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Abstract: Although program repair is a tremendous aspect of a software system, it can be extremely
challenging. An Automated Program Repair (APR) technique has been proposed to solve this
problem. Among them, template-based APR shows good performance. One of the key properties of
the template-based APR technique for practical use is its efficiency. However, because the existing
techniques mainly focus on performance improvement, they do not sufficiently consider the efficiency.
In this study, we propose EffiGenC, which efficiently explores the patch ingredient search space
to improve the overall efficiency of the template-based APR. EffiGenC defines the context using
the concept of extended reaching definition from compiler theory. EffiGenC constructs the search
space by collecting the ingredient required for patching in the context. We evaluated EffiGenC on
the Defects4j benchmark. EffiGenC decreases the number of candidate patches from 27% to 86%
compared to existing techniques. EffiGenC also correctly/plausibly fixes 47/72 bugs. For Future
work, we will solve the search space problem that exists in multiline bugs using context.

Keywords: software verification and validation; automated program repair; search-based repair;
search space; patch ingredient; context

1. Introduction

An automated program repair(APR) can reduce the debugging costs by automatically
fixing a buggy code [1,2]. Moreover, the template-based APR technique is one of the
techniques showing good performance among the APR techniques [3–5]. It generates a
template from the commit history. FixMiner [6] collects patch history from open-source
repositories. It used a rich edit script to capture the structure of the AST and then used it to
generate the patch pattern. TBar [3] verifies templates from existing template-based APR.
It then checks the patches generated using such templates.

For patch generation, template-based APR approaches additionally leverage various
context information about the buggy code. ConFix [7] uses the AST node near the modifica-
tion point as a context to efficiently explore the patch history and changes. CAPGEN [8] uses
genetics, variables, and dependency similarities between suspicious codes and candidate
patches as context. Furthermore, it utilizes patch prioritization to increase performance.

The main metrics of existing template-based APR methods focus on a performance
evaluation [9]. Liu et al. [9] showed that the performance of the APR technique has steadily
improved. However, the efficiency, which is a key property for the practical use of the APR
technique, has not improved.

To improve efficiency, APR require an effective search strategy for search within a
reasonable amount of time. Among the benchmark Defects4j bugs, Figure 1 shows the
developer patches for the Lang-24 and Closure-125 bugs. Both patches can be generated
using the Mutate Conditional Expression template proposed by TBar, one of the latest
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template-based APR techniques. However, in the case of TBar, the same patch can be
generated only for Lang-24, and not for Closure-125.

(a)

(b)

Figure 1. Example of search space problem. (a) Developer patch of Lang-24; (b) Developer patch
of Closure-125.

The major difference between the two patches is that, in the case of Lang-24, only
one variable hasDecPoint is added, and in Closure-125, fnType.hasInstanceType(), a method
invocation, is added. Compared to Lang-24, Closure-125 has an exponential search space
because it requires an additional search of the class and method. If TBar can effectively
search the ingredient search space, it will produce a patch equivalent to that of the developer
of the closure-125 bug within a given amount of time.

In this paper, to improve the efficiency of the template-based APR, we propose Effi-
GenC (Increasing the Efficiency of Patch Generation using Context) that efficiently explores
the search space of ingredients using context. EffiGenC considers the statement related to
the target statement as context. For this, we extend the concept of reaching definition in
compiler theory. Reaching definition for a given statement is the closest earlier statement
whose target variable can reach it without an intervening assignment. EffiGenC obtains
the statements and methods that are the context of target statements through reaching
definition. It explores the context and collects the patch materials needed to generate
a patch. This experimental study on five state-of-the-art template-based APR systems
demonstrate that, overall, EffiGenC can reduce the number of candidate patch by up to
86%. Even when we extend the search space from file to project, the number of candidate
patches increased by only 29% compared to the exponential increase of ingredients.

The contributions of this study are as follows.

• New context concept through extended reaching definition.
• An APR technique to efficiently explore the patch ingredient search space.
• Evaluation of APR performance and efficiency through Real java dataset.

The rest of this paper is organized as follows. The following Section 2 summarizes the
terms for understanding the proposed approach. Section 3 presents the detailed process
of the proposed technique. Sections 4 and 5 present our experimental setup and results.
Section 6 discusses the limitation of our approaches. After surveying the related studies in
Section 7, we provide some concluding remarks in Section 8.
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2. Terminology

Sensical patch versus nonsensical patch. A sensical patch can successfully compile a
buggy program. A nonsensical patch cannot successfully compile a buggy program [9].

Plausible patch versus in-plausible patch. A plausible patch allows a buggy program
to successfully compile and pass all test cases in the available test suite. An in-plausible
patch still allows the buggy program to successfully compile but fail to pass certain test
cases in the available test suite [9].

Correct patch versus incorrect patch. A correct patch is semantically equivalent to
the developer-provided patch, based on a manual examination. An incorrect patch is a
patch that is incorrect [10].

Patch ingredient. APR use identifiers or operators to create a template for a concrete
patch. For example, variables and method names.

3. Approach

Figure 2 shows the overall process of EffiGenC. The first step is a fault localization.
EffiGenC calculates a list of suspicious statements for the buggy project in this step. The
next step is to select a fix template. Next, EffiGenC constructs the context of the suspicious
statement using the buggy project. The fourth step is patch generation by exploring the
context to obtain the patch ingredients and make the template into a concrete patch. The
last step is the validation, which runs the preparation of the test suite and obtains the
valid patch.

Figure 2. Overall process of EffiGenC.

3.1. Fault Localization

In the fault localization step, EffiGenC derives a ranked list of suspicious statements
using test cases for the buggy project. Among the different fault localization techniques,
EffiGenC then uses the spectrum-based fault localization technique Ochiai [11]. APR
studies [3,7,9,12] used Ochiai to calculate suspicious statements.

3.2. Select Fix template

In this step, EffiGenC selects the fix template for patch generation. EffiGenC uses
15 templates introduced in the existing studies on template-based APR [3]. EffiGenC selects
a template by exploring the AST of the suspicious statement. EffiGenC identifies the node
type for each AST node. It selects an available template based on whether it matches the
node type of the template. In addition, it selects templates for all nodes belonging to the
AST of suspicious statement. During the patch generation, EffiGenC generates a candidate
patch by applying a template from the root node.
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3.3. Context Construction

EffiGenC constructs the context for the suspicious statement from the buggy project.
Among the existing APR techniques, there is a technique [13] that identifies the part to be
fixed together using reaching definition. Reaching definition is one of data-flow analysis.
It can statically determine which definitions may reach a given point in the source code.
EffiGenC extends this concept to collect ingredients related to suspicious statements.

• Definition 1 (Context Element). Context Element(e) is an identifier that appears in the
target statement(ST) for which context information is to be obtained.

• Definition 2 (Extended Reaching definition). If statement(S) contains e and exists in
the same File(F) with ST , then REACH+(S, e) = true.

• Definition 3 (Related Statement). Related statement(SR) is a statement that satisfy
REACH+(SR, e) = true, SR, ST ∈ F and SR 6= ST

• Definition 4 (Related Method). Related Method(MR) is a method that a related
statement(SR) appears.

EffiGenC constructs context for the suspicious statement. Algorithm 1 shows the
context construction process. EffiGenC extracts the identifier by exploring the AST of the
suspicious statement (Line 1). It checks whether the context element appears in the AST of
the statements appearing in the buggy file to which the suspicious statement belongs (Line
4–7). If appears, the corresponding statement is added to the list (Line 7–10). Based on the
configured statement list, EffiGenC collects the method name and parameter information
to which the statement belongs (Line 13–19). If the list already has the method information,
do not include it to avoid duplicates. Finally, it returns the statement list and method list as
the context.

Algorithm 1 Context Construction
Require: Ss: Suspicious statement, F: Buggy File
Ensure: Context

1: ContextElementList = extractIdentifier(SS)
2: StatementList = { }
3: MethodList = { }
4: for Statement S ∈ F do
5: for Element e ∈ ContextElementList do
6: ElementList = extractIdentifier(S)
7: if e ∈ ElementList then
8: StatementList.add(S)
9: Break

10: end if
11: end for
12: end for
13: for Statement S ∈ StatementList do
14: M = getMethodInfo(S)
15: if MethodList.contain(M) then
16: Continue
17: end if
18: MethodList.add(M)
19: end for
20: Context = (StatementList, MethodList)
21: return Context

Figure 3 is an example of constructing context. Figure 3a shows the developer patch of
closure-10. And Figure 3b is an example of constructing context for the 1417th line where
the patch is applied. In this example, context element is allResultsMatch, n and MAY_BE_
STRING_PREDICATE. Based on these, EffiGenC compute the related statement in the file
and present the four statements in the example. Also, EffiGenC computes related methods.
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statements #4 is an assignment of the global variable, so the example shows only three
methods list. EffiGenC generates a patch using a total of seven lists including the statement
and method as context.

(a)

(b)

Figure 3. Concept of context and searching patch ingredient. (a) Developer patch of Closure-10;
(b) Example of constructing context and extracting patch ingredient.

3.4. Patch Generation

In the patch generation step, EffiGenC generates a patch using a template and context
for a suspicious statement. Algorithm 2 shows the patch generation process. EffiGenC
first checks the template requires ingredients (Line 1). Among the types of templates,
MoveStatement and MutateDataType, do not require the ingredient. Therefore, in the case
of templates that are not required, it is possible to generate candidate patches only with
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suspicious statements and templates (Line 13). If the ingredient is required, initialize the
ingredient set of variables, methods, and expressions(Line 2–4). After extracting variables,
methods, and expressions from statements belonging to Context, sets V, M, and E are
generated, respectively (Line 5–8). EffiGenC searches the AST tree of the statement, checks
each node type, and includes it in the set. Ingredient consists of three sets (variable, method,
expression), and finally, by inserting ingredients into the template, it goes through the
concretization process to make concrete patches (Line 10–11).

Algorithm 2 Patch generation using Context
Require: Ss: Suspicious statement, T: Template, C: Context
Ensure: Candidate Patch

1: if isNeedIngredient(T) then
2: V = { }
3: M = { }
4: E = { }
5: for all Sstatement S ∈ C do
6: V = extractVariable(S)
7: M = extractMethod(S
8: E = extractExpression(S)
9: end for

10: Ingredient = (V, M, E)
11: CandidatePatch = Concretization(Ss, T, Ingredient)
12: else
13: CandidatePatch = Concretization(Ss, T)
14: end if
15: return CandidatePatch

Figure 3b shows how to extract variables, methods, and expressions. There are a total
of eight lists including statements and methods. For example, in the case of statement
#2, n and parent are variable. We can check the method getParent. Finally, n.getParent,
which is a MethodInvocation, is extracted as an expression. In the concretization process,
EffiGenC generate a patch using the whole expression rather than splitting it (e.g., update
the expression) Combining the list of ingredients for each statement results in a set like the
bottom of the example. We can observe anyResultsMatch is included in the method list,
which is necessary when generating the correct patch.

3.5. Validation

After patch generation, EffiGenC validates the candidate patch by running the test
suite. If the candidate patch passes all of the prepared test cases, EffiGenC treats the
candidate patch as a valid patch, and the EffiGenC is terminated.

If the candidate patch cannot pass the test cases, EffiGenC discards the patch and
validates the next candidate patches. If all candidate patches fail to pass the test suite,
EffiGenC generates the patch from the next template. If there is no other template to apply
the patch, EffiGenC applies the next rank of the suspicious statement. The EffiGenC is
terminated if a valid patch is generated, the program execution time reaches the specified
timeout, or the number of generated candidate patches reaches the specified maximum
number of candidate patches.

4. Experimental Setup
4.1. Research Question

The following research questions are investigated:

• RQ1. What quality does the proposed context have?
• RQ2. How does EffiGenC perform in terms of efficiency?
• RQ3. How effective is the ingredient search space reduction based on context?
• RQ4. How does EffiGenC perform against state-of-the-art APR techniques?
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4.2. Metric: Hit Ratio

We propose a hit ratio metric to evaluate whether our proposed context is of high
quality. The hit ratio is a metric that checks whether the ingredient pool contains the
ingredients required for the correct patch. Figure 4a shows the developer patch of the Chart-
20 bug. To generate the same patch as the developer patch, outlinePain and outlineStroke
variables are required. Figure 4b presents an example of extracting ingredients for a
suspicious statement, context, and file. For suspicious statements, the hit ratio is zero
because there are no ingredients required for the correct patch. In the case of the context
and file, each contains one and two, and thus the hit ratio will be 0.5 and 1, respectively.

(a)

(b)

Figure 4. Example of Calculating Hit ratio. (a) Developer patch of Chart-20; (b) Formula of hit ratio
and example.

4.3. Evaluation Dataset

For the evaluation, we used Defects4j 2.0.0 [14]. Defects4j is a framework that collects
real bugs of Java projects and is used for evaluation in many existing studies [3,7,8]. For
the same comparison with previous studies, we experimented on 6 projects and 395 bugs
among the bugs of Defects4j 2.0.0. Table 1 shows a list of the projects and the number of
bugs per project. Column #Bugs shows the number of buggy versions in the project.

Column #Tests and LOC refer to the number of JUnit tests and lines of code available
within the latest version of each project.

4.4. Implementation

For this experiment, we implemented EffiGenC on top of TBar. EffiGenC leverages the
GZoltar [15] framework to automate the execution of the test cases for each buggy program.
We use the Ochiai metric to compute the suspiciousness scores of the statements for fault
localization. We set the maximum number of candidate patches to 20,000. The timeout
is three hours. We run the experiment on Ubuntu 20.04. We use an Intel Core i5-10600
@3.30 GHz CPU and 32 GB of RAM.
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Table 1. Details of Defects4j.

Identifier Name #Bugs #Tests LOC

Chart JFreeChart 26 2205 96 K

Closure Closure
compiler 133 7927 90 K

Lang Commons-lang 65 2245 22 K
Math Commons-math 106 3602 85 K

Mockito Mockito
framework 38 1366 23 K

Time Joda-Time 27 4130 28 K

Total 395 21,475 344 K

5. Result
5.1. RQ1: Quality of Context

To verify the quality of our proposed context, we evaluated the context for 125 bugs [9]
that the existing APR techniques could generate a patch for among the Defects4j bugs. We
construct the context based on the statement to which the developer patch is applied. In
the same way as the patch ingredient extraction of EffiGenC, we construct an ingredient
pool for suspicious statements and files.

Number of Patch ingredient. Table 2 shows the average number of ingredients in
each group. groupsus. had an average of 3.1 patch ingredients, groupcontext had an average
of 38.7, and group f ile had an average of 176.1 patch ingredients. Taking group f ile as 100%
and calculating the proportions of each group, groupsus. was 1.8%, and groupcontext was the
only 22%. Figure 5 shows the distribution of patch ingredients in each group for 125 bugs
as a box plot. We found that group f ile had the most patch ingredient, and groupcontext had
less distribution overall than group f ile.

Hit Ratio. Table 3 presents the average hit ratio for each group. The average hit ratio
of the groupsus. was 25.2%, groupcontext was 61.3%, and group f ile was 73.2%. There was a
patch ingredient that it could not find even if it looked at the entire file. Because some
patches need identifier belonging to other packages or classes, or it needs new variables.
As a result of calculating the hit ratio considering only the case where group f ile was able to
find it, groupsus. reached 34.4%, and groupcontext reached 83.7%.

Figure 5. Distribution of element.
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Table 2. Number of elements in ingredient pool.

Group Id groupsus. groupcontext group f ile

Avg. Number of
Elements 3.1 38.7 176.1

Ratio about group f ile 1.8% 22.0% 100%

Table 3. Result of hit ratio.

Group Id groupsus. groupcontext group f ile

Average Ratio 25.2% 61.3% 73.2%
Ratio about group f ile 34.4% 83.7% 100%

Ratio of Perfect Case. In order to generate a correct patch, APR requires all ingredients
for patch generation. We additionally calculated the frequency of perfect cases; the cases
that had all the ingredients for the correct patch for each group. Table 4 shows the number
of perfect cases for each group and the ratio of each group to group f ile. There were 20,
62, and 77 perfect cases for each group, and when converted to a percentage for group f ile,
groupsus. was 26%, and groupcontext was 80.5%.

Finding 1. Through the context, even a small ingredient pool can be sufficient to
include correct ingredients. Moreover, the perfect case is 80.5%. It can be effective in
reducing the patch ingredient search space.

Table 4. Number of Perfect Case.

Group Id groupsus. groupcontext group f ile

Number of Perfect
Case 20 62 77

Ratio about group f ile 26.0% 80.5% 100%

5.2. RQ2: Efficiency of EffiGenC

Following the previous study, [9], we compared the efficiency of publicly available
template-based APR techniques [3,6,12,16,17]. We use the Numbero f patchcandidate (NPC)
as an efficiency metric, in which the existing study presented as an APR efficiency com-
parison [9]. We calculate the NPC score as the sum of the number of nonsensical patches,
in-plausible patches, and valid patches. For the results of the existing technique, we refer
to existing studies [9].

Figure 6a shows the NPC score comparison results between EffiGenC and the template-
based APR techniques through a boxplot. In this experiment, we computed the number
of candidate patches until a valid patch was generated. The number of candidate patches
on the x-axis is a log scale. EffiGenC generated lower candidate patches compared to all
template-based APR techniques. When we compare the average values, EffiGenC reduced
the NPC score from a minimum of 27% to as much as 86%, compared to existing techniques.
In addition, we can observe that EffiGenC is effective in most cases because the overall
distribution is decreased, not just the mean or average value.

Figure 6b shows the result of comparing the number of nonsensical patches. EffiGenC
generates the lowest number of nonsensical patches except for SimFix. When we compare
the average value, it reduces the nonsensical patches from at least 53% to 87%. Figure 6c
shows the result of the number of in-plausible patches. EffiGenC generates fewer in-
plausible patches than kPAR, SimFix, and TBar.

However, it still produces more in-plausible patches than AVTAR and FixMiner. We
can see that EffiGenC is implemented based on TBar. EffiGenC can be extended to any
other template-based APR.
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(a)

(b)

(c)

Figure 6. Result of NPC score. (a) Distribution of number of candidate patches; (b) distribution of
number of nonsensical patches; (c) distribution of number of in-plausible patches.

Therefore, if we extend the EffiGenC to FixMiner and AVATAR, we can check the search
space reduction based on the context. Although SimFix does not generate nonsensical
patches, it is less efficient than EffiGenC because all patches it generates are in-plausible.

Finding 2. EffiGenC can generate valid patches with only a small number of
computations through the proposed context. The average NPC scores, nonsensical
and in-plausible patches are smaller than most template-based APR techniques.
Therefore, EffiGenC can increase the efficiency of patch generation through the
context.

5.3. RQ3: EffiGenC Space Reduction

To check the search efficiency of EffiGenC, we compare the number of NPCs and
correct patches according to the search space. The vanilla version of EffiGenC selects the
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related statement and related method in the search space in which the suspicious statement
is included. We expand this scope to the package and project.

Table 5 shows the NPC score and number of correct patches according to the search
space. The rows present the NPC score results. The last row presents performance results.
We manually examine the patches generated by EffiGenC and consider a patch correct
if it is semantically the same as the developer patches. When we set the search space to
File, EffiGenC generates an average of 37.1 candidate patches. Moreover, it can generate
the correct patch for 47 bugs. When we expand the search space to package and project,
the number of candidate nonsensical patches and in-plausible increased. In addition,
EffiGenC can increase the number of correct patches than existing techniques.

Figure 7 shows the total amount of ingredients that can be extracted from context
according to the search space. We calculated the ingredient for bugs that EffiGenC can
generate valid patches. We calculated the total amount of ingredients as the sum of the
number of variable, method, and expression set elements. The x-axis represents the number
of ingredients on the log scale.

Figure 7. Distribution of ingredient pool.

Table 5. Efficiency and performance changes according to the ingredient pool.

File Package Project

Avg. # Candidate 37.1 40.7 48
Avg. # Nonsensical 14.7 15.6 21.7
Avg. # in-plausible 21.4 25.1 26.3

# Correct patch 47 48 51

When the only file was targeted, the number of ingredients was the smallest, followed
by the package and project. The average number of ingredients was 60.2 for the file, 1210.1
for the package, and 2189.7 for the project. We confirmed that the most optimized version
is the vanilla version when considering the search space, efficiency and performance. Also,
when the search space is increased to package and project, even if the ingredient increases,
EffiGenC can generate a small number of candidate patches through efficient exploration.

Finding 3. Although EffiGenC has expanded the scope of collecting patch ingre-
dients to package and project, we can observe that it explores efficiently through
context compared to the growing search space. Moreover, we suggest the best search
space as the file when both computation cost and performance are considered.
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5.4. RQ4: Comparison with the State-of-the-Art

In this section, we investigate the overall performance of our default EffiGenC. We
manually validate the correct patch, such as RQ2. For the results of the existing technique,
the results of the previous study [3,9] were referred to.

Table 6 shows the number of correct and plausible patches each technique generated
for the Defects4j project. In the table, the first number of result denotes the number of
correct patches generated by the technique, and second number denotes the number of
plausible patches. EffiGenC generated 47 correct patches, which was the largest number of
correct patches.

Table 6. Number of Defects4j bugs that are correctly/plausibly fixed by APR tools. “C, CL, L, M,
Moc, T” represent Chart, Closure, Lang, Math, Mockito and Time.

Technique C CL L M Moc T Total

kPAR 3/10 5/9 1/8 7/18 1/2 1/2 18/49
SimFix 4/8 6/8 9/13 14/26 0/0 1/1 34/56

AVATAR 5/12 8/12 5/11 6/13 2/2 1/3 27/53
FixMiner 5/8 5/5 2/3 12/14 0/0 1/1 25/31

TBar 9/14 8/12 5/14 19/36 1/2 1/3 43/81
EffiGenC 9/13 9/14 5/8 21/31 1/2 2/4 47/72

Figure 1b is a case in which the existing APR techniques cannot generate correct
patches, but EffiGenC succeeds. In the case of the bug, f nType is the context element,
and EffiGenC computes the related statements based on this. Of the many ingredients in
the file, only the necessary ingredients including f nType.hasInstanceType() were extracted,
so EffiGenC can generaete the correct patch.

Finding 4. EffiGenC was able to efficiently explore patch ingredient search space,
and generate the correct patches for bugs that the existing template-based APR
techniques failed to generate.

6. Threats to Validity

Benchmark overfitting patch. The validity can be threatened by the benchmarks used
in the evaluation. Although Defects4j is a high-quality Java project bug framework, there is
a threat in which the patches generated by each APR only overfit that bug [18], and there is
a risk because the framework does not cover all bug types. However, many APR studies
have evaluated the performance of patch generation using benchmarks [14,19,20].

Additional computing cost. EffiGenC can efficiently generate patches by reducing the
patch ingredient search space. We also show this through the NPC score. The computational
cost of constructing the context and collecting ingredients from such context does not appear
in NPC score. However, as a result of running TBar and EffiGenC in the same environment,
it took an average of 661 s for TBar and 580 s for EffiGenC to generate the correct patch.
Therefore, we can observe that the context construction and patch generation process of
EffiGenC are sufficiently efficient.

Scalability. For the experiment, we implemented EffiGenC on TBar. Therefore, it
can be observed that the patch ingredient search space construction method of EffiGenC
is limited to TBar. The context construction of EffiGenC is a method that can be applied
to any technique that uses suspicious statements regardless of TBar. In addition, if it
is template-based APR, the concretization process that inserts ingredients to make the
template a candidate patch is a common process. Therefore, the process of extracting the
patch ingredient of EffiGenC can also be sufficiently generalized. EffiGenC can efficiently
generate patches regardless of the technique.
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7. Related Work

Research related to APR has been actively conducted [1]. APR is largely divided into
search-based APR and semantic-driven APR. A search-based APR generates a candidate
patch by defining and exploring a space in which a candidate patch exists. GenProg [21]
generates a candidate patch by manipulating the existing buggy source code using genetic
programming. By contrast, ARJA [10] generates candidate patches for Java programs
using multi-objective genetic programming. Unlike genetic programming, which uses
stochastic elements, EffiGenC generates candidate patches based on templates collected
from previous patch history.

Semantic-driven APR is a technique for generating correct patches using semantic
information such as a symbolic execution or the satisfiability modulo theory. SemFix [22]
generates a correct patch using symbolic execution, constraint solving, and program syn-
thesis. Angelix [23] generates a patch by introducing the concepts of an angelic path and
an angelic forest. Furthermore, Angelix alleviates the problem of scalability, which is a
problem in semantic-driven APR.

There are studies using the patch history to increase the number of correct patches
PAR [24] generates a new correct patch for the target project that fails to generate an existing
correct patch by creating a template with the pattern found by manually analyzing the patch
manually generated patch. Prophet [25] generates a machine-learning model that extracts
the correct patch characteristics from a human-written patch in an open-source software
repository project. The model was used to prioritize candidate patches and increase the
rank of the correct patch. EffiGenC also creates patches by exploring the search space more
efficiently through the context, rather than using only the patch history.

As research on search-based APR remains active, empirical analyses of the search
space and algorithms have been conducted. Wen et al. [26] revealed that the quality of the
search space significantly influences the performance of search-based APR when analyzing
the search space explored through existing APR techniques. In addition, the quality of the
patch is dependent on test cases. A technique for sampling only good test cases is needed to
generate the correct patch with a high performance and high efficiency. Fan Long et al. [25]
analyzed the density of plausible and correct patches in a space explored through the APR
approach and showed that there are plausible patches other than the correct patch.

Owing to the problematic performance and efficiency of search-based APR, studies
using context have continued to efficiently explore the search space. SimFix [22] extracts
high-level abstract changes from the past patch histories. Based on this, the correct patch is
generated by applying a patch to a suspicious statement. In addition, CapGen [8] proposed
a patch-prioritization technique to generate more correct patches with an efficient patch
validation. To prioritize the patch, the genealogy, variable, and dependency context scores
between the suspicious statement and the past patch history were calculated and prioritized
based on this technique. ConFix [7] considered the context by extracting the parent and
sibling nodes from the previous patch history. When a suspicious statement identified,
ConFix extracts the context and applies only the change in the same context existing in the
database to more efficiently generate the correct patch. EffiGenC uses the same context
as previous techniques. However, we redefine the context using an extended reaching
definition. In addition, EffiGenC effectively reduces the ingredient search space required
for patch generation.

8. Conclusions

The existing template-based APR did not sufficiently consider the search space for
patch ingredients. We presented the concept of a context based on the extended reaching
definition to contain patch information for the target statement. We proposed EffiGenC,
which generates patches based on the proposed context. The proposed context contained
enough patch ingredients to generate the correct patch. Experiments with Defects4j showed
that EffiGenC produced fewer candidate patches. We can see that EffiGenC can explore
efficiently a large patch ingredient search space. For future work, we plan to use context to
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solve the search space problem that exists in the multiline bug, and study techniques for
generating patches for more complex bugs. We are currently focusing only on the identifier
as an ingredient. We will conduct research that can reduce the search space for identifiers
and change actions. In addition, there is an issue about performance deterioration due to
out-of-vocabulary in deep learning-based patch generation. We try to solve this issue by
collecting identifiers related to bugs from other projects through the proposed context.
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