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Abstract: Various disease detection models, based on deep learning algorithms using medical
radiograph images (MRI, CT, and X-ray), have been actively explored in relation to medicine and
computer vision. For diseases related to the spine, primarily MRI-based or CT-based studies have been
conducted, but most studies were associated with the lumbar spine, not the cervical spine. Foraminal
stenosis offers important clues in diagnosing cervical radiculopathy, which is usually detected based
on MRI data because it is difficult even for experts to diagnose using only an X-ray examination.
However, MRI examinations are expensive, placing a potential burden on patients. Therefore,
this paper proposes a novel model for diagnosing foraminal stenosis using only X-ray images. In
addition, we propose methods suitable for cervical spine X-ray images to improve the performance
of the proposed classification model. First, the proposed model adopts data preprocessing and
augmentation methods, including Histogram Equalization, Flip, and Spatial Transformer Networks.
Second, we apply fine-tuned transfer learning using a pre-trained ResNet50 with cervical spine X-ray
images. Compared to the basic ResNet50 model, the proposed method improves the performance
of foraminal stenosis diagnosis by approximately 5.3–6.9%, 5.2–6.5%, 5.4–9.2%, and 0.8–4.3% in
Accuracy, F1 score, specificity, and sensitivity, respectively. We expect that the proposed model can
contribute towards reducing the cost of expensive examinations by detecting foraminal stenosis using
X-ray images only.

Keywords: foraminal stenosis; cervical spine X-ray preprocessing; transfer learning; fine-tuning;
Spatial Transformer Network

1. Introduction

In modern medicine, certain disease diagnoses and clinical treatments are based on
findings obtained from medical images, such as X-rays, Magnetic Resonance Imaging
(MRI), and Computed Tomography (CT). This is also applicable to cervical radiculopathy.

Cervical radiculopathy is often a result of disc herniation or cervical spondylosis,
resulting in pain in the neck and arm and nerve paralysis or sensory loss by pressing on
nerves in the arm [1]. As a symptom underlying the diagnosis of cervical radiculopa-
thy, foraminal stenosis refers to the narrowing of the foramen between the cervical spine,
in which the nerves extending from the cervical spine are compressed, causing pain or de-
creased sensation and paralysis in the arms. Foraminal stenosis arises as disc degeneration
with age causes decreased disc height and foraminal narrowing [1]. Therefore, the presence
of foraminal stenosis is important in determining early diagnosis and treatment for cervical
radiculopathy. To determine the presence or absence of foraminal stenosis, this paper
focuses on deep learning-based approaches to diagnosing foraminal stenosis.

Foraminal stenosis is analyzed by experts based on radiographs, such as X-rays, MRIs,
and CTs. Diagnosis is mainly made based on MRI because it has the highest accuracy,
and the predictive success rate is about 88% [2]. However, MRI diagnostic tests are a
potential burden to patients because they are expensive. In contrast, X-rays are relatively
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inexpensive, but it is difficult for experts to diagnose foraminal stenosis using only X-rays.
However, this does not mean that there are no diagnostic clues on X-rays. According to [1],
it can be confirmed even with the naked eye that the foramen is narrowed in the X-ray
oblique view. Therefore, this paper aims to propose a novel foraminal stenosis classification
model by applying a deep learning algorithm to X-ray images in order to learn features
that are difficult to identify with the naked eye automatically and efficiently. It is expected
that the proposed model, as an auxiliary tool, will help experts diagnose foraminal stenosis
more consistently. Furthermore, it can be expected that the patient will be relieved of the
burden of the cost of the examination as the proposed model uses X-ray images rather than
MRIs or CTs. In addition, the diagnosis of foraminal stenosis can be automated with the
proposed classification model, without requiring much professional expertise.

To date, there have been few cases of foraminal stenosis diagnosis by applying deep
learning algorithms to cervical spine X-rays. Most studies using X-ray images were mainly
focused on chest X-ray images [3–5] or lumbar spine radiographs [6,7] rather than the
cervical spine. Therefore, this paper proposes a classification model to diagnose foraminal
stenosis by applying deep learning algorithms to cervical spine X-ray images. In addition,
most studies related to diagnosing spinal diseases used MRIs or CTs [6,8,9], which are
expensive for patients. This study aims to diagnose foraminal stenosis using X-ray images
only, which will be less expensive. It is often difficult to obtain a large amount of data owing
to the characteristics of medical data. This paper proposes methods that can substantially
increase the accuracy of the model with only a small amount of data by using various
image preprocessing and data augmentation methods.

Our contributions can be summarized as follows: (i) we introduce a new technique for
classifying foraminal stenosis. (ii) We propose a classification model using cervical spine
X-ray images. (iii) We demonstrate that the proposed methods are suitable for a small
number of X-ray images.

First, to detect foraminal stenosis, the proposed model needs to focus on the foramen.
In an original X-ray image, the cervical spine oblique view contains not only the foramen
but also other bone parts such as teeth and skull, so we cropped the input image only to
the Region of Interest (ROI). In order to crop the desired section of the image, we applied
YOLOv5 [10] to learn the ROI, as described in Section 3.1.

Second, as the Convolutional Neural Network (CNN)-based model tends to be sen-
sitive to the input, to emphasize the foramen part, we applied Histogram Equalization,
which is one of the most popular methods for X-ray images [11,12]. Histogram equalization
makes the image clearer because the contrast between the bone part and non-bone part
is emphasized. As shown in Section 3.2, such image preprocessing can help CNN-based
approaches [13] learn X-ray classification models more effectively.

Third, in the case of the oblique view of the cervical spine X-ray used in this study,
the labels of the left view and the right view may be different even for the same patient.
Therefore, the left and right X-ray images are learned separately. As the amount of data
used in this paper is limited, we perform data augmentation by using flipped images of the
left view for training the right view, and vice versa. As a result, we can double the number
of images for generating the model, as described in Section 3.3.

Fourth, as the CNN-based model tends to be sensitive to input, by applying the Spatial
Transformer Network (STN), the slope of the cervical spine, which is different for each
person, is aligned into a similar slope. In Section 3.4, we show the effectiveness of STN in
increasing the accuracy of the model for diagnosing foraminal stenosis.

Finally, in Section 3.5, this paper proposes a novel foraminal stenosis classification
model based on ResNet50 [14], which utilizes cervical spine X-rays by effectively processing
low amounts of medical data. Transfer learning [15] was performed using a pre-trained
model to utilize the small amount of data, and fine-tuning was applied to reflect the
characteristics of the medical data domain to the parameters of the pre-trained model.
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Table 1. Overview of studies using deep learning for medical images, especially X-ray images or
spine data.

Reference Task Method Modality Metric

Jamaludin et al. 2017 [16] Spinal stenosis diagnosis 3D CNN 12,018 MRI images of 2009
subjects Accuracy (Acc)

Won et al., 2020 [17] Spinal stenosis diagnosis R-CNN, RPN, ResNet50,
VGG 12,018 MRI images Acc, F1 score

Dong et al., 2018 [18] Chest organ segmentation ResNet18 Chest X-ray images IoU

Saiz et al., 2020 [19] Lung detection VGG16, Fast R-CNN 987 Chest X-ray images Acc, Specificity, Sensitivity

Brunese et al., 2020 [20] Covid-19 classification Variant VGG16, Grad-CAM 6523 Chest X-ray images Acc, F-measure, Specificity,
Sensitivity

Al-Kafri et al., 2019 [21] Spinal stenosis diagnosis SegNet, DeepLab,
RefineNet, VGG16

48,345 MRI images of 515
subjects IoU, Acc. BF-score

Fan et al., 2020 [22] Spinal stenosis diagnosis,
semantic segmenatation 3D U-Net 1681 CT images of 31

subjects DC

Gaonkar et al., 2019 [23] Spinal stenosis diagnosis,
Disc segmenatation Deep U-Net MRI images of 1755

subjects

Dice score, Hausdorff
distance, and average
surface distance

Bharati et al., 2021 [24] Covid-19 classification CO-ResNet: ResNet101,
ResNet50, ResNet152 5935 Chest X-ray images

Acc, AUC, F1-score,
Precision, Recall,
Sensitivity

Nayak et al., 2021 [25] Covid-19 detection

ResNet34, ResNet50,
GoogleNet, VGG16,
AlexNet, MobileNetV2,
InceptionV3, SqueezeNet

406 Chest X-ray images
Acc, AUC, F1-score,
Precision, Specificity,
Sensitivity

Chen et al., 2022 [26] Scoliosis diagnosis Faster R-CNN, ResNet50,
LBP, SVM 3600 Spine X-ray images AUC, Precision, Specificity,

Sensitivity

2. Related Work

With the advent of CNN, the image classification field has developed rapidly. Starting
with AlexNet [27], the ImageNet Large Scale Visual Recognition Challenge (ILSVRC) error
decreased remarkably. Models that have performed well in the ILSVRC, such as VGGNet
(VGG) [28] and ResNet [14], are still widely used as pre-trained models. These models are
used not only for datasets similar to ImageNet but also for medical data. As presented
in Table 1, the VGG model has been widely used in COVID-19-related models that use
chest X-ray images after the outbreak of COVID-19 [19,20,24,25]. In addition, the ResNet
model has been used upon various types of medical images [17,29,30] including X-ray
images [18,24–26].

According to Table 1 and Qu et al. [31], a paper on current development and prospects
of deep learning in spine images, most of the spine-related studies [16,17,21–23] so far have
proposed models using MRI or CT images. Furthermore, these studies considered the
lumbar spine, not the cervical spine. Among these studies, VGG and ResNet were used
in Won et al. [17]. Other spinal-related studies [21–23] were segmentation-related studies,
not classification model-related studies. Therefore, a U-Net based model was used in these
studies [21–23]. SpineGEM [6] is similar to this study in that the proposed model classifies
spine diseases based on the VGG-M model. However, SpineGEM used MRI images, not
X-ray images, to classify diseases, and they classified the diseases of the lumbar spine, not
the cervical spine. Another previous study related to spine diseases [8] detects foraminal
stenosis in the same manner as in this study but uses MRI to detect foraminal stenosis
of the lumbar spine, not the cervical spine. In this previous study [9], an MRI image of
the lumbar spine was used, and the accuracy of the lumbar spine disc state classification
was increased to 87% by applying the ROI method and fine-tuning several pre-trained
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models. Most of the X-ray-related studies [18–20,24,25] in Table 1 are studies using chest
X-rays and ResNet-based models. In [32], the study used spine X-ray images to detect
scoliosis. They performed experiments using a variety of models, i.e., ResNet34, ResNet50,
GoogleNet, VGG16, AlexNet, MobileNetV2, InceptionV3, and SqueezeNet, to obtain the
scoliosis classification model. The best-performing model of [32] is a ResNet-based model.
In addition, the ResNet50 model used as the base has parameters trained on the ImageNet
dataset. However, there is a difference between the ImageNet dataset and the X-ray dataset
used in this study. In a study [33] that performed gender detection using cervical spine
X-rays, the model was trained by fine-tuning the pre-trained model. This study fine-tuned
the ResNet50 model to fit the model parameters to the X-ray dataset. Therefore, this paper
proposes a novel ResNet50-based model with transfer learning and fine-tuning using a
pre-trained model’s parameters, as there is not much data to learn.

YOLOv5 [10] shows high-accuracy performance in object detection, and many stud-
ies [33–35] apply YOLOv5 for object detection. Consequently, this paper employed YOLOv5
to crop the ROI part from cervical spine X-ray images to remove the unnecessary parts for
learning the proposed model.

The study related to X-ray image preprocessing [11] suggests that the Histogram
Equalization-applied dataset’s accuracy was 2% higher than the non-Histogram-Equalization-
applied dataset’s accuracy. For this reason, this paper suggests Histogram Equalization as
a preprocessing method to improve the performance of the proposed model.

Thus, transfer learning, fine-tuning, and ROI methods were applied using the pre-
trained model to increase the accuracy of our proposed model.

3. Methods

Owing to the characteristics of medical data, it is difficult to secure a large amount
of labeled data. Human experts have to label medical data directly, and consent must be
obtained for the use of medical data. In addition, there were few prior studies and no open
dataset for the cervical spine oblique view considered in this study. Therefore, to optimize
the performance of the foraminal stenosis classification model using a small amount of
data, various data preprocessing techniques and data augmentation techniques are applied.
The overview of the proposed model is shown in Figure 1. The methods applied in this
paper are as follows.

Figure 1. The overview of the proposed model based on ResNet50.
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3.1. YOLOv5-Based Region of Interest Detection in X-ray Images

The original oblique view of cervical spine X-ray images includes not only the cervical
spine and foramina, which are critical for foraminal stenosis diagnosis, but also additional
information, such as teeth, skull, clavicle, and an alphabet indicating left or right view,
as shown in Figure 2a,b. Therefore, parts that are not required for foraminal stenosis
detection and parts that may be mislearned by the model should be excluded from learning.
Therefore, we applied ROI crop to pre-process the input data of the model in this paper.
Object detection methods can be applied to detect ROI in the images, i.e., the area of
the cervical spine and foramina in the case of cervical spine X-ray images. We used
the YOLOv5 [10] model well-known for object detection to obtain ROI-cropped images,
as illustrated in Figure 2c,d. In the cervical spine X-ray image, only the cervical spine
part was annotated as a bounding box by a clinician. A total of 100 X-ray images were
annotated by a clinician and trained the YOLO model using these annotated data. ROI
cropping of the other X-ray images (without annotation) was performed by the trained
YOLO model. Therefore, the classification model does not intensively learn features other
than the cervical spine and foramina. As a result, we separately pre-trained the YOLOv5
model on cervical spine X-ray images and obtained the trained model with the mAP score
of 0.97. The pre-trained YOLOv5 model is applied to all of the raw data and detects
the ROI part. The detected ROI part was cropped. The output data of this step, i.e., the
ROI crop image, become the input data of the next step, Histogram Equalization, of the
proposed model.

(a) (b) (c) (d)

Figure 2. Results of ROI crop using YOLOv5. (a) right original oblique view, (b) left original oblique
view, (c) right ROI cropped oblique view, and (d) left ROI cropped oblique view.

3.2. Contrast Improvement in X-ray Images

Then, next data preprocessing method is Histogram Equalization [36], which is often
applied to X-ray image preprocessing [11]. Histogram Equalization (HE) is an image pre-
processing method using a histogram to adjust the contrast of the image to make the image
clear. HE is useful in image data consisting of a narrow range of grayscale values, such
as X-ray data. Equalization, i.e., transforming the histogram of the image to the entire
grayscale range, is performed to enhance the contrast of the image. The HE implementation
is as follows.

First, the number of pixel values g is in the image using the histogram function h
defined by

h(g) = Ng. (1)
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Second, the histogram value is obtained when w is the width and h is the height of the
image using the function p defined by

p(g) =
h(g)

w × h
. (2)

Then, using the function cumulative distribution f unction defined by

cd f (g) = ∑
0≤i≤g

p(i), (3)

the accumulated histogram value is obtained.
Finally, the result value of histogram equalization y is obtained by applying the

following operation:
y = round(cd f (g)× Lmax), (4)

where L is the total number of grayscale levels in them image.
After HE, the bone area becomes brighter in the X-ray image, while the dark area other

than the bone area becomes darker so that the contrast becomes more distinct, as shown
in Figure 3. As a result, the foramen, an important feature to detect foraminal stenosis,
becomes further clarified. In this study, the input X-ray images are first preprocessed to
obtain the ROI-cropped images, followed by histogram equalization.

(a) (b) (c) (d)

Figure 3. Results of Histogram Equalization. (a) right ROI cropped oblique view, (b) left ROI cropped
oblique view, (c) right ROI cropped oblique view with HE applied, and (d) left ROI cropped oblique
view with HE applied.

3.3. X-ray Data Augmentation for Foraminal Stenosis

Finally, the Flip data augmentation method is applied. As the amount of labeled data
is insufficient, the Flip method was used to double the amount of data, as presented in
Table 2. In the case of the dataset used in this study (the left and right cervical spine oblique
view X-ray images), the direction and the angle of X-ray imaging are different. Therefore,
each view of the images has its own label. The data used in this study are X-rays of cervical
vertebrae on the left and X-rays of cervical vertebrae on the right. Therefore, there are two
X-ray images per patient, each labeled. We consider the characteristics of the data and
use left-and-right flip as a data augmentation method to leverage the labels of the original
images. This is because the data cannot be combined if you proceed with the up-and-down
flip. Therefore, as shown in Figure 1, the dataset was doubled by flipping the output data
of the HE in opposite directions and combining them with the opposite dataset. Then,
the data doubled could be used as input data for model training as shown in Figure 1.
The original labels are preserved. The configuration of the flipped dataset is listed in the
last row of Table 2.
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3.4. Attention-Based Spatial Transformation

Spatial Transformer Network (STN) [37] is a generalization of differentiable attention
that can be applied to any spatial transformation. STN allows the neural network to
learn what spatial transformations to perform on the input image in order to enhance the
geometric invariance. STN is a network that transforms a distorted object image into a
straight shape by performing an affine transform. It is composed of three parts: Localization
network, Grid generator, and Sampler. First, the localization network receives the feature
map of the input image as input and outputs theta. theta is a parameter for affine transform.
Thereafter, the grid generator samples the pixel values of the output image using theta.
Finally, the sampler generates the final transformed output image using the value sampled
by the grid generator and the input image.

As CNNs [13,27] have sensitive output fluctuations for transformed inputs, such as
rotation, scaling, and STN can be a very useful mechanism to overcome these. In addition,
one of the advantages of STN is that it can be easily connected to the existing model
with very little modification. Therefore, this study applies STN to the proposed model
to overcome the difference across multiple X-ray images. In this study, as there are two
types of spatial input data, i.e., in the left-slope and right-slope direction, the STN learns
the spatial features of the image by dividing the X-ray image into left–right sides. The
results of the STN are illustrated in Figure 4, and the average loss and accuracy of the STN
are 0.0218 and 99%, respectively. The STN is trained using the cervical spine X-ray image,
and then the weights are frozen and added as a layer to pre-process the data right before
the proposed model training as shown in Figure 1.

Figure 4. Comparative results before and after STN. Dataset images: before STN; Transformed image:
after STN.

3.5. Transfer Learning

The proposed model is based on ResNet50 [14]. The ResNet model uses the Residual
Block (BottleNeck Architecture) to solve the vanishing gradient problem that occurs when
backpropagating in deep learning. This structure has a shortcut structure in which an input
value is added to an output value as it is, so it is possible to solve the vanishing gradient
problem in which an input value is forgotten as the layer deepens in a model with a deep
structure. In addition, the ResNet model is one of the models that is still widely used as it
has a simple structure.

The parameters of YOLOv5 and STN in the proposed model are frozen as shown
in Figure 1. Those parameters were obtained through separate experiments described in
Sections 3.1 and 3.4. The trainable part of the proposed model consists of the pre-trained
ResNet50 model and the Fully Connected (FC) layer, which is attached to suit foraminal
stenosis classification. The parameters of the pre-trained ResNet50 are initialized using the
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ImageNet [38] dataset, which is a domain different from our cervical spine X-ray dataset.
Therefore, the proposed model applied transfer learning [15] and fine-tuned the parameters
of the pre-trained ResNet50 and FC layer using the cervical spine X-ray images to improve
the performance.

In the final part of the proposed model, the cervical spine X-ray input image is
classified as abnormal if it has foraminal stenosis, and normal if it does not have foraminal
stenosis. As there are two classification classes in the proposed model, this study uses a
binary cross entropy function as a loss function.

4. Experiments Results
4.1. Dataset

The data used in this study comprises cervical spine X-ray images of 798 patients
provided by Dongguk University Ilsan Hospital. For each of the 798 patients, two X-ray
images (a left oblique view and a right oblique view) were provided per person. The oblique
view was captured by adjusting the angle so that the foramen was clearly visible when
X-rays of the cervical spine were taken. Even in the same foramen, the foraminal stenosis
results of the left oblique view and the right oblique view were different, so each was
labeled separately. If foraminal stenosis was present, the image was labeled as abnormal
and if not, it was labeled as normal. For accurate labeling, labeling for X-ray images was
based on MRI examinations. For each data on the left and right, 60% was used for the
training dataset, and 20% each for the test and validation dataset. An overview of the
detailed dataset is presented in Table 2. The original size of input cervical spine X-ray
images 1180 × 2012 was resized to 512 × 512. We downscale the size of input data as
512 × 512, as the size of the ROI crop data were not the same but slightly different after the
YOLO crop step. Additionally, when the scale was larger than 512 × 512, the results were
similar while the training time increased significantly. On the other hand, the performance
was poor when the size of the input data was 256 × 256. Therefore, we unified the size of
input data to 512 × 512.

Table 2. Configuration of the cervical spine X-ray image dataset. The first and second row of the
table present the configuration of the raw data before applying Flip method. The last row of the table
is the configuration of the result of the Flip: flipped left view added to right view and flipped right
view added to left view.

Label Training (60%) Validation (20%) Testing (20%) Total

left oblique view abnormal 298 100 100 498
normal 180 60 60 300

right oblique view abnormal 313 105 105 523
normal 165 55 55 275

left/right flip applied abnormal 611 205 205 1021
normal 345 115 115 575

4.2. Preliminary Experiments

Before proceeding with the experiments, some preliminary investigations were re-
quired to obtain the necessary setup information for the experiment. When the batch size
was increased to 8, the accuracy was 75.0%, which is lower than when the batch size was
set to 4. In the case of the epoch size, the accuracy was approximately 74% when the epoch
size was set to 20, and 75.93% when set to 30, which was almost the same as when it was
set to 25. Therefore, the experiments set a batch size of 4 and trained for 25 epochs using
a Stochastic Gradient Descent (SGD) optimizer with a momentum of 0.9 and an initial
learning rate of 0.001. The learning rate was decreased by 0.1 every 7 epochs. Furthermore,
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the experiments use binary cross-entropy and applied additionally calculated weights to
overcome the class imbalance.

A preliminary experiment was conducted to determine a suitable pre-trained model
for the cervical spine X-ray image dataset among the pre-trained models used in previous
studies about various medical data, especially X-ray images. This experiment used only
left oblique view X-ray images. Additionally, this experiment is for the comparison of pre-
trained models and choosing the suitable baseline model for X-ray image data. Therefore,
only YOLOv5 cropping process was used and the other proposed method in this paper,
i.e., HE, Flip, and STN were not used. The experiment results are summarized in Table 3.
As the ResNet50 [14] pre-trained model was slightly superior to VGG16 [28] as presented
in the Table 3, ResNet50 was selected as the pre-trained model in this study.

Table 3. Result of various pre-trained models trained with the left oblique view.

Accuracy F1 Score Specificity Sensitivity

ResNet50 70.62 60.5 77.0 60.0
VGG16 70.0 59.82 78.0 58.33
VGG19 66.87 49.52 81.0 43.33

As this paper proposes the model based on the pre-trained ResNet50 model trained
by ImageNet, a preliminary experiment was conducted to check whether it is effective to
fine-tune the parameters using the cervical spine X-ray data considered. The results of the
experiment are summarized in Table 4. As predicted, the fine-tuned model performed better
than the model using the frozen pre-trained model parameters. Therefore, fine-tuning the
pre-trained ResNet50 model is recommended.

Table 4. Result of fine-tuning in left and right oblique view, respectively.

Fine-Tuning Accuracy F1 Score Specificity Sensitivity

left oblique view 7 70.62 60.5 77.0 60.0
left oblique view 3 71.25 60.95 78.0 59.93

right oblique view 7 70.0 58.62 74.28 61.81
right oblique view 3 73.12 69.81 86.66 67.27

The ablation study results confirm that the proposed performance enhancement meth-
ods, i.e., HE, Flip, and STN, have a positive effect on the performance of the proposed
model, as can be observed by comparing the data in Tables 4 and 5. First, agreeing with
the previous studies using X-ray data, an ablation experiment was performed to confirm
whether it is effective to apply Histogram Equalization. The result of Histogram Equaliza-
tion is shown in Figure 3, and the results of training the model using the data to which HE
is applied are presented in Table 5. According to Table 5, the performance was better in
most metrics than in non-histogram equalization applied data, as this study predicted. In
the case of the right oblique view, the accuracy increased by approximately 3%, and in the
case of the left oblique view, all metrics increased except specificity. In the left oblique view,
the accuracy increased by approximately 1%, the F1 score increased by approximately 3%,
and sensitivity increased by approximately 5%.
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Table 5. Ablation experiment results from applying HE, Flip, and STN, respectively, for test dataset.
The model is based on the fine-tuned ResNet50.

HE Flip STN Accuracy F1 Score Specificity Sensitivity

right oblique view

7 7 7 73.12 69.81 86.66 67.27
3 7 7 76.74 63.38 85.89 59.26
7 3 7 72.81 61.33 78.04 60.86
3 7 3 73.12 51.68 89.52 41.81
7 7 3 76.25 65.45 81.9 65.45
3 3 3 76.93 65.15 83.41 62.6

left oblique view

7 7 7 71.25 60.95 78.0 59.93
3 7 7 72.84 63.68 78.0 64.06
7 3 7 71.8 60.86 85.89 59.26
3 7 3 70.0 57.89 79.0 55.0
7 7 3 73.12 61.94 82.0 58.33
3 3 3 75.93 65.77 82.43 64.34

Second, an ablation experiment was performed to check whether the performance of
the model improved when the amount of data doubled by applying Flip, a preprocessing
technique that considered the characteristics of the cervical spine oblique view X-ray
dataset. The data configuration as a consequence of applying the Flip method is presented
in the last row of Table 2. The results of training the proposed model for left and right
oblique views are presented in Table 5. According to Table 5, even though the F1 Score and
sensitivity values slightly declined by approximately 0.1% and about 0.7%, respectively,
the accuracy and specificity values improved about 0.6% and 7.8%, respectively, for each in
the case of the left view, and the difference between the accuracy of the left and right views
was reduced. However, all metrics are decreased in the case of the right view. In order
to verify the effectiveness of the flip, we compared the result of the experiment: HE and
STN were applied but without Flip (fourth row of each view on the Table 5), with the result
of the experiment with all the proposed methods (sixth row of each view on the Table 5).
According to the flip ablation experiment, when the flip was applied, the metrics were
better than when it was not applied, except for the specificity of the right oblique view.
The flip method doubled the number of data, and as a result, the model learned more data,
showing performance improvement in all metrics except for the specificity of the right
oblique view. Therefore, this study suggests that flip is an effective method to increase the
amount of the cervical spine X-ray data.

Finally, a third ablation experiment on the effectiveness of applying STN was per-
formed. According to Table 5, accuracy, F1 Score, and specificity are improved by ap-
proximately 2%, 1%, and 4%, respectively, in the case of the left view, whereas sensitivity
decreased by approximately 1%. However, all metrics except accuracy are decreased in
the case of the right view. The accuracy of the right view was improved by approxi-
mately 3%, but F1 Score, specificity, and sensitivity decreased by approximately 4%, 5%,
and 2%, respectively.

4.3. Experiment Results and Evaluation

The results of the proposed model after applying HE, Flip, and STN are presented in
Table 6. All the values of the first row of each view, i.e., the results of basic ResNet50 model,
are from Table 4. The final accuracy of the proposed model was 76.93% in the right oblique
view and 75.93% in the left oblique view. For the right oblique view, the proposed model
was ahead of other basic, ResNext, and WideResNet in all metrics, but Res2Net101 had
higher F1 score and sensitivity values than the proposed model, as illustrated in Table 6.
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However, in the case of the F1 score value, there was a difference of approximately 0.1 from
the proposed model, and the accuracy of the proposed model was approximately 3% higher
than that of Res2Net101. Therefore, the proposed model was finally selected. For the left
oblique view, the proposed model was finally selected because the proposed model showed
better performance than other comparable models for all metrics as illustrated in Table 6.
The accuracy of the right oblique view was improved by approximately 6.9%, while the
accuracy of the left oblique view was improved by approximately 5.3% compared to the
basic ResNet50 model. In the case of the F1 Score, the right oblique view was improved
by approximately 6.5%, and the left oblique view was improved by approximately 5.2%.
The specificity of the right oblique view was improved by approximately 9.2%, while the
specificity of the left oblique view was improved by approximately 5.4%. Finally, the values
of the sensitivity of the right oblique view and the left oblique view were improved by
approximately 0.8% and 4.3%, respectively. Therefore, all metrics show performance
improvement compared to the basic ResNet50 model. As a result, the difference between
the left and right widens for all metrics after applying the fine-tuning was improved after
applying the proposed methods, especially Flip. According to the confusion matrix, it
seemed difficult for the proposed model to classify the normal class. Therefore, the metrics
could be improved by focusing on learning the difference between abnormal class and
normal class by applying contrastive learning.

Table 6. Comparison of the result values of the ResNet50 model that applied all the methods, i.e., fine-
tuning, ROI cropping, HE, Flip, and STN, proposed in this study (proposed model), three latest
ResNet models (ResNext50, WideResNet50, Res2Net101) that applied all the proposed methods,
and no method applied ResNet50 model (basic ResNet50).

Model Accuracy F1 Score Specificity Sensitivity

right oblique view

basic ResNet50 70.0 58.62 74.28 61.81
ResNext50 74.37 62.38 82.92 59.13

WideResNet50 73.43 64.43 77.07 66.95
Res2Net101 73.75 65.28 76.58 68.69

proposed model 76.93 65.15 83.41 62.6

left oblique view

basic ResNet50 70.62 60.5 77.0 60.0
ResNext50 68.43 56.65 74.63 57.39

WideResNet50 69.37 57.01 76.58 56.52
Res2Net101 74.37 63.71 80.97 62.60

proposed model 75.93 65.77 82.43 64.34

Furthermore, the Receiver Operating Characteristic (ROC) curve and Area under the
ROC Curve (AUC) value of the best-performing model are shown in Figure 5. The ROC
curve shows the classification performance at all classification thresholds. A ROC curve
plots True Positive Rate (TPR) vs. False Positive Rate (FPR) at various classification thresh-
olds. Lowering the classification threshold classifies more items as positive, thus increasing
FP and TP, as shown in Figure 5. AUC measures the entire two-dimensional area under-
neath the entire ROC curve from (0, 0) to (1, 1). The range of the AUC is 0.0 to 1.0, and the
model whose predictions are 100% correct has an AUC of 1.0. Therefore, the closer the
AUC value is to 1.0, the better the model. The AUC score of the best-performing model is
0.83 as shown in Figure 5.



Electronics 2023, 12, 195 12 of 15

(a) (b)

Figure 5. The ROC curve and AUC. (a) ROC curve and AUC value of the right oblique view, (b) ROC
curve and AUC value of the left oblique view.

5. Discussion

This paper proposes a novel model to classify the presence or absence of foraminal
stenosis, a diagnostic component of cervical radiculopathy, using X-ray images. It also
suggests effective methods for preprocessing and augmentation to overcome the challenges
arising from the limited number of X-ray images available for training. The accuracy of
the best-performing model is approximately 77%. In addition, fine-tuning and transfer
learning are suitable when the pre-trained model is used in distinctive domains such as
medical datasets. As a preprocessing method, we demonstrate that HE and STN are the
most effective methods for X-ray images, as summarized in Table 5. HE increases the
contrast between bone and non-bone parts in X-ray images, so the performance of the
model is improved. STN learns the spatial features of the slope of the cervical spine and
makes the slope, which varies for each patient, align to reduce the geometric invariance of
the input dataset for the CNN-based model and improve the performance of the model.
We also suggest that Flip is a suitable method to overcome the lack of cervical spine X-ray
data in this study. Flip is a specialized method for cervical spine X-ray data to augment
considering the characteristics of the data as shown in Table 5. The proposed model can be
a help as a reference to the clinical judgment process for cervical root disease, including
determining whether to perform MRI or diagnostic root block. In addition, we expect
that the proposed model can contribute to reducing the cost of expensive examinations by
detecting foraminal stenosis using X-ray images only rather than MRIs or CTs. It is expected
that the proposed model, as an auxiliary tool, will help experts diagnose foraminal stenosis
more consistently. While foraminal stenosis is difficult to diagnose by a physician only
based on oblique radiograph images, a deep learning model could have detected features
not easily recognized by human eyes. Recent clinical studies [39] have also suggested that
deep learning models could give feedback to physicians regarding radiograph interpre-
tation and that clinicians could learn from deep learning models. The proposed model
can be expected to be further utilized later by increasing accuracy, such as automating the
diagnosis of foraminal stenosis. However, a major limitation of this study is the limited
amount of the labeled cervical spine X-ray data. Therefore, it is necessary to conduct further
research in order to overcome this limitation and improve the performance of the proposed
model by applying a more effective attention module [40] in the future. While we applied
Flip and STN to double the amount of data and to align the slope of the cervical spine,
future research can conduct data augmentation using other methods to further augment
the dataset by considering various angles of the cervical spine. Afterward, we plan to
compare which method is more suitable for the cervical spine X-ray image dataset from the
perspective of improving the performance of the foraminal stenosis classification model.
Furthermore, the self-supervised learning method [32,41–44] can be applied to unlabeled
data to increase the amount of the data. We also plan to apply contrastive learning [45] to
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improve the metrics of the proposed model in order to strengthen the classification of the
normal class.
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