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Abstract: The existing visible light communication simulation research on reflection is mainly based
on the standard Lambertian model. In recent years, some papers have mentioned that the standard
Lambertian model is too simplified and approximate to meet the actual situation. To solve this
problem, a variety of more complex reflection models have been proposed. However, the more
complex models require more computation. To balance computation and simulation accuracy,
by consulting the literature, this study found that the standard Lambertian model has a certain
requirement of the incident angle range to describe reflection on a wall covered in plaster. In this paper,
the inappropriate index Q of the standard Lambertian model is defined, and then the relationship
between Q and the light-emitting diode position with only the first reflection considered is determined
through a preliminary calculation. The calculation shows that, in an empty room with plaster walls,
and when the distance is greater than 0.685 m, the standard Lambertian model can be used; when
the distance is less than 0.685 m, other, more complex models need to be adopted according to the
actual situation.

Keywords: Lambertian model; reflection model; visible light communication

1. Introduction

The existing visible light communication (VLC) simulation research is mainly based
on two important theoretical models, the generalized Lambertian model of a light-emitting
diode (LED) light source and the standard Lambertian model of a reflective surface [1–5].
With the improvement in computer performance and the continuous advancements in VLC
research, some researchers are aware that these previous relevant works assumed some
sort of simplification to evaluate the propagation channel, which might not hold true for
many practical cases [6–8].

In [9], the Lambertian specular reflections model and the Lambert–Phong diffuse
reflection model for both vertical- and angular-oriented receiver detectors were considered.
In [10], Phong’s model was used to describe the reflection pattern. In [11], depending on
the materials, reflection was assumed to be Lambertian or to follow the Blinn–Phong model.
In [12], the integration of new reflection models into the impulse response estimation of the
indoor wireless optical communication channels is proposed, including Phong’s model,
retroreflective Phong’s model, Blinn’s model, and Lafortune’s model.

Complex models require more calculations. To balance computation and simulation
accuracy, first, this study reviewed the related papers on the standard Lambertian model in
VLC. Second, the inappropriate index Q of the standard Lambertian model was defined.
Then, based on [1], in which the standard Lambertian model was first applied to optical
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communication to describe reflection, calculations of the relationship between the Q and
the position of the LED in some different situations with only the first reflection considered
were performed. Finally, by analyzing the calculation results, the applicable range of the
standard Lambertian model to describe the reflection of an empty room with plaster walls
in VLC was obtained.

Based on the above discussion, the contributions of this paper are as follows:

• The inappropriate index Q of the standard Lambertian model is defined for the
first time;

• The relationship between the Q and the position of the LED is simulated in some
different situations with only the first reflection considered;

• The range of LED positions, for which the standard Lambertian models can be used to
describe the reflection of an empty room with plaster walls applicably, is determined.

Following the introduction, this paper is organized into four sections. In Section 2, the
application scope of the standard Lambertian model in the original paper is explained. In
Section 3, the inappropriate index Q of the standard Lambertian model is defined, and then
three simplified situations—one infinitely long wall, a corner between two infinitely long
walls, and a square empty room with an LED installed in the center of the ceiling—are used
to simulate and analyze the relationship between the Q and the LED position. In Section 4,
the relationship between the Q and the LED position in differently sized rooms is simulated
and analyzed. Finally, our conclusions are given in Section 5.

2. Standard Lambertian Model
2.1. Definition of the Standard Lambertian Model

The standard Lambertian light source (Lambertian body, Lambertian surface) is an
ideal light source model in which luminous intensity conforms to the law of cosines, as
shown in Figure 1. In this model, the luminous intensity along one orientation (Iθ) is equal
to the cosine of the angle between the orientation and the optical axis (θ) multiplied by the
luminous intensity along the optical axis (I0), in candela units (cd) [13], as follows:

Iθ = I0 cos θ (1)

where Iθ is the luminous intensity along the orientation with the θ angle between the optical
axes; θ is the angle between the orientation and the optical axes; I0 is the luminous intensity
along the optical axes.
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source. 
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of orientation [13], as follows: 

Figure 1. Schematic diagram of normalized luminous intensity of the standard Lambertian
light source.

Figure 2, a normalized luminance distribution diagram, shows that the luminance in
candelas per square meter (cd/m2) of the standard Lambertian light source is independent
of orientation [13], as follows:

Lθ =
dIθ

dS
=

dI0 cos θ

dA cos θ
=

I0

dA
(2)
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where dS is the surface element of the light beam cross-section; dA is the surface element of
the luminous surface; θ is the angle between the normal dA and the light beam direction.
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Figure 2. Schematic diagram of the normalized luminance of the standard Lambertian light source.

Due to the fact that the luminance of the standard Lambertian light source is indepen-
dent of direction, the standard Lambertian surface is regarded as an ideal diffuse reflection
surface [14,15].

2.2. Origin of the Standard Lambertian Model in VLC

In [1], the standard Lambertian model is first introduced into optical communication
reach, and some important conclusions in it are as follows:

• Using an infrared light with a wavelength of 950 nm to measure the reflected luminous
intensity distribution of a white plaster wall, Figure 3 was drawn, where the letters
indicate the incident angle, and the dotted circle is the luminous intensity distribution
characteristic diagram of the standard Lambertian surface;

• The reflection characteristics are generally composed of a diffuse and a specular compo-
nent, the latter becoming significant with very shallow angles of the incident radiation;

• Typical values of the reflection coefficient for plaster walls vary between 0.7 and
0.85 depending on the surface texture and angle of incidence, and the radiation
characteristics are a close fit to a Lambertian distribution.
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Professor Masao Nakagawa of Japan started the research on VLC early, and his
published paper [2] cited the standard Lambertian model in [1], which is the most cited
paper in this field, to introduce the standard Lambertian model to VLC.

3. Simplified Analysis

In this paper, relative attenuation was adopted as the inappropriate index Q, in dB
units, of the standard Lambertian model, as follows:

Q = 10lg
Fno−L

FL
(3)

where Fno−L is the luminous flux of the reflected light not in the standard Lambertian model,
namely the luminous flux of the part with the incident angle greater than 70◦, according to
Figure 3; FL is the luminous flux of the reflected light in the standard Lambertian model,
namely the luminous flux at an incident angle of less than or equal to 70◦, according to
Figure 3. Both Fno−L and FL are shown in lumens (lm).

The larger the Q is, the larger the proportion of the luminous flux of the reflected light
not in the standard Lambertian model to the total luminous flux reflected. In this case, the
inappropriateness of the standard Lambertian model is higher, and the model cannot fit
the actual situation well. On the contrary, the smaller the Q is, the smaller the proportion of
the luminous flux of the reflected light not in the standard Lambertian model to the total
luminous flux reflected. Similarly, the inappropriateness of the standard Lambertian model
is lower, and the model can fit the actual situation well.

This section is divided into three parts. The relationship between the Q and the LED
position was simulated and analyzed under three different simplified situations—one
infinitely long wall, a corner between two infinitely long walls, and a square empty room
with an LED installed in the center of the ceiling.

3.1. One Infinitely Long Wall
3.1.1. Situation Description

In the situation of one infinitely long wall, the LED installation position and the calcu-
lation analysis of the inappropriate standard Lambertian model are shown in Figure 4. The
LED installation height hLED was 2.5 m and the luminous surface was placed horizontally
downward. The height of the receiving plane hr was 0.75 m, and the receiving surface was
placed horizontally upward. In Figure 4, the line area was a half cone, with the LED as
the vertex, the wall as the bottom, and a 70◦ cone half-angle. In the half cone, the incident
angle of any light emitted from the LED to the wall was less than or equal to 70◦, so the
luminous flux reaching the line area on the wall was reflected in the standard Lambertian
model. Since only the first reflection was considered in this calculation and the receiver
was placed horizontally upward, it was impossible for the wall area below the height of
the receiving plane to reach the receiving area after a reflection. Therefore, the luminous
flux above the height of the receiving plane and outside the line area was not reflected in
the Lambertian model. The distance x between the LED and the wall was the independent
variable. Appendix A shows the specific calculation formulas.
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3.1.2. Calculation Setting

Table 1 shows the calculation settings for all three situations. According to Equation (3),
the calculation results are independent of the axial luminous intensity of the LED. However,
based on the needs of the calculations, the axial luminous intensity of the LED is consistent
with that in [2].

Table 1. Calculation setting data table.

Item Data

The height of the LED hLED 2.50 m
The height of the receiving plane hr 0.75 m

The distance between the LED and wall x 0.05:0.05:10 m
The axial luminous intensity of the LED I0 0.73 cd

The semi-luminous intensity angle of the LED θ1/2 10:10:70◦

The maximum incidence angle to the standard Lambertian model θL,Max 70◦ (7π/18 rad)

3.1.3. Calculation Results

Figure 5 shows the calculation results of the relationship between the Q and x in the
situation of one infinitely long wall. According to Figure 5, when the LED was close to
the wall, the Q was high, and the standard Lambertian model was not applicable. The Q
decreased as the distance x increased, and the downward trend of the Q first increased
and then decreased as x increased. The larger the semi-luminous intensity angle was, the
smaller the initial value of the Q was, and the more gentle the change in the Q was, the
earlier it entered the stabilization stage and the larger the Q was at the stabilization stage.
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Figure 5. Calculation results of the relationship between the Q and x in the situation of a single
infinitely long wall.

3.2. A Corner between Two Infinitely Long Walls
3.2.1. Situation Description

In the situation of a corner between two infinitely long walls, the LED installation
position and the calculation analysis of the inappropriateness of the standard Lambertian
model are shown in Figure 6. In Figure 6, the line area is composed of two half cones with
the LED as the vertex, the wall as the bottom, and a 70◦ cone half-angle. In the two-half-
cone complex, the incident angle of any light emitted from the LED to the wall was less
than or equal to 70◦, so the luminous flux reaching the line area on the wall was reflected
in the standard Lambertian model. The LED was installed on the bisector of the angle
between the two walls on the ceiling. The other settings were the same as in Section 3.1.
Appendix B shows the specific calculation formulas.
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3.2.2. Calculation Results

Figure 7 shows the calculation results of the relationship between the Q and x in the
situation of a corner between two infinitely long walls. In comparing Figure 7 with Figure 5,
it can be found that all the features in Figure 5 are also reflected in Figure 7. Figure 8 is the
result of subtracting the Q in Figure 5 from the data in Figure 7. It can be found that the
Q of Section 3.2 was lower than that of Section 3.1, and the difference first decreased and
then increased with the increase in distance. When the distance reached a certain level, the
difference basically remained unchanged.
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3.3. A Square Empty Room with an LED Installed in the Center of the Ceiling
3.3.1. Situation Description

The LED installation position in this situation is shown in Figure 9. An LED was
installed in the center of the ceiling, and the length and width of the room were equal.
Appendix C shows the specific calculation formulas.



Electronics 2022, 11, 1514 8 of 24

Electronics 2022, 11, x FOR PEER REVIEW 8 of 25 
 

 

Figure 7. Calculation results of the relationship between the Q and x in the situation of a corner 

between two infinitely long walls. 

 

Figure 8. Differences in the Q between Figure 7 and Figure 5. 

3.3. A Square Empty Room with an LED Installed in the Center of the Ceiling 

3.3.1. Situation Description 

The LED installation position in this situation is shown in Figure 9. An LED was in-

stalled in the center of the ceiling, and the length and width of the room were equal. Ap-

pendix C shows the specific calculation formulas. 

x2
x LED

2x  

Figure 9. Schematic diagram of a square empty room with an LED installed in the center of the 

ceiling. 

3.3.2. Calculation Results 

Figure 10 shows the calculation results of the relationship between the Q and x in the 

situation of a square empty room with an LED installed in the center of the ceiling. Ac-

cording to Figure 10, the Q decreased as the distance x increased, and the downward trend 

of Q increased as x increased. When the x reached 0.69 m, the Q was reduced to minus 

infinity, that is, in this case, Fno-L was 0 lm when the distance between the LED and the 

wall was 0.69 m or greater. After the calculation, the Q was minus infinity, when the dis-

tance between the LED and the wall was greater than 0.6839 m; this distance is denoted 

as xmin. Appendix C shows the specific calculation formulas. 

Figure 9. Schematic diagram of a square empty room with an LED installed in the center of the ceiling.

3.3.2. Calculation Results

Figure 10 shows the calculation results of the relationship between the Q and x in
the situation of a square empty room with an LED installed in the center of the ceiling.
According to Figure 10, the Q decreased as the distance x increased, and the downward
trend of Q increased as x increased. When the x reached 0.69 m, the Q was reduced to
minus infinity, that is, in this case, Fno−L was 0 lm when the distance between the LED and
the wall was 0.69 m or greater. After the calculation, the Q was minus infinity, when the
distance between the LED and the wall was greater than 0.6839 m; this distance is denoted
as xmin. Appendix C shows the specific calculation formulas.
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empty room with an LED installed in the center of the ceiling.

4. Detailed Analysis

In this section, more practical and specific situations are considered, and the calcu-
lation settings in Section 3 are extended to an actual rectangular room. The scope of the
LED position consideration traversed the whole ceiling, that is, the entire possible installa-
tion area was simulated and analyzed to explore the relationship between the Q and the
LED position.
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4.1. Situation Description

The calculation situation in this section is more complex than that in Section 3, but it
can loosely refer to Section 3. Appendix D shows the specific calculation formulas.

4.2. Calculation Setting

All parameters were the same as in Table 1, except for the room size and the LED
calculation area. Regarding the room size, we considered a variety of scenarios, the LED
calculation areas were throughout the ceilings of each room, and the grid spacing was set
to 1 cm.

4.3. Calculation Results

Figure 11 shows the calculation results of the relationship between the Q and LED
position at a room size of 1 m × 1 m. According to Figure 11, because the room size was
too small, the distance between the LED and the wall was less than xmin, so there was no
area where the Q was minus infinity, and the overall Q was high.
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Figure 11. Calculation results of the relationship between the Q and LED position in a room size of
1 m × 1 m: (a) θ1/2 = 10◦; (b) θ1/2 = 20◦; (c) θ1/2 = 30◦; (d) θ1/2 = 40◦; (e) θ1/2 = 50◦; (f) θ1/2 = 60◦;
(g) θ1/2 = 70◦.
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Figure 12 shows the calculation results of the relationship between the Q and LED
position in a room size of 2 m × 2 m. According to Figure 12, as the size of the room was
greater than 2xmin, a region with a minus infinity Q appeared in the center, and the distance
between the edge of the region and the wall was 0.685 m, which is larger than and the
closest to the xmin in the mesh used in the calculation.
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5. Conclusions 

Figure 12. Calculation results of the relationship between the Q and LED position at a room size of
2 m × 2 m: (a) θ1/2 = 10◦; (b) θ1/2 = 20◦; (c) θ1/2 = 30◦; (d) θ1/2 = 40◦; (e) θ1/2 = 50◦; (f) θ1/2 = 60◦;
(g) θ1/2 = 70◦.

According to the calculation results in Figure 12, the distance between the edge of the
region with a minus infinity Q and the wall boundary was 0.685 m, but when the room size
or the θ1/2 of the LED were different, the corresponding curves of the same Q value were
different. Figure 13 shows the contour maps with Q values of −10 dB, −20 dB, and −30 dB,
respectively, with the 2 m × 2 m room. Combined with Figure 12, it can be seen that the Q
inside the contour line was less than or equal to the corresponding Q of the contour line.
When the Q was high, θ1/2 had a greater effect on the region, but as the Q decreased, the
regions corresponding to θ1/2 were close to the region with a minus infinity.
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5. Conclusions

From [1], it was found that the standard Lambertian model had a certain requirement
for the incident angle range to describe reflection on a wall covered in plaster. Next, the
boundaries θL,Max in an incident angle domain were determined as 70◦. When the incident
angle was less than or equal to θL,Max, the standard Lambertian model was applicable;
when the incident angle was greater than θL,Max, the standard Lambertian model was not
applicable. Thus, the inappropriate index Q of the standard Lambertian model is defined.
In addition, calculations of the relationship between the Q and LED position under different
situations were carried out.

By analyzing the calculation results, the conclusions are as follows:

• When the LED is close to the wall, the inappropriateness of the standard Lambertian
model is relatively high;

• With an increase in distance, the inappropriateness decreases gradually;
• When the distance between the LED and the wall reaches 0.685 m, the inappropriate-

ness decreases sharply and reaches the minimum;
• When the distance is greater than 0.685 m, the standard Lambertian model can be

adopted completely. When the distance is less than 0.685 m, other more complex
models need to be adopted according to the actual situation.
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Appendix A

The solid angle corresponding to the wall above the receiving plane is denoted as
ΩW, and the solid angle, in the ΩW, where the light reflects and conforms to the standard
Lambertian model, is denoted as ΩL. The corresponding luminous flux calculation is
as follows:



Electronics 2022, 11, 1514 12 of 24


FW =

∫
ΩW

IθdΩ
FL =

∫
ΩL

IθdΩ
Fno−L = FW − FL

(A1)

where Iθ is the luminous intensity along the orientation with the θ angle between the optical
axis; dΩ is the infinitesimal section of the solid angle; ΩW is the solid angle corresponding
to the wall above the receiving plane; ΩL is the solid angle in the ΩW of the light incident
on the wall above the receiving plane, and it is reflected in the standard Lambertian model;
FW is the luminous flux of the wall above the receiving plane, that is, the luminous flux
of ΩW; FL is the luminous flux of the light incident on the wall above the receiving plane,
and it is reflected in the standard Lambertian model, that is, the luminous flux of ΩL; Fno−L
is the luminous flux of the light incident on the wall above the receiving plane and is not
reflected in the standard Lambertian model, that is, it is the difference between FW and FL.
Using the spherical coordinate system, Equation (A1) can be reduced to Equation (A2). The
relevant symbols are shown in Figure A1:{

FW =
∫

ΩW
Iθ sin θdθdϕ

FL =
∫

ΩW
Iθ sin θdθdϕ
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In the following sections, the axial angle θ is taken as the outermost integral to calculate
FW and FL, respectively, by spherical coordinates.

Appendix A.1. FW

According to the definition of ΩW, the scope of the axial theta angle θ of ΩW is
as follows: {

θW ≤ θ ≤ π/2
θW = arctan(x/d)

(A3)

where θW is the angle between the ceiling normal and the plane, which is formed by the
LED position and the intersection line of the receiving plane and wall; x is the distance
between the LED and the wall; d is the distance between the ceiling and the receiving plane.

As shown in Figure A2, point PI is the intersection of ΩW and the hemisphere, with
the axial angle θ. The azimuth angle of PI is denoted as ϕW,θ , and point P’I is the projection
of PI on the hemisphere bottom surface. Point O is the center of the hemisphere bottom
surface, and point O’ is the center of the circle passing PI, with the axial angle θ. Point PW is
the intersection of the line lW—the intersection line of ΩW and the hemisphere surface and
a plane—the plane passes through O and is perpendicular to the plane where lW is. Point
P’W is the projection of PW on the hemisphere bottom surface. Point Z is the intersection



Electronics 2022, 11, 1514 13 of 24

of the line through PW and O and the line parallel to the hemisphere bottom surface and
through PI, and Point Z’ is the projection of Z on the hemisphere bottom surface. The
radius of the hemisphere is denoted as R.
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where θW is the angle between the ceiling normal and the plane, which is formed by the 

LED position and the intersection line of the receiving plane and the wall; θL is the smallest 
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A2.1. 0 < θW ≤ θL 

Figure A2. ΩW geometric sketch.

As can be seen in Figure A2, due to the luminous intensity independent of the azimuth
angle ϕW,θ and the symmetry, the luminous flux calculation formula of ΩW can be obtained
as follows:

FW = 2
∫ π/2

θW

ϕW,θ Iθ sin θdθ (A4)

The calculation process of ϕW,θ is as follows:
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where θW is the angle between the ceiling normal and the plane, which is formed by the 

LED position and the intersection line of the receiving plane and the wall; θL is the smallest 
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A2.1. 0 < θW ≤ θL 

Appendix A.2. FL

According to the definition of ΩL, the scope of the axial theta angle θ of ΩL is
as follows: {

max(θW , θL) ≤ θ ≤ π/2
θL = π/2− θL,Max = π/9

(A5)

where θW is the angle between the ceiling normal and the plane, which is formed by the LED
position and the intersection line of the receiving plane and the wall; θL is the smallest axial
angle of ΩL; θL,Max is the maximum incidence angle to the standard Lambertian model.

According to the relationship between θW and θL, ΩL has two situations: when
θW ≤ θL, ΩL is a complete half cone; when θL < θW, ΩL is a partially truncated half cone.



Electronics 2022, 11, 1514 14 of 24

Appendix A.2.1. 0 < θW ≤ θL

In this section, ΩL is a complete half cone, as shown in Figure A3. Point PI is the
intersection of ΩL and the hemisphere, with the axial angle θ. The azimuth angle of PI is
denoted as ϕL,θ , and point P’I is the projection of PI on the hemisphere bottom surface.
Point O is the center of the hemisphere bottom surface, and point O’ is the center of the
circle passing PI and with the axial angle θ. Point PL is the intersection of line lL—the
intersection line of ΩL and the hemisphere surface and a plane—the plane passes through
O and is perpendicular to the plane where lL is. Point P’L is the projection of PL on the
hemisphere bottom surface.
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A2.2. θL < θW < π/2 

In this section, ΩL is a partially truncated half cone, as shown in Figure A4. Point PI 

is the intersection of ΩW and ΩL; on the hemisphere, the axial angle of PI is denoted as θW,L, 

and point P’I is the projection of PI on the line through P’L and PL. Point O’ is the center of 

the circle passing PI and it is parallel to the hemisphere bottom surface. 

Figure A3. ΩL geometric sketch 1.

As can be seen in Figure A3, due to the luminous intensity independent of the azimuth
angle ϕL,θ and the symmetry, the luminous flux calculation formula of ΩL can be obtained
as follows:

FW = 2
∫ π/2

θL

ϕL,θ Iθ sin θdθ (A6)

The calculation process of ϕL,θ is as follows:
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A2.2. θL < θW < π/2 

In this section, ΩL is a partially truncated half cone, as shown in Figure A4. Point PI 

is the intersection of ΩW and ΩL; on the hemisphere, the axial angle of PI is denoted as θW,L, 

and point P’I is the projection of PI on the line through P’L and PL. Point O’ is the center of 

the circle passing PI and it is parallel to the hemisphere bottom surface. 

Appendix A.2.2. θL < θW < π/2

In this section, ΩL is a partially truncated half cone, as shown in Figure A4. Point PI is
the intersection of ΩW and ΩL; on the hemisphere, the axial angle of PI is denoted as θW,L,
and point P’I is the projection of PI on the line through P’L and PL. Point O’ is the center of
the circle passing PI and it is parallel to the hemisphere bottom surface.



Electronics 2022, 11, 1514 15 of 24Electronics 2022, 11, x FOR PEER REVIEW 16 of 25 
 

 

O

PW

PL

PI

θW,L 

P'L

P'I
O'

 

Figure A4. ΩL geometric sketch 2. 

As can be seen in Figure A4, ΩL is divided into two sub-regions according to the axial 

angle. The area where the axial angle is less than or equal to θW,L is denoted as ΩL1, and 

the area where the axial angle is greater than θW,L is denoted as ΩL2. The following formula 

is derived: 

1 2

,

,

2

, ,

sin sin

2 sin 2 sin

L L

W L

W W L

L

W L

F I d d I d d

I d I d

 

 

   
 

     

     

 
= +

= +

 

 
 (A7) 

The calculation process of θW,L is as follows: 

L L L I L

L I L I

L L L

L

L I

L I L

' ' ' ' '

' '

P P OO L P P P O

L L L P P OO P O P O

P P P

'

O

P O

P P OO I

L I I

P P

' ' '

' '

'

' ' '

' ' 'P O

P OO= = cot = cot sin

P P O= P OO=

= sin

P OO=

P P O= P OO

'

=

'

'

' '

' ' ' '

L W W L

L

L

W

W

l l and l l R

l l l l

also l l

l R

l l and

also l l

   









 

 

⊥ 





 

⊥

  

 , 

  

∥

∥ ∥

∥

( )

L I

I

I

OO P P

P

'O

' ' '

O OO I ,

P

'

,

'

O O

,

= = cot sin

P OO=

cos = = cot sin

=arccos cot

'

sin

W L

W L

W L W L

W L W L

l l R

l l and

l l

 



  

  

⊥ 





    

Appendix B 

B1. FW 

As shown in Figure A5, point O is the center of the hemisphere bottom surface, and 

points PW1/PW2 are the intersection of the line lW1/lW2—the intersection line of the hemi-

sphere surface and ΩW of the corresponding wall and a plane—the plane passes through 

O and is perpendicular to the plane where lW1/lW2 is. Point P’W1 is the projection of PW1 on 
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Point O’ is the intersection of a line—the line passes through O and is perpendicular to 

the hemisphere bottom surface and a plane—the plane passes through PW1 and is parallel 

Figure A4. ΩL geometric sketch 2.

As can be seen in Figure A4, ΩL is divided into two sub-regions according to the axial
angle. The area where the axial angle is less than or equal to θW,L is denoted as ΩL1, and the
area where the axial angle is greater than θW,L is denoted as ΩL2. The following formula
is derived:

FL =
∫

ΩL1
Iθ sin θdθdϕ +

∫
ΩL2

Iθ sin θdθdϕ

= 2
∫ θW,L

θW
ϕW,θ Iθ sin θdθ + 2

∫ π/2
θW,L

ϕL,θ Iθ sin θdθ
(A7)

The calculation process of θW,L is as follows:
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sphere surface and ΩW of the corresponding wall and a plane—the plane passes through 
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PI is denoted as θW,π/4, and point P’I is the projection of PI on the hemisphere bottom sur-
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plane—the plane passes through PW1 and is parallel to the hemisphere bottom surface. 

Point O’ is the intersection of a line—the line passes through O and is perpendicular to 

the hemisphere bottom surface and a plane—the plane passes through PW1 and is parallel 

Appendix B

Appendix B.1. FW

As shown in Figure A5, point O is the center of the hemisphere bottom surface,
and points PW1/PW2 are the intersection of the line lW1/lW2—the intersection line of the
hemisphere surface and ΩW of the corresponding wall and a plane—the plane passes
through O and is perpendicular to the plane where lW1/lW2 is. Point P’W1 is the projection
of PW1 on the hemisphere bottom surface. Point PI is the intersection of lW1 and lW2, the
axial angle of PI is denoted as θW,π/4, and point P’I is the projection of PI on the hemisphere
bottom surface. Point P”W1 is the intersection of a line—the line passes through O and PI
and a plane—the plane passes through PW1 and is parallel to the hemisphere bottom surface.
Point O’ is the intersection of a line—the line passes through O and is perpendicular to the
hemisphere bottom surface and a plane—the plane passes through PW1 and is parallel to
the hemisphere bottom surface. Since the LED is on the bisector of the angle between the
two walls on the ceiling, ∠P’W1OP’I is equal to π/4.
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Figure A5. ΩW geometric sketch.

As can be seen in Figure A5, ΩW is divided into two sub-regions according to the axial
angle. The area where the axial angle is less than or equal to θW,π/4 is denoted as ΩW1,
and the area where the axial angle is greater than θW,π/4 is denoted as ΩW2. The following
formula is derived:

FW =
∫

ΩW1
Iθ sin θdθdϕ +

∫
ΩW2

Iθ sin θdθdϕ

= 4
∫ θW,π/4

θW
ϕW,θ Iθ sin θdθ + 2

∫ π/2
θW,π/4

(θW,θ+π/4)Iθ sin θdθ
(A8)

The calculation process of θW,π/4 is as follows:

∵ tan θW,π/4 =
√

x2 + x2/d =
√

2x/d =
√

2 tan θW

∴ θW,π/4= arctan
(√

2 tan θW

)
Appendix B.2. FL

According to the relationship between θW and θL, ΩL has two situations: when
θW ≤ θL, ΩL consists of two complete half cone angles; when θL < θW, ΩL consists of
two partially truncated half cone angles.

Appendix B.2.1. 0 < θW ≤ θL

As shown in Figure A6, point O is the center of the hemisphere bottom surface,
and points PL1/PL2 are the intersection of the line lL1/lL2—the intersection line of the
hemisphere surface and ΩL of the corresponding wall and a plane—the plane passes
through O and is perpendicular to the plane where lL1/lL2 is. Point P’L1 is the projection
of PL1 on the hemisphere bottom surface. Point PI is the intersection of lL1 and lL2, the
axial angle of PI is denoted as θL,π/4, and point P’I is the projection of PI on the hemisphere
bottom surface. Point O’ is the center of the circle parallel to the hemisphere bottom surface
and passes through PI on the hemisphere. Since the LED is on the bisector of the angle
between the two walls on the ceiling, ∠P’IOP’L1 is equal to π/4.



Electronics 2022, 11, 1514 17 of 24Electronics 2022, 11, x FOR PEER REVIEW 18 of 25 
 

 

PI

π/4

OP'L1

P'I

O'

θL,π/4

PL1

PL2

lL2

lL1

 

Figure A6. ΩL geometric sketch 1. 

As can be seen in Figure A6, ΩL is divided into two sub-regions according to the axial 

angle. The area where the axial angle is less than or equal to θL,π/4 is denoted as ΩL1, and 

the area where the axial angle is greater than θL,π/4 is denoted as ΩL2. The following formula 

is derived: 

( )

1 2

, 4

, 4

2

, ,

sin sin

4 sin 2 4 sin

L L

L

L L

L

L L

F I d d I d d

I d I d




 

 

   
 

     

      

 
= +

= + +

 

 
 (A9) 

The calculation process of θL,π/4 is as follows: 

L1 L1 I I I I

I I

L1 L1 L1
I

L1

L1 I L1

I

' ' ' ' ' 'P P OO L1 P O P O P P OO

L1 L1 L1 P O P O

P P P O
P O OO

P O

P P P' O L1 I

O

' '

' '
' '

'

' '

'P

P OO =

P P O= P OO = = = 2 sin

= sin

P OP = 4

= i

'

' '

s n

' '

2

L

L L

L

L

l l and also l l and l l

l l R

also l l also l l a

l R

l l and

l R



 









  

⊥ ⊥



⊥ 



    

 

  

∥ ∥ ∥

( )
I I

I , 4

, 4 P O OP

, 4

'

P OO =

sin = = 2 sin

= arc 2

'

sin sin

L

L L

L L

nd

l l









 

 







 
  

B2.2. θL < θW < π/2 

As shown in Figure A7, point P’I is the projection of PI on the line through P’L1 and 

PL1, the axial angle of P’I is denoted as θL,π/4,P, and the meanings of the remaining signs are 

the same as in Figure A6. 

Figure A6. ΩL geometric sketch 1.

As can be seen in Figure A6, ΩL is divided into two sub-regions according to the axial
angle. The area where the axial angle is less than or equal to θL,π/4 is denoted as ΩL1,
and the area where the axial angle is greater than θL,π/4 is denoted as ΩL2. The following
formula is derived:

FL =
∫

ΩL1
Iθ sin θdθdϕ +

∫
ΩL2

Iθ sin θdθdϕ

= 4
∫ θL,π/4

θL
ϕL,θ Iθ sin θdθ + 2

∫ π/2
θL,π/4

(ϕL,θ + π/4)Iθ sin θdθ
(A9)

The calculation process of θL,π/4 is as follows:
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B2.2. θL < θW < π/2 

As shown in Figure A7, point P’I is the projection of PI on the line through P’L1 and 

PL1, the axial angle of P’I is denoted as θL,π/4,P, and the meanings of the remaining signs are 

the same as in Figure A6. 

Appendix B.2.2. θL < θW < π/2

As shown in Figure A7, point P’I is the projection of PI on the line through P’L1 and
PL1, the axial angle of P’I is denoted as θL,π/4,P, and the meanings of the remaining signs
are the same as in Figure A6.
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According to Appendix B, the luminous flux calculation formula of ΩW, in this situa-
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As can be seen in Figure A7, according to the relationship between θL,π/4,P and θW,
the luminous flux formula of ΩL is as follows:

FL =

 4
∫ θW,L

θW
ϕW,θ Iθ sin θdθ + 4

∫ θL,π/4
θW,L

ϕL,θ Iθ sin θdθ + 2
∫ π/2

θL,π/4
(ϕL,θ + π/4)Iθ sin θdθ θL < θW < θL,π/4,P

4
∫ θW,π/4

θW
ϕW,θ Iθ sin θdθ + 2

∫ θW,L
θW,π/4

(ϕW,θ + π/4)Iθ sin θdθ + 2
∫ π/2

θW,L
(ϕL,θ + π/4)Iθ sin θdθ θL,π/4,P ≤ θW < π/2

(A10)

The calculation process of θL,π/4,P is as follows:
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Appendix C 

C1. FW 

According to Appendix B, the luminous flux calculation formula of ΩW, in this situa-

tion, is as follows: 
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C2. FL 

According to Appendix B, the luminous flux calculation formula of ΩL, in this situa-

tion, is as follows: 

Appendix C

Appendix C.1. FW

According to Appendix B, the luminous flux calculation formula of ΩW, in this situa-
tion, is as follows:

FW = 8
∫ θW,π/4

θW

ϕW,θ Iθ sin θdθ + 2π
∫ π/2

θW,π/4

Iθ sin θdθ (A11)

Appendix C.2. FL

According to Appendix B, the luminous flux calculation formula of ΩL, in this situation,
is as follows:

FL =


8
∫ θL,π/4

θL
ϕL,θ Iθ sin θdθ + 2π

∫ π/2
θL,π/4

Iθ sin θdθ 0 < θW ≤ θL

8
∫ θW,L

θW
ϕW,θ Iθ sin θdθ + 8

∫ θL,π/4
θW,L

ϕL,θ Iθ sin θdθ + 2π
∫ π/2

θL,π/4
Iθ sin θdθ θL < θW < θL,π/4,P

8
∫ θW,π/4

θW
ϕW,θ Iθ sin θdθ + 2π

∫ π/2
θW,π/4

Iθ sin θdθ θL,π/4,P ≤ θW < π/2

(A12)
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Since the room is a rectangular room, the cone axis of ΩL corresponding to each wall is
perpendicular to the wall, so the difference between the azimuth angle of the intersection of
the adjacent cones and the cone axis is π/4. When the θW corresponding to the four walls is
greater than or equal to θL,π/4,P, FW is equal to FL, that is, Fno−L is equal to 0 lm, as follows:

∵ θW = arctan x
d , θL,π/4,P = arctan sin θL√

cos(2θL)
, and θW ≥ θL,π/4,P

∴ arctan
( x

d
)
≥ arctan

(
sin θL√
cos(2θL)

)
∴ x

d ≥
sin θL√
cos(2θL)

⇒ x ≥ d sin θL√
cos(2θL)

∴ x ≥ (2.5−0.75) sin(π/9)√
cos(2π/9)

⇒ x ≥ xmin = 0.6839 m

Appendix D

This model is more complicated than the previous model, but it can be divided into
eight sub-blocks according to the plane perpendicular to the wall and the angle bisector
between the wall, as shown in Figure A8, and the same calculation steps can be used to
calculate each block.
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Appendix D 

This model is more complicated than the previous model, but it can be divided into 

eight sub-blocks according to the plane perpendicular to the wall and the angle bisector 

between the wall, as shown in Figure A8, and the same calculation steps can be used to 

calculate each block. 
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Figure A8. Sub-block sketch. 

The angle between the ceiling normal and the plane is denoted as θW1. The plane 

passes through the LED position and the line, and the line is the intersection of the receiv-

ing plane and the wall perpendicular to one side of this block. All of the variable subscripts 

corresponding to the wall perpendicular to one side of the current block are 1. 

The angle between the ceiling normal and the plane is denoted as θW2. The plane 

passes through the LED position and the line, and the line is the intersection of the 

Figure A8. Sub-block sketch.

The angle between the ceiling normal and the plane is denoted as θW1. The plane
passes through the LED position and the line, and the line is the intersection of the receiving
plane and the wall perpendicular to one side of this block. All of the variable subscripts
corresponding to the wall perpendicular to one side of the current block are 1.

The angle between the ceiling normal and the plane is denoted as θW2. The plane
passes through the LED position and the line, and the line is the intersection of the receiving
plane and the wall facing one side of this block at π/4. Figure A9 is a schematic diagram of
θW1 and θW2 of block 8. All the variable subscripts corresponding to the wall facing one
side of this block at π/4 are 2.
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As Figure A10, the definitions of O, PW1, PW2, and PI are the same as in Appendix B.1.
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Figure A10. ΩW geometric sketch.

As can be seen in Figure A10, the luminous flux formula of ΩW of block 8 is as follows:

FW8 =


∫ θW1,π/4

θW1
ϕW1,θ Iθ sin θdθ + π/4

∫ π/2
θW1,π/4

Iθ sin θdθ π/4 ≤ ϕW1,W2∫ θW1,W2
θW1

ϕW1,θ Iθ sin θdθ +
∫ θW1,W2

θW2,π/4
(ϕW2,θ − π/4)Iθ sin θdθ + π/4

∫ π/2
θW1,W2

Iθ sin θdθ ϕW1,W2 < π/4
(A13)
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where ϕW1,W2 and θW1,W2 are calculated as follows:{
ϕW1,W2 = arctan(x2/x1)

θW1,W2 = arctan
(√

x2
1 + x2

2/d
) (A14)

where x1/x2 is the distance between the LED position and the corresponding wall; d is
the distance between the LED position and the intersection point of the two walls and the
receiving plane.

Appendix D.2. FL

As shown in Figure A11, the definition of PW2 is the same as in Appendix B.1, and the
definitions of O, PL1, and P’L1 are the same as in Appendix B.2. Point PI is the intersection
of lL1 and lW2, and the definitions of lL1 and lW2 are the same as in Appendix B. The axial
angle of PI is denoted as θW2,L1. Point P’I is the projection of PI on the line through P’L1
and PL1. Point O’ is the center of the circle parallel to the hemisphere bottom surface and
passes through PI on the hemisphere.
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where x1/x2 is the distance between the LED position and the corresponding wall; d is the 

distance between the LED position and the intersection point of the two walls and the 

receiving plane. 
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As shown in Figure A11, the definition of PW2 is the same as in Appendix B1, and the 

definitions of O, PL1, and P’L1 are the same as in Appendix B2. Point PI is the intersection 

of lL1 and lW2, and the definitions of lL1 and lW2 are the same as in Appendix B. The axial 

angle of PI is denoted as θW2,L1. Point P’I is the projection of PI on the line through P’L1 and 

PL1. Point O’ is the center of the circle parallel to the hemisphere bottom surface and passes 

through PI on the hemisphere. 

O

PL1

PW2

P'L1

PI

O'P'I

θW2,L1

lW2

lL1

 

Figure A11. ΩL geometric sketch 1. 

As shown in Figure A12, the definition of PW1 is the same as in Appendix B1, and the 

definitions of O, PL1, and P’L1 are the same as in Appendix B2. Point PI is the intersection 
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Figure A11. ΩL geometric sketch 1.

As shown in Figure A12, the definition of PW1 is the same as in Appendix B.1, and the
definitions of O, PL1, and P’L1 are the same as in Appendix B.2. Point PI is the intersection
of lL1 and lW1, and the definitions of lL1 and lW1 are the same as in Appendix B. The axial
angle of PI is denoted as θW1,L1, and the azimuth angle of PI is denoted as ϕW1,L1. Point P’I
is the projection of PI on the line through P’L1 and PL1. Point O’ is the center of the circle
parallel to the hemisphere bottom surface and passes through PI on the hemisphere.
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D2.3. θL,π/4,P < θW1 ≤ π/2 

When π/4 ≤ φW1,W2, the luminous flux formula of ΩL of block 8 is as follows: 
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As can be seen in Figures A10–A12, the luminous flux formula of ΩL of block 8 is as
follows:
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Appendix D.2.3. θL,π/4,P < θW1 ≤ π/2

When π/4 ≤ ϕW1,W2, the luminous flux formula of ΩL of block 8 is as follows:

FL8 =
∫ θW1,π/4
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∫ π/2

θW1,π/4

Iθ sin θdθ (A17)

When ϕW1,W2 < π/4, the luminous flux formula of ΩL of block 8 is as follows:
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According to Appendix A.2.1, the calculation formula of θW1,L1 is as follows:

θW1,L1 = arccos(cot θW1 sin θL) (A19)

The calculation process of ϕW1,L1 is as follows:
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