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Abstract: The knowledge graph is an effective tool for improving natural language processing, but
manually annotating enormous amounts of knowledge is expensive. Academics have conducted
research on entity and relation extraction techniques, among which, the end-to-end table-filling
approach is a popular direction for achieving joint entity and relation extraction. However, once the
table has been populated in a uniform label space, a large number of null labels are generated within
the array, causing label-imbalance problems, which could result in a tendency of the model’s encoder
to predict null labels; that is, model generalization performance decreases. In this paper, we propose
a method to mitigate non-essential null labels in matrices. This method utilizes a score matrix to
calculate the count of non-entities and the percentage of non-essential null labels in the matrix, which
is then projected by the power of natural constant to generate an entity-factor matrix. This is then
incorporated into the scoring matrix. In the back-propagation process, the gradient of non-essential
null-labeled cells in the entity factor layer is affected and shrinks, the amplitude of which is related to
the size of the entity factor, thereby reducing the feature learning of the model for a large number of
non-essential null labels. Experiments with two publicly available benchmark datasets show that the
incorporation of entity factors significantly improved model performance, especially in the relation
extraction task, by 1.5% in both cases.

Keywords: natural language processing; joint entity relation extraction; label imbalance

1. Introduction

Extracting specific entities and their relations from plain text is a fundamental task in
natural language processing (NLP) and the basis of downstream tasks such as knowledge
graph construction. The research topic of entity and relation extraction can be divided
into two subtopics named entity recognition [1] and relation extraction [2]. The named
entity recognition task aims to identify entities with specific meanings from plain text.
The relation classification task aims to predict corresponding relational classes among the
entities identified. The researchers further divide the extraction methods into pipeline
extraction and joint extraction methods based on the sequence of the the two subtasks.

The traditional pipeline extraction approach is to first construct a model for extracting
entities with specific meanings in the text [3], and later, another model to classify relations
on the results of entities extracted by the previous named entity recognition model [4].
Although the pipeline extraction approach is easy to implement, the relational classifi-
cation task inevitably suffers from error propagation from the named entity recognition
task because the input value is the output value of the named entity recognition task,
and researchers have been working on this problem for a long time. Recently, the joint
extraction model [5–8] has become a popular method because of parameter sharing for
entity recognition and relation classification. In the training process, the model can handle
the error propagation of the entity recognition task internally, so as to avoid the error
propagation problem in pipeline extraction.
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End-to-end table filling is a common implementation of joint entity and relation
extraction. Wang [9] strengthened the intrinsic connection between the two tasks in the
same model by populating a table in a unified labeling space to achieve joint extraction
of the entities and relations, but as shown in Figure 1, the table filled by the model has a
serious category imbalance problem—the number of null labels in the table is much larger
than in the numbers of other labels. This is a typical long-tailed label distribution problem,
in which most samples are only a fraction of the label, which reduces the generalization of
the model. Since the joint extraction of entity relationships in a unified label space with table
filling is a relatively new approach, there is no very suitable method for too many null labels
in a table, because the reason for its appearance is generated by the characteristics of the
table, and historical label-balancing methods have limitations in this scenario. When some
downstream work of NLP, such as building knowledge graphs, requires entity relationship
extraction, if it uses table filling, it can consider incorporating entity factors to increase the
extraction performance of its model.
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Figure 1. Table for joint entity and relation extraction. Each cell in the table corresponds to a word
pair, the square part on the main diagonal is the entity, and the rectangular part on the off-diagonal is
the relation. Any label is produced by averaging the pooling of the encoder output.

In this paper, we reexamine the concrete representation of the problem in the table
of the population-based joint entity and relation extraction method. The joint entity and
relation extractor takes two kinds of actions, coding and decoding, and there is the problem
of the category imbalance problem in the the encoding filling phase. Figure 1 shows the
result of decoding the table after filling. As can be seen in the figure, the entity is decoded
in the main diagonal part, where the purple part indicates that the cell is a null label of
entity, and since the relation depends on the entity, the cell of its corresponding row and
column, i.e., the gray part, will not decode any relationship either. We call this part of the
cell a non-essential null label cell, and it is obvious that this part of the non-essential null
label cell is the majority of the table. Figure 2 shows the statistics of the two datasets used
in this paper regarding non-essential null labels. As can be seen in the line graphs, the
percentage of non-essential null labels increases in proportion with sentence length, and
there is a dramatic increase between 0 and 10, rising rapidly to over 80%. In addition, the
histogram shows that the vast majority of sentences’ length in both datasets are longer
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than 10, which shows the overrepresentation of non-essential null tags in almost the entire
dataset of text. Intuitively, how to mitigate the negative effects of such non-essential null
labels on the model is the key at hand.

This study focuses on the label imbalance of the joint entity and relation extraction
based on table filling, which reduces the feature learning of non-essential null labels in the
table by incorporating entity factors and improves the generalization ability of the model. In
explaining these research results, they can be interpreted in terms of the back-propagation
process of model training; the gradient of non-essential null-labeled units shrinks after
incorporating entity factors, and subsequently, the model reduces the feature learning of
such null-labeled cells. In summary, the main contribution of this paper is to propose a
balancing method for entity factors that supports Softmax cross-entropy continuity while
alleviating the label-imbalance problem in filling tables in joint entity and relationship
extraction and improving the generalization ability of the schema.

The rest of this paper is organized as follows. Section 2 describes the related work.
Section 3 parses out the structure of the model from the encoder–decoder perspective,
respectively. Section 4 compares the performance of the current approach with those of
other models. Section 5 summarizes the conclusions.

(a) Statistics of CoNLL04 Dataset (b) Statistics of SciERC Dataset

Figure 2. In the datasets CoNLL04 and SciERC, the percentage of non-essential null labels is positively
correlated with the sentence length, and the percentage of non-essential null labels is above 80% for
most of the data.

2. Related Work

For entities and relation extraction, researchers propose several approaches to achieve
this goal. The pipeline extraction method [10] neglects the connection between the two
tasks and has error propagation problems. To solve this problem, researchers proposed an
joint entity and relation extraction approach that exploits the interrelationships between
the named entity recognition task and the relation classification task to mitigate the error
propagation problem [11] by transforming the extraction of entity relations into a table
filling problem. The entries in the i-th row and j-th column of the table correspond to the
i-th and j-th words in the word-pairs input sentence, and the main diagonal entries in
the table are entity labels. The remaining labels are relation labels. Currently, the table-
filling method is one of the mainstream joint entity and relation extraction methods [12].
Although the entity and relation models in these joint extraction models share a set of
encoders, they have their own independent set of label spaces, whereby Wang [9] proposed
a unified space-based joint entity and relation extraction model and optimized multiple
public datasets. However, it still suffers from a label imbalance.
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Currently, the suggested solutions for the long-tail problem of labels fall into three
general groups: Solutions for the input values of the model, such as oversampling or
downsampling [13–15]. Solutions for the output values of the model, such as post hoc
correction of decision thresholds [16,17] and loss weighting [18,19]. Solutions modifying
the internal structure of the model, e.g., modifying the loss function [20–22]. However,
these solutions do not adequately address the label-imbalance problem in the current
models. Downsampling, for example, reduces the number of majority class labels by
random discarding input corpus text, but the category imbalance problem in the filling out
form is an internal problem that exists in almost every text. Moreover, the loss correction
approach sacrifices the consistency of the softmax cross-entropy [23]. Therefore, the existing
technique cannot be an optimal choice in the current environment.

3. Methodology

Our model is based on the UNIRE model proposed by Wang et al. [9]. The whole
model is divided into two parts: encoder and decoder. This section introduces the structure
of the whole model in detail. Figure 3 shows an overview of the model’s architecture.

X1
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X4

h1

h2

h3

h4
head

tail

B

E
R

T

Biaffine Model

· Decoder

X1

X2

x3

Entity Factor Decoder

Softmax

Figure 3. Architecture diagram of the model. After the initial score matrix is given by the biaffine
model, the final score matrix is acquired by incorporating the entity factors, and the decoder decodes
the entity and relation labels depending on the final score.

3.1. Problem Definition

Given a sentence input s = x1, x2, . . . , x|s| (xi is a word), extract a set of entities
Le and relations Lr that exist in the sentence. Entity e is the span of a continuous
word sequence with a predefined entity type e.type ∈ E. Relation r is a predefined
relation type r.type ∈ R that exists in a triplet (e1, e2, r), where e1 and e2 are enti-
ties. E and R represent, respectively, predefined sets of entity and relational types—
that is, the labeling space for the entire model; i.e., L = E∪R ∪ null. For exam-
ple, as shown in Figure 1, predefined types are entities E = {Loc, Org, Peop, Other}
and relations R = {Work_ f or, Kill, OrgBased_In, Live_in, Located_In}; moreover, enti-
ties e1 = (Dole; Peop), e2 = (Elizabeth; Peop), e3 = (Salisbury, N.C; Loc), and relation
r1 = (Elizabeth, Salisbury, N.C, Live_in) can be parsed from the sentence “Dole’s wife,
Elizabeth, is a native of Salisbury, N.C.”.

3.2. Encoder

For an input sentence, we use a pre-trained language model (BERT model, etc.) to
obtain the contextual representation of each word in the sentence:

h1, h2, . . . , hn = BERT(x1, x2, . . . , xn), (1)

where xi is the i-th word in the sentence, hi is the contextual representation of word i, and
hi ∈ Rd. Then, we project hi into the roles of head and tail with two reduced-dimension
multilayer perceptrons (MLPs):
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hhead
i = MLPhead(hi), htail

i = MLPtail(hi), (2)

where hhead
i ∈ Rd, htail

i ∈ Rd. Afterwards, the initial label score of the word pair gi,j is
calculated with a deep biaffine attention model [24]:

gi,j = Bia f f (hhead
i , htail

j ), (3)

where gi,j ∈ R|L|. Given that relations dependent on entities exist, the non-essential null
label will be obtained based on the initial label scores gi,j. When a cell has the highest
null label score, word i can be considered not an entity temporarily; therefore, the word
pairs in its row and column will not have any relation labels. These cell is defined as
a non-essential null label, from which can produce an entity-factor matrix to alleviate
the adverse effects of these non-essential null labels on the model’s performance. When
generating the entity-factor matrix, different entity factors shall be produced by the initial
label scores. The formula is

wi,j =

{
1, P(gi,i) ∈ Le or P(gj,j) ∈ Le or i = j,

e
n

|s|×|s| , P(gi,j) ∈ null or P(gj,i) ∈ null.
(4)

where n is the number of non-essential null labels for the current input sentence, n = 2 ·∑|s|−1
|s|−m i,

and m is the number of non-entity label words. Afterwards, integrate the entity factor into the
table (Figure 3); the final word pair (xi, xj) has a label score gi,j

′ = wi,j · gi,j. After yielding the
score vector, feed it into the softmax function to obtain the corresponding labels, generating a
probability distribution over the label space:

P(yi,j|s) = So f tmax(dropout(gi,j
′)), (5)

The encoder model has a loss function:

Loss = − 1
|s|2

|s|

∑
i=1

|s|

∑
j=1

logP(yi,j = yi,j
′|s), (6)

where yi,j
′ is a gold label. The entity-factor matrix is incorporated prior to normaliza-

tion, and only the non-essential null-labeled cells correspond to entity factors that are
not one. In the training stage of the model, the loss occurs at the entity-factor layer,
loss = P(yi,j|s)− yi,j

′, after which the loss will be affected by the entity factor. If the proba-
bility of each label varies somewhat, it shrinks before spreading backward to the next layer,
so the entity factors will start to be incorporated after a period of model training as a way
to mitigate non-essential null label features that the encoder learns too much about. Entity
factors support the softmax cross-entropy consistency while mitigating the negative effects
of non-essential null labels on encoders. The encoder is as Algorithm 1.

3.3. Decoder

This part follows the view of wang [9] in that the decoding process is divided into
three parts: span decoding, entity type decoding, and relation type decoding.

For a given sentence, compute the Euclidean distance between two adjacent rows or
columns from the row and column perspectives in its probability tensor P ∈ R|s|×|s|×L,
respectively, when the average of these two distances is greater than a threshold, which is
considered here to be a demarcation point. The sequence between two demarcation points
is considered as a span.

For any span (i, j), the average score t′ = argmaxt∈Le∪null Avg(Pi:j,i:j,t) of the square
area in the table; if t′ ∈ Le, the span is considered an entity; otherwise, it is not an entity.

For any entity pairs (e1, e2), their spans are (i, j) and (m, n), respectively, and the
average score of the rectangular region corresponding to the two spans in the label score
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table is r′ = argmaxr∈Lr∪null Avg(Pi:j,m:n,r). If r′ ∈ Lr, the relation lies on the entity pair;
otherwise, no relation exists. The decoder is as Algorithm 2.

Algorithm 1: Encoder
Input: sentence s = x1, x2, ..., x|s| (xi is a word)
Output: categorical probability distribution table P

for xi in s do
hi = BERT(x1, x2, ..., x|s|)

end for
for all hi do

hhead
i = MLPhead(hi)

htail
i = MLPtail(hi)

end for
for all (hhead

i , htail
j ) do

gi,j = Bia f f (hhead
i , htail

j )

end for
set w[][] = {1}, w ∈ R|s|×|s|
for all gi,j do

if i 6= j and max(gi,i) is gi,i[0] or max(gj,j) is gj,j[0] then

wi,j = e
2·t
|s|×|s| , where t = ∑

|s|−1
k=|s|−m k

end if
gi,j
′ = gi,j · wi,j

end for
P = So f tmax(g′)
return P

Algorithm 2: Decoder
Input: categorical probability distribution table P
Output: span, entity and relation list

for i of row and column in P do
lrow = l2(prow

i−1, prow
i )

lcol = l2(pcol
i−1, pcol

i )
if avg(lrow,lcol)<α then

span_list.add(i)
end if

end for
for span(i,j) in span_list do

if ent = argmaxt∈Le∪null Avg(Pi:j,i:j,t) ∈ Le then
entity_list.add(span(i,j),ent)

end if
end for
for span(i,j), span(m,n) in entity_list do

if rel = argmaxr∈Lr∪null Avg(Pi:j,m:n,t) ∈ Lr then
rel_list.add(span(i,j), span(m,n), rel)

end if
end for
return span_list, entity_list, rel_list

4. Experiment and Results

This section evaluates the effectiveness of the entity-factor method for table filling in
two publicly available datasets, ConLL04 and SciERC.
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4.1. Dataset

Two publicly available entity relation datasets, ConLL04 [25] and SciERC [26], were
experimented with. Table 1 shows the statistics of these two datasets. Figure 1 shows the
non-essential null labels in the two datasets. It is evident that in most sentences in both
datasets, the percentage of non-essential null labels is above 80%, and how severely the
model is affected by non-essential null labels.

Table 1. Statistics of the datasets.

Dataset #sents #ents(#types) #rels(#types)

ConLL04 1441 5349(4) 2048(5)
SciERC 2687 8094(6) 5463(7)

4.2. Evaluation

Following the suggestion of Yi [27], accuracy (P), recall (R), and F1 score were used as
evaluation criteria. In addition, a strict evaluation criterion was applied; i.e., a predicted
entity is considered correct when it has the right type and boundaries. A predicted relation
is considered correct when the predicted relation type and the two entities on which it
depends on are correct.

4.3. Implementation Details

To verify the validity of entity factors in a table-filling approach, we will compare the
following models in two different pre-trained language models, bert-base-uncased [28] and
scibert-scivocab-uncased [29].

PURE: This model uses a pipeline approach to implement the task of extracting entities
and relationships, and the model hyperparameters follow the values recommended in
its paper.

UNIRE: This model is our base model, which uses joint entity and relation extrac-
tion to extract entities and relations, and the model’s hyperparameters follow the values
recommended in its paper.

Logit Adjustment: The model uses UNIRE as the base model and Logit adjustment as
the treatment of label imbalance.

Entity Factor: The model uses UNIRE as the base model and entity factors as the way
to handle label imbalance.

All experiments were conducted in an Intel(R) Core i7-10700 CPU and NVDIA
3080 GPU environment, where the hyperparameters of the Logit adjustment and entity-
factor models used the values of the base model.

4.4. Performance Comparison

Table 2 summarizes the performances of all experimental models on both public
datasets. Performance data for the PURE [30] model on the SciERC dataset are from the
original literature. Figures 4 and 5 show the training performances of the three models,
UNIRE, a joint entity relationship extraction model based on table filling, and the models
incorporating entity factors and logit adjustment on the basis of this model. It can be seen
that the model with the logit adjustment converged faster, but the performance in the
subsequent process was comparable to that of UNIRE, and the UNIRE model incorporating
entity factors performed comparably to the UNIRE model initially, but surpassed UNIRE
in the later stages of training, especially in relation extraction. In the dataset ConLL04, our
model performed as well as UNIRE on entity recognition task, but scored highest in the
relation classification task, leading by more than 1.5 percentage points in F1 scores. In the
SciERC dataset, UNIRE outperformed PURE in the entity recognition task but lagged much
behind in the relationship extraction task. Both label balancing methods improved UNIRE’s
relation extraction. The incorporation of the entity factor resulted in a more significant
improvement: as much as 4.1% improvement in the F1 score for the relationship extraction
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task, 1.5% more than the second-place method; and the highest score achieved for entity
recognition, at 0.8% higher than the second-place method.

In general, our model achieves very competitive performance on both CoNLL04 and
SciERC. PURE adopts pipeline extraction, and although it performs well in the entity
recognition task, there is still error propagation in the relation classification task, so it is not
better than the joint extraction model. UNIRE employs table filling to perform the task of
entity relation extraction, but after table filling, non-essential null labels are often much
larger in the table than other labels, challenging the generalizability of the model. The logit
adjustment approach proposed by Aditya is a relatively advanced way to deal with the
long-tail problem, but it clearly does not play much of a role in the table-filling task. Our
model is based on the table-filling model UNIRE and incorporates entity factors. As seen
in Figures 4 and 5 and Table 2, the UNIRE model with the incorporation of entity factors
outperforms UNIRE, and the entity factor approach is more applicable to this form of table
filling compared to the balanced approach of logit adjustment, which mitigates the adverse
effects of non-essential null labels on the model and improves the extraction performance
of the model. Since the non-essential null labels are only present in the off-diagonal region
of the table, the model performs better in the relation classification task than in the entity
recognition task. The results of this experiment also confirm the validity of our proposed
idea of adding entity factors to the table-filling method.

Table 2. Experimental performance of the models on two datasets.

Dataset Model Encoder
Entity Relation

P R F1 P R F1

CoNLL04

PURE [30] BERTBASE - - 88.1 - - 68.4
UNIRE [9] BERTBASE 87.6 88.5 88.1 68.3 71.1 69.7

Logit-Adjust [23] BERTBASE 86.9 88.2 87.6 69.7 68.7 69.2
ours BERTBASE 87.7 89.1 88.0 69.8 72.7 71.2

SciERC

PURE [30] SciBERT - - 68.2 - - 36.7
UNIRE [9] SciBERT 67.1 70.6 68.8 34.8 34.1 34.4

Logit-Adjust [23] SciBERT 65.6 70.8 68.1 34.1 43.0 38.0
ours SciBERT 67.1 72.4 69.6 39.7 39.3 39.5

Figure 4. Training performance of models on the CoNLL04 dataset.
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Figure 5. Training performance of models on the SciREC dataset

5. Conclusions

In this study, we performed joint entity and relation extraction in a table-filling manner,
and we proposed a simple but effective way to alleviate the label-imbalance problem caused
by too many null labels in the table. In model training, the method generates an entity
factor based on the percentage of null labels in the table after the table is filled. Then,
it incorporates the entity factor into all non-essential null label units in the table, which
will shrink the gradient of such null-label units in the model via back-propagation while
supporting softmax cross-entropy continuity, reducing the model’s feature learning for
massive null labels. Experiments on both datasets showed that the model achieves better
performance in the entity and relation extraction tasks after incorporating the entity factor.
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