × x(t− j) (4)

In order to ease the mathematical modeling and derivation, a frequency Z-transform
version of the ARMA was derived as shown in Equation (5):

H(z) =
Y(z)
X(z)

=
∑m

j=0 bj × zn−j

zn − (∑n
i=1 ai × zn−i)

(5)

SFBARMASDN modeled the SDN using a feedback control system, as shown
in Figure 3. The SFBARMASDN model was composed of the security engine that was
responsible for maintaining the required security level. The SDN module represented the
SDN network that needed to be secured, including the overflow protocol. The observer
module represented the sensing element that was responsible for reading the controlled
output parameter (COP). SFBARMASDN assumed that COP was the enhanced security
level of the system denoted by si(t). The security engine module computed the tuning
parameter of the model, which was the current value of the security level of the system
denoted by ui(t). The relationship between si(t) and the ui(t) is given by Equation (6) by
applying it into the ARMA mathematical model explained in Equation (4). For simplicity,
the values of n and m were chosen to be 1 and 0, respectively.

si(t) = a1si(t− 1) + b0ui(t) (6)
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Figure 3. Modeling the SFBARMASDN using feedback system.

4.1. SFBARMASDN Control Law and Gain Design

The SFBARMASDN engine module used a proportional integral (PI) controller due
to its simplicity. SFBARMASDN used the control law to update the tuning parameter to
continuously work on minimizing the current error value in a feedback fashion. The
SFBARMASDN control law is given in Equation (7).

ui(t) = ui(t− 1) + Kiei(t− 1) (7)

The error value, which was fed as an input to the SFBARMASDN controller, was
calculated as a result of the difference between the current reference value and the current
level of security level, as shown in Equation (8).

ei(t) = re fi(t)− si(t) (8)

In order to be able to compute a stable gain K, a root locus was used for the appropriate
gain selection. The root locus plot is shown in Figure 4. The gain K was chosen to be 0.5 to
obtain the closed loop root of 0.47. Figure 4 shows a plot of the root locus of the system
combined with the integral controller. We were seeking a value for the gain K that resulted
in poles that were inside the unit circle, causing the closed loop system to be stable. If K
resulted in poles that were outside the circle, the system was considered unstable. In fact,
when gain K = 0.5 provided stable poles, these were the roots of the root locus.

Figure 4. Root locus for the SFBARMASDN model.
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4.2. SFBARMASDN Transfer Functions

Transfer functions are mathematical models that express the relationship between the
outputs and the inputs. Transfer functions are the frequency domain equivalent for the time
domain, as described in Equations (9)–(11). Equation (9) is the Z-transform equivalence for
Equation (6).

T(z) =
Si(z)
Ui(z)

=
b0z

z− ai
(9)

The controller engine module’s transfer function is shown in Equation (10). The
transfer function carries the control law that relates the tuning parameter’s current security
level to the error value’s tuning parameter.

Gi(z) =
Ui(z)
Ei(z)

=
Ki

z− 1
(10)

To compute the aggregated transfer function of the overall system, the result was
obtained by multiplying the transfer functions for each module, resulting in Equation (11).

W(z) =
S(z)
R(z)

=
K× z× (z× b0)

(z− 1)× (z− a1) + K× z× (z− b0)
(11)

SFBARMASDN used least squares regression to estimate the values of the parameters
of the ARMA model a1 and b0. a1 was estimated to be 0.4364, and b0 was estimated to be
0.2897. The goodness of the model was measured using R2. R2 was measured to be 87.5%
as an indication of the linearity of the model.

Those transfer functions were used in the Z-transform. The Z- transform was con-
sidered as the frequency model of the time domain, which was easier to deal with math-
ematically. The Z-transform related the output to the input of the system it modeled.
The main goal was to design the appropriate gain that resulted in a stable system. The
proposed model added feedback that added more control over the desired value of the
controlled output parameter using the tuning parameter. The transfer functions shown
in Equations (4)–(11) were to design the gain mathematically through the Z-transform
mathematical model.

The SFBARMASDN filtering algorithm started by observing the sequence of the pack-
ets to make sure that the data were reliable. If the data were stationary, SFBARMASDN
calculated the Akaike’s information criterion (AIC). Packets were filtered; if packets passed
the selection criteria, then the packets were considered as green packets, otherwise they
were considered as red packets and discarded. The flowchart for SFBARMASDN is shown
in Figure 5.
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Figure 5. SFBARMASDN filtering.

5. Experimental Testbed and Results

This section provides the experimental testbed followed by the experimental results.

5.1. Experimental Testbed

SFBARMASDN added a feedback module based on an ARMA regression model that
was responsible for adding a security capability to the OpenFlow controller. The added
module was responsible for maintaining the required reference value of the security level
by computing the overall security in addition to the computation overhead. In order to
evaluate the security of the proposed system, a prototype was implemented by adding
security capabilities to the existing OpenFlow controller using Python scripts. To simulate
attacks, freedom of information (FOI) data sets were used. A Mininet software emulator tool
was installed on a Linux machine. Wireshark is a protocol analyzer that was responsible
for observing the inbound and outbound packets. The network emulation ran on an HP
machine with Intel Core i5-2520M, CPU 2.50 GHz, and RAM 8 GB, running Ubuntu (version
20.04) 64 bits.
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In the experimentation setting, attacks varied from 10 to 100 with a step of 10, while
the number of packets generated by each attack was set to be 1000. Extensive topologies
were used in the experimentation phase. A case study topology that was used for experi-
mentation purposes is shown in Figure 6. The experimental topology was composed of a
Ryu SDN controller that was used as an OpenFlow framework. Ryu has high conformance
with OpenFlow specifications [15]. The topology consisted of six hosts that were connected
to the OpenFlow router. The OpenFlow router was substituted by three types of routers
in the experimentation phase. The basic reference OpenFlow, the Bayesian based router
SSBNSDN, and the secured feedback model based on ARMA. Capabilities were added to
secure the OpenFlow controller. Malicious intruders’ controllers represented the various
malicious attacks.

Figure 6. Experimental topology.

We tested the new model that was based on feedback and the ARMA model based on
the topology in Figure 6. We intend to present more complicated topologies, such as OS3E
and EU-GÉANT, in future work.

5.2. Experimental Results

In order to evaluate the detection accuracy of the malicious intrusion, SFBARMASDN
added security capabilities to the standard OpenFlow controller. SFBARMASDN was
compared to both the standard OpenFlow controller and also to the SSBNSDN. We plotted
the tuning parameter versus the controlled output parameter, as shown in Figure 7. We
increased the packet load regularly every time slot and measured the effect on the controlled
output parameter.

Figure 7. Response of the controlled output parameter to step changes in the tuning parameter.
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The impact of the tuning parameter on the controlled output parameter clearly sug-
gested that a linear model between the control input and the tuning parameter was ob-
served. We measured the regression factor R2, which represented the goodness of the
model. A first order auto regression model was fitted to match data using the linear least
squares method where the input to the system was the tuning control parameter and the
output was the measurement of the secured system output.

The coefficients of the transfer function for various values of the delay are given
in Table 1. The tuning parameter was saturated once the number of incoming packets
exceeded the controller capacity. The control saturated at zero because it did not make
intuitive sense to have a negative number of fake packets allowed to connect to the system.
To help prevent saturation from occurring at the bottom, an integral control scheme was
chosen. SFBARMASDN assumed that the success rate to filter fake packets to was set to
90%. Figure 8 compares the number of fake packets for the SFBARMASDN and the two
reference models: the standard OpenFlow controller and the SSBNSDN. The results showed
that SFBARMASDN could detect fake packets with a percentage of 91% as opposed to 88%
for the SSBNSDN. Both algorithms outperformed the standard OpenFlow controller as
depicted in Figure 8.

Table 1. Models coefficient and fits for W(z) transfer function.

Delay R2 a1 b0

0 75.2 0.167 0.078
1 84.5 0.2963 0.1193
2 86.2 0.3235 0.1084
3 87.5 0.4364 0.2897

Figure 8. Comparison of the fake packets detected for the standard OpenFlow, SSBNSDN , and
SFBARMASDN .

Figure 9 shows the comparison of the processing times for the standard OpenFlow,
SSBNSDN and the proposed SFBARMASDN. The experiments showed that the percent-
age of overhead introduced by the SFBARMASDN when compared to the SSBNSDN and
the standard OpenFlow was limited to 3% and 5%, respectively. This indicated that the
proposed SFBARMASDN did not produce extra overhead when compared to the standard
OpenFlow and the SSBNSDN.
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Figure 9. Comparison of the processing time among the standard OpenFlow, SSBNSDN , and
SFBARMASDN .

SFBARMASDN outperformed both the secured standard using a Bayesian network for
SDN (SSBNSDN) and the standard OpenFlow in different scenarios by an average improve-
ment of 7% and 80%, respectively. The processing time overhead for the SFBARMASDN
increased by only a percentage of 3% and 5% when compared to the SSBNSDN and the
standard OpenFlow, respectively.

6. Conclusions and Future Work

This work proposed a novel model to add extra security capability to the standard Open-
Flow controllers in SDN networks. The proposed model is referred to as the secured feedback
model using autoregressive moving average (ARMA) for SDN networks (SFBARMASDN).
SFBARMASDN added a security capability to the OpenFlow controller through classifying
various attacks using packet filters. The filter inspected the properties of the fake packets
through feedback control theoretic techniques. SFBARMASDN used ARMA models to filter
fake packets and hence improve the security of the OpenFlow. FBARMASDN calculated
the Akaike’s information criterion (AIC). Packets were filtered, if packets passed the selection
criteria, then the packets were considered as green packets, otherwise they were considered
as red packets and discarded. In order to measure the added value for the proposed model.
The SFBARMASDN was compared to two reference models. The first reference model
was based on Bayesian networking and the second reference model was the standard
OpenFlow model. The standard OpenFlow controller optionally implemented transport
layer security (TLS).

Extensive experiments were conducted to test the performance of the proposed model.
The number of fake packets were measured and compared to two reference models.
SFBARMASDN outperformed both SSBNSDN and the standard OpenFlow in different
scenarios by an average value of 7%. The processing time overhead was computed. The
processing overhead was around 3% for the SFBARMASDN compared to the SSBNSDN. A
virtual network was established using an improved version of the Ryu controller to add
the security and filtering capabilities. The results were very promising, SFBARMASDN
outperformed the reference models with minimum overhead.

In future work we intend to use more complicated topologies to test more complex
scenarios for the SFBARMASDN. In addition, artificial intelligence-based techniques could
also be utilized for filtering. Another research direction for improvement could be to use
the ARMA-based models to improve NOX, POX OpenFlow controllers.
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