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Abstract: The quality of yarn is essential in the control of the fabrics processes. There is some
commercial equipment that measures the quality of yarn based on sensors, of different types, used for
collecting data about some textile yarn characteristic parameters. The irregularity of the textile thread
influences its physical properties/characteristics and there may be a possibility of a break in the textile
thread during the fabric manufacturing process. This can contribute to the occurrence of unwanted
patterns in fabrics that deteriorate their quality. The existing equipment, for the above-mentioned
purpose, is characterized by its high size and cost, and for allowing the analysis of only few yarn
quality parameters. The main findings/results of the study are the yarn analysis method as well as
the developed algorithm, which allows the analysis of defects in a more precise way. Thus, this paper
presents the development and results obtained with the design of a mechatronic prototype integrating
a computer vision system that allows, among other parameters, the analysis and classification, in
real time, of the hairs of the yarn using artificial intelligence techniques. The system also determines
other characteristics inherent to the yarn quality analysis, such as: linear mass, diameter, volume,
twist orientation, twist step, average mass deviation, coefficient of variation, hairiness coefficient,
average hairiness deviation, and standard hairiness deviation, as well as performing spectral analysis.
A comparison of the obtained results with the designed system and a commercial equipment was
performed validating the undertaken methodology.

Keywords: yarn mass parameters; artificial intelligence; image processing; machine learning;
mechatronic prototype

1. Introduction

This section presents the framework and importance of the problem under study. The
motivation and objectives of the work are highlighted. Finally, the structure of this paper
is presented.

Several methods can be used in the industry for yarn production which will affect
various yarns parameters [1,2]. During the yarn production process, factors such as ir-
regularities and dirt on the machine rolls can impair the quality of the yarn produced
throughout the system. In the textile industry, the quality of the fabrics is directly related to
the quality of the yarn, and thus, costs and claims due; for example, the existence of foreign
fibers can be avoided by creating a quality management system to eliminate or minimize
this number. Continuous inspection guarantees constant and satisfactory quality of the
fabrics. Thus, yarn quality control is of upmost importance in controlling the processes for
obtaining fabrics. There is commercial equipment that measures the quality of the yarn,
which is based on sensors of different types, highlighting the products of the USTER com-
pany, namely its latest models USTER Tester 5 and 6 [3]. This equipment is characterized
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by its high size and cost, as well as for performing the analysis of few parameters of yarn,
namely the mass parameters.

In recent years, research work has been carried out to obtain more precise parameters
of yarn quality, using image processing [4–8]. Thus, there is the need to implement these
technological advances in a physical prototype to fill the existing gap in the industry. De-
spite the high technology already available, there are still some challenges, namely in the
identification, characterization, and analysis of the characteristics and hairiness in yarn,
which are little explored. From our research, it was observed that there is currently no
system that, through image processing, obtains and characterizes the hairiness present
in the yarn. It is relevant to develop specific equipment for this purpose. In this context,
the design, development, and construction of a mechatronic prototype using artificial
intelligence seems to be justified to provide data regarding the quality of the yarn through
the analysis of its main mass characteristics and the characterization of hairiness. This
can enable companies to implement a quality improvement in their fabrics. This proto-
type system should be a simple, portable, and low-cost system that allows the collection
of several parameters of yarn quality by image processing automatically, using artificial
intelligence algorithms. This prototype allows its integration into an industrial environ-
ment, which will allow companies to assess the quality of the textile yarn to minimize the
financial losses resulting from poor quality of the textile yarn used in the manufacture of
textile fabrics.

The objective of this prototype is to develop control algorithms and use artificial
intelligence techniques that allow the identification and characterization of yarn mass
parameters. To this end, the following tasks were defined:

• Development of a mechatronic device that allows winding and unwinding wires to
perform these analyses on different types of raw material.

• Development of a more economical, non-destructive, and easily reproducible yarn
winding and unwinding prototype.

• Development of algorithms for acquisition, processing, and analysis of images in
textile yarn.

• Development/optimization of artificial intelligence algorithms for analysis of images
obtained from the yarn. In this case, the system will allow:

# Identifying the hairiness of the yarn;
# Classifying the type of hairiness—loop/protruding;
# Classifying the positioning/spatial distribution of hairiness and

defects/irregularities.

• Development of an application capable of providing, in real time, a set of statistical
data on the analyzed wires, generating a report for immediate or later analysis. With
this tool, it is possible to present information in a readable and intuitive way for the
user. The characteristics to obtain are:

# Characterizes yarn defects: fine points, neps, thin places, and thick places;
# It presents the complete characterization of the yarns in a production report

with an intuitive and friendly interface.

• Construction of a database (dataset) to store all the information that will “feed” all
artificial intelligence approaches.

This system must be able to provide a better quality to the fabrics, due to the high
parameterization evaluating the quality of the thread to be used.

This paper is organized in six sections. The second section presents a review of the
literature on research in the area. The third section presents the theoretical concepts related
to the analysis and characteristics of the yarn, necessary to understand the designed system.
The fourth section presents the entire development of the designed prototype, including
the mechanical part, as well as the implemented computer vision system, electronics, and
system automation. The application of techniques associated with the implementation of
artificial intelligence techniques in the system are also presented. The fifth section presents
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the experimental results. Here, a comparison of the results obtained with an example of a
test obtained on the USTER Tester 3 commercial equipment is done. Finally, in the sixth
section, the main conclusions and future work that can be implemented as an improvement
to the prototype are described.

2. Literature Review

Technological evolution has reached important proportions in terms of systems obtain-
ing characteristics that measure yarn quality. Thus, this section presents some solutions and
projects that explore technologies to obtain yarn characteristics. It is of utmost importance
to analyze what the scientific community has explored, the challenges encountered, and
the problems still to be solved to better design/improve a proper project approach. The
most relevant works of the last 6 years will be presented in each subsection, and which are
the most important to assess what has been done on this topic so far.

2.1. Use of Image Processing and Computer Vision in Yarn Analysis

In the computer vision system of Zhisong Li et al. (2020) [6], from now on called
System B, an assessment of the yarn quality was carried out, in which the following
parameters were obtained:

• Yarn diameter;
• Defects;
• Hairiness.

All these characteristics were achieved using computer vision and image processing
techniques. In this prototype (Figure 1), the diameter image processing unit (DIPU) and a
series of sampling points, which are selected from the moving yarn, are first defined. The
DIPU corresponding to each sampling point is segmented from the captured yarn images.
The average DIPU diameter is used to represent the yarn diameter of the test points. When
extracting yarn images, the DIPU is divided into:

• foreground region;
• in the defined background region;
• and an unknown region according to the gray level projection distribution characteristics.
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Figure 1. Flowchart of the method for detecting yarn parameters and evaluating yarn quality
(Adapted from [6]).

The unknown region is further processed with the Poisson Matting method, in which
the yarn image and the background image are completely separated by a defined connectiv-
ity classifier. After the yarn core is extracted by the classifier, the hairiness is divided using
image subtraction. Finally, to further assess the yarn quality, yarn defects were analyzed
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by statistical methods. In this designed system, a closed box is used as an image capture
platform to protect from stray light disturbance. A white diffused glass is adopted to
eliminate reflected light and shadows. In addition, for the yarn movement, a driver and
voltage controller are used to obtain a better simulation. Figure 2 shows the integrated
structure of this system. The yarn image capture system is mainly composed of three parts:

• Imaging system, including sensor, camera lens and light source, among which the
CCD image sensor is used to collect the sequence of images from the yarn;

• Imaging lens with a large depth of field to ensure that hairiness in different positions
can be clearly analyzed.
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Figure 2. System device to detect yarn parameters (Adapted from [6]).

Images were acquired by a SONY C Zoom lens with a focal length of 12.5 to 75 mm
connected to a charge-coupled device (CCD) camera (Basler acA2040-180 km/kc, pixel size
5.5 µm, resolution of 2048 × 2048 pixels, sampling rate of 180 fps, and a personal computer
with an image processor.

Yarn hairiness refers to the number of fibers projecting out of the yarn core, which
has a direct effect on yarn properties, weaving efficiency, and fabric appearance. As an
important indicator, yarn hairiness index was included in yarn quality requirements in this
project. The authors state that the thread can be divided into thread core and hairiness.
Through the method described above, the DIPU was extracted from the yarn core based on
the connectivity of pixels for each image. Thus, the hairiness pixels can also be obtained by
the image subtraction method. Figure 3 shows hair removal using the image subtraction
method [6].

The authors did not propose improvements or future work with this project. They
only state that the proposed method and the corresponding detection system facilitates
automation and industrialization in the detection of yarns in online mode [6]. A few more
authors developed works in the field of image processing in textile yarn, but without
innovations to what had been done so far [7–9].
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A system was also developed by Noman Haleem et al. (2021) [10], from now on
called System C, in which the authors stated that yarn testing in online mode can reduce
latency in process control, providing fast information on yarn quality and leading to yarn
production of top-quality yarn. These authors mention that both widely used capability-
based uniformity test equipment and emerging image-based uniformity test systems are
largely used in offline mode. According to them, there is still no adequate online system
that can be used to test the quality of a variety of yarns under normal industrial processing
conditions. Thus, the authors in this project proposed an online uniformity test system for
measuring a certain type of yarn defect called nep. For this, they used image processing
techniques and computer vision. The developed system (Figure 4) directly captures the
yarn images on a rotating frame and uses the Viola–Jones object detection algorithm for
the real-time detection of nep defects. The validation of the nep detection algorithms
and the comparison of the new method with an existing uniformity test equipment, in
terms of nep count, was demonstrated to have a reasonable defect detection accuracy
and promising potential for application in the yarn spinning industry. The results were
validated by comparison with USTER’s existing commercial uniformity testing equipment
(Tester). Image collection (Figure 4) was performed by a Basler 1440–220 µm digital camera
(Basler, Germany) equipped with a 50 mm lens.
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Figure 4. An example of a yarn image with a nep defect obtained using the image acquisition system
(Adapted from [10]).

The authors used three computer vision models (named A, B, and C) based on the
Viola–Jones algorithm. This was developed using the OpenCV computer vision library
in Python programming language. These models are essentially image classifiers, which
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varied in terms of the input data used in their training phase. The training data were
composed of positive and negative images in a 2:1 ratio and these images were resized by
factors of 0.2 and 0.1, respectively, to optimize the training time. The number of training
cycles was 10 for each model. Figure 5 shows three concatenated images of yarns with
the defect called nep, acquired using the proposed image acquisition configuration during
the yarn spinning process. Furthermore, the authors found that, in an analysis of a series
of images of continuous shape of yarn, the size of the field of view was substantial to
accommodate lateral oscillations of the yarn during the spinning process [10].
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Figure 5. Excessive false detections by Model A, in a yarn image of the validation dataset (Adapted
from [10]).

As future works, the authors suggest that [10]:

• High-quality yarn online images can be acquired using an imaging system with an
ultra-low exposure time, combined with external lighting and proper optical setup;

• The online yarn uniformity measurement system can be used to detect other types of
yarn defects as well as necessary additions to the image processing module to produce
a complete yarn quality testing solution in an industrial environment.

2.2. Use of Artificial Intelligence Techniques in Yarn Analysis

Regarding the modeling of yarn tensile properties using artificial intelligence, Adel
El-Geiheini et al. (2020) [11], from now on called System D, stated that the use of artificial
intelligence technologies can lead to more objective yarn testing systems with specifications
of products with higher quality that meet the demands of the manufacture and the end
user. This work was carried out with the objective of using image processing and artificial
neural networks to model the tenacity and percentage of elongation of yarns for different
types of yarns using a viable method in cost and time. Feed-forward neural networks
trained with the back propagation rule were adopted. Two systems were developed; the
first was used to evaluate the percentage of elongation and tenacity of the cotton threads
and the second was used to evaluate the parameters of the mixed threads. By apply-
ing image enhancement combined with a multilayer neural network, good results were
obtained to estimate different yarn parameters. In this project, images of samples were
collected with a digital camera. The MATLAB 2015 software was used for the respective
image collection and data pre-processing, and for the development of the two neural
networks. Filtering and scaling were applied, and two adjustments were also made to
the artificial neural networks trained with the Levenberg–Marquardt back propagation
algorithm. In training the networks, 80% of the dataset were used, while validation and
testing used 20%. For the first model, which was the cotton yarn model, the images were
enhanced by applying Gaussian filtering and then transformed to grayscale and scaled to
250 × 250 pixels. Subsequently, the target data were encoded, and the data vectors were
defined and used as the inputs to the neural network. A total of 152 samples were in-
troduced to train and validate a feed-forward back propagation neural network. This
network consisted of an input layer, a hidden layer with 15 neurons, and an output layer
with two outputs, which are the tenacity (RKM) and the percentage elongation at break
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of the cotton threads. The second model was used to understand the tensile properties
of mixed yarns. Like the first model, the images were enhanced using the Gaussian filter
and then they were converted to grayscale and resized to 250 × 250 pixels; in addition, the
target data were encoded. A four-layer feed-forward artificial neural network was also
developed. The number of neurons in the two hidden layers was 20 and 10, respectively.
Figures 6 and 7 illustrate the implemented neural network by Adel El-Geiheini et al. (2020)
for the first and second models, respectively. The authors also stated in this work that the
combination of image processing and neural networks can be used effectively to evaluate
various properties of the textile yarn.
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Figure 7. Mixed yarns: the structure of neural network traction properties (Adapted from [11]).

At the level of artificial neural networks Manal R. Abd-Elhamied et al. (2022) [12], from
now on called System E, developed a project that allows a prediction of the characteristics
of cotton thread by image processing and ANN (artificial neural network). It should be
noted that the yarn characteristics obtained were taken with the USTER Tester 3, USTER
Tester 5 and TENSORAPID4 machines. This research work used image processing and
artificial neural networks to evaluate yarn tenacity, percentage elongation, coefficient of
mass variation and percentage of yarn imperfections for spun and compact cotton yarns.
Figure 8 shows the steps used to analyze the acquired images and to feed the acquired data
into the neural network.
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Twelve inputs were used in the neural network, namely: diameter, coefficient of
variation of diameter (CVD), height, coefficient of variation of hairiness (CVH), curvature,
short fiber, count, torsion, revolving draft, spindle speed, ring size, and number of hairs
were the network inputs, while the output of the neural network was the hairiness index.
At the level of the neural network used (Figure 8), the authors devised a network structure
to assess tenacity and percentage of elongation for the ring textile yarn system. This
consisted of an input layer, a hidden layer with 15 neurons, and an output layer. For the
second system (Figure 9), two hidden layers were used, and the number of neurons was
20 and 10, respectively. For the coefficient of variation of yarn mass (CVm%), the same
topology was used for both systems, where neurons in the first hidden layer were set to
20 and in the second layer were set to 8. For the thin places of the yarn, thick places and
neps, two different topologies were used for each system. The ring yarn system had two
hidden layers (20–8 neurons), and in addition, the compact system had only one layer with
12 neurons, as shown in Figure 9.
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This study investigated the estimation of tenacity, percentage elongation, percentage
CVm%, and imperfections for cotton yarns produced by ring spinning and compact spin-
ning. Each model consisted of three units for each thread parameter and was constructed
incorporating image processing. As future work, Manal R. Abd-Elhamied et al. (2022)
propose the modeling of textile yarns with different properties, using artificial intelligence
techniques, which can be successfully performed.

2.3. Comparison with Similar Cases

According to our research, there are few reported cases of other yarn prototypes sys-
tems with data that allow comparison with our case study, from now on called
System A.

Table 1 summarizes some of the characteristics of the previously proposed solutions
compared to the case study proposed in the present research (Textile Yarn Prototype).

Comparing all the above-mentioned solutions, it can be stated that not all of them
respond to a set of important specifications. The solution developed called System A
presents some differentiating factors, as follows:

• System A allows image and video-based yarn analysis while system E does not;
• System A can obtain the inherent characteristics of textile yarn imperfections through

image processing and artificial intelligence. Furthermore, the System E can only arrive
at values using artificial intelligence, but the characteristics of the textile yarn are
obtained through an existing commercial machine based on optical sensors, which is
the USTER TESTER 5;

• System A has a lower cost, which differentiates it from the other commercial prototypes
developed so far;

• System A is non-destructive, in addition to allowing image analysis and winding and
unwinding of any type of textile thread.



Electronics 2023, 12, 236 9 of 37

Table 1. Characteristics of the previously proposed solutions compared to the case study.

Characteristics Obtained
by the System and Used

Technologies

System A
(Proposed) System B [6] System C [10] System D [11] System E [12]

Mechatronic prototype
developed? YES YES YES YES NO

Non-destructive
Prototype? YES NO NO NO NO

Yarn Winding and
Unwinding System? YES YES YES NO NO

Image or Video analysis in
textile yarn? Image and Video Image Image Image Image

Vision System (VS) or
Artificial Intelligence (AI)

or Optical Sensors to
detect defects in textile
fabric or textile yarn?

VS and AI VS VS AI AI

Obtain Yarn twist
orientation? YES NO NO NO NO

Obtain Yarn twist step? YES NO NO NO NO
Obtain Hairiness Index? YES YES NO NO NO

Obtain Thick places? YES NO NO NO NO
Obtain Thin places? YES NO NO NO NO

Obtain Neps? YES NO YES NO NO
Obtain Diameter? YES YES NO NO NO

Obtain Linear Mass? YES NO NO NO YES
Obtain Volume? YES NO NO NO NO

Obtain Number of cables? YES NO NO NO NO
Number of loose fibers? YES NO NO NO NO

Obtain Mean deviation of
mass U (%)? YES NO NO NO NO

Obtain Coefficient of
variation CV (%)? YES NO NO NO YES

Obtain Hairiness
coefficient H? YES NO NO NO NO

Obtain Hairiness mean
deviation UH (%)? YES NO NO NO NO

Obtain Hairiness standard
deviation sH (%)? YES NO NO NO NO

Classify the type of
Hairiness—

loop/protruding
fibers?

YES NO NO NO NO

Obtain Elongation at
break in %? NO NO NO YES YES

Obtain Tenacity (cN/tex)? NO NO NO YES YES
Can the developed system

be introduced in an
industrial environment on

production lines?

YES YES NO NO NO

Does the developed
system allow you to

collect images of the yarn
online or offline?

Online and Offline Offline Offline Offline Offline

Obtain Spectral Analysis? YES NO NO NO NO
Can be used with any

kind of yarn? YES n.a. NO YES YES

System Cost (€) 1200 € (estimated) n.a. n.a. n.a. n.a.
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Systems B, C, and D have many gaps. It should be noted that System D has the
advantage of obtaining tenacity as well as elongation of the textile yarn.

In summary, Systems A and E have few similarities, but System A stands out for its
ability to obtain immense features compared to the others, as well as its integration into
industrial production lines.

The differentiating factor and novelty of the system A from the others is the fact that
it has an innovative method that allows obtaining and classifying hairiness in real time
and efficiently. It also has the capability of interconnection between the created image
processing algorithm and the artificial intelligence algorithm.

2.4. Literature Review Analysis

As a summary of the literature review performed, we can state that applying the use
of image processing and artificial intelligence allows to improve the evaluation for the
different properties of the textile yarn. Considering the research previously carried out,
there is no solution capable of contemplating all the questions proposed in the scope of this
project, namely, an automatic system for collecting and analyzing yarn images that allows
classifying the types of hairiness of them as loop fibers and protruding fibers. That is, it
appears that there are tools or systems that can help directly or indirectly in the identifica-
tion of wire characteristics but are not focused on this goal. In this case, the objective is to
develop a low-cost system, capable of obtaining, identifying, and characterizing hairiness
using artificial intelligence and other more important characteristics of the yarn, such as
mass, hairiness, defects, and production characteristics, to assess the quality of the same
using image processing.

3. Theoretical Concepts

In this section, the various parameters associated with the yarn characterization will
be exposed to offer a theoretical context as a basis for understanding the system in question
that was developed. Moreover, the artificial intelligence concepts required to understand
their use on the project are also described.

3.1. Yarn Characterization

The yarn characteristics of linear mass, diameter, specific volume, hairiness, twist ori-
entation and step, defects, and some statistical parameters are presented in this section [13].

3.1.1. Linear Mass and Diameter

The relationship between the diameter of the textile yarn and its linear mass is
one of the most relevant foundations in yarn analysis, as it simplifies its characteri-
zation. If the yarn adopts a cylindrical shape, it is geometrically considered that the
yarn diameter is proportional to the square root of its linear mass [14]. Figure 10 illus-
trates a yarn configuration, and it is possible to verify the correlation between the two
mentioned parameters.
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The linear mass is expressed in tex (g/km), and can be determined by
Equation (1) [14,15]:

tex
( g

km

)
= φ× ρ

( g
cm3

)
× π

(
d (cm)

2

)2
×
(

105cm
km

)
(1)

↔ d(cm) =
√

4× tex/(π × 105 × φ× ρ)

where:

• d is the wire diameter (cm);
• tex is the linear mass of the yarn (g/km);
• φ is the porosity;
• ρ is the density of the yarn material (expressed in g/km3).

3.1.2. Specific Volume

The packaging of the fibers is translated through the specific volume of the yarn,
which depends on the volume of the fibers and the space between them. Obtaining this
parameter is possible through its relationship with the linear mass of the textile yarn, as
can be seen in Equation (2) [15]:

Vt =
π R2

N 10−5 (2)

where:

• R is the textile yarn radius (mm);
• N is the linear mass of the textile yarn (g/km);
• Vt is the specific volume (cm3/gm).

3.1.3. Yarn Hairiness

Hairiness arises when some fibers protrude from the body of the yarn, that is, some
fibers arch in loops, emerging from the core of the yarn. It is a property that affects the
appearance, feel, and use of the textile, which is crucial for the final quality of the product.
A complex analysis is required for the detection and measurement of this parameter, which
generally does not make it possible to define it by a single indicator. Generally, it is
measured through fibers that extend out of the yarn core per unit length. In addition, its
measurement allows to quantify several statistical parameters that are important in the
characterization of yarn quality and, consequently, of fabrics. Among others, it refers, for
example, to the coefficient of variation, the average deviation of the mass, the hairiness
index, and the average deviation of hairiness. The representation of these fibers along the
textile yarn are described in Figure 11. These can be further classified by protruding fibers
and loop fibers (hairiness wound on the body of the yarn) [16,17].
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3.1.4. Yarn Twist, Twist Orientation, and Twist Step

The twist of a yarn is based on the number of turns per unit length. This is the result
of the relative rotation of the ends of the yarn, and the twisting orientation can adopt two
different types, type Z and type S. Type Z is suitable when the inclination of the fibers in
relation to the axis of the yarn coincides with the central part of the letter Z. On the other
hand, type S is applied when the fibers are inclined with respect to the axis of the yarn
according to the central part of the letter S. Figure 12 allows to graphically visualize the
concepts mentioned.
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Figure 12. Illustration of the types of yarn twist orientation (Adapted from [18]).

The yarn twist is represented in the tex system in turns per centimeter or per meter
and its amount varies depending on the linear mass of the yarn, the length and fineness of
the fiber, and its purpose. The twist step represents the thickness of the fiber assembly that
is being interlaced to form the core of the yarn. This characteristic has the same importance
as its meaning. The higher the twist step, the fewer the existing twists. Figure 13 represents
the basis of this feature [18].
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3.1.5. Defects of the Yarn

These faults can be distinguished into three groups [18,19]:

1. Thick places: there is an increase in the linear mass of the thread compared to the
average value (usually less than 100% of its sensitivity). The appearance of these
defects follows the lack of force applied to the wire during its production;

2. Thin places: there is a decrease in the linear mass of the yarn compared to the average
value. These arise when particles of waste appear during the manufacturing process
that compress the yarn;

3. Neps: there is a severe oscillation of the linear mass of the textile yarn (equal to or
greater than 100% of its sensitivity) over a short distance.

Figure 14 illustrates examples of the different yarn imperfections.
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3.2. Statistical Parameters of Yarn

Some relevant statistical parameters are presented in this section, in particular the
mean deviation of mass (U%), the coefficient of variation (CV%), the hairiness coefficient
(H), the absolute deviation of the hairiness coefficient (UH%), and the standard deviation
of the hairiness coefficient (sH%). All the mathematical calculations presented will be later
applied for data extraction [20].

3.2.1. Mean Deviation of Mass

Equation (3) shows the mean deviation of mass representing the proportionality of
the variation of the mass of the samples in relation to the average, independent of the
time of the analysis, if the variation of the mass is distributed uniformly it approaches a
normal distribution.

U% =
100
xT

T∫
0

|xi − x|dt (3)

where:
xi —instantaneous mass; x—average mass during the test time; T—acquisition time.

3.2.2. Coefficient of Variation

The relationship between the mean value and the standard deviation is called the
coefficient of variation (CV%), shown in Equation (4) [21].

CV =
100

x

√
1
T

∫ T

0
(xi − x)2dt (4)

3.2.3. Hairiness Coefficient

Mathematically, Equation (5) presents the relationship of the loose ends along the
length of one meter of yarn (hairiness coefficient) [21].

H =
lH

lyarn
(5)

where:
lH —total length of the hairiness (m); lyarn —yarn length (m)
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3.2.4. Hairiness Mean Deviation

The deviation of hairiness from the mean value is called the absolute mean deviation
of the hairiness coefficient and it is represented in Equation (6).

UH(%) =
100
HN

N

∑
I=1
|Hi − H| (6)

where:
Hi—current sample of hairiness value; H—average hairiness during analysis;

N—number of samples.

3.2.5. Hairiness Standard Deviation

Equation (7) defines the standard deviation of the hairiness coefficient [22].

sH(%) =

√
1
N ∑N

I=1

(
Hi − H

)2 (7)

3.3. Spectral Analysis

The spectral analysis consists of the study of the frequency spectrum contained in
a set of discrete data and collected with a uniform periodicity. With it, we try to find
periodical irregularities in the yarn. These irregularities manifest themselves as energy
spikes in the analyzed frequency. To detect these peaks, a spectrogram is constructed
that demonstrates the variation of wave energy along various lengths of yarn periodicity.
To perform a spectral analysis, a Fourier transform is used, which reveals the frequency
component of a signal, representing it in frequency domain. As there are several Fourier
transforms, the one used in this project was the fast Fourier transform (FFT). This approach
is done with a narrowband definition to aggregate all harmonics, as the information is
highly concentrated in the spectrum. To calculate the range of energy bands per decade,
Equation (8) is used [23]:

int(I) = ∑I=ni−1
I 10di+

I
ni (8)

where:
ni—number of intervals;
di—decade index (−3, −2, . . . , 4);
I—interval index (0, . . . , I).
This equation considers a logarithm with base 10 and with it the coordinates of the X

axis (int(I)) are obtained. These coordinates establish an equal division for the number of
desired intervals over a decade. All wavelengths detected in each energy band are summed
and multiplied by the number of intervals, obtaining the final value of the energy band.
This operation is described in Equation (9).

e(i) = ni

w=k

∑
w=1

λ(w) (9)

where:
k—number of wavelengths detected in the energy band;
w—index of the detected wavelength;
λ—wavelength in the w index.

3.4. Artificial Intelligence Concepts

Artificial intelligence is the ability of a set of devices to search for and develop comput-
ing models that can intelligently absorb data and reproduce human skills, such as speaking
or listening to solutions to solve complex cases. In short, it is the ability of machines to use
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algorithms, learn from the data provided, and use what has been learned to make decisions
as a human being would.

Machine learning is a subset of artificial intelligence (Figure 15) where algorithms are
created to teach a given machine to perform tasks. A machine learning algorithm uses a set
of input data and based on certain patterns found generates the outputs. Each input in this
dataset has its own features (attributes associated with the dataset that allow the machine
to establish a link between input and output) and having a set of them is the fundamental
starting point for any machine learning algorithm.
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Machine learning is divided into three categories: supervised learning, unsupervised
learning, and reinforcement learning (Figure 16) [23,24].

• Supervised learning: When the algorithm has a labeled dataset (data with their respec-
tive correct outputs) and learns by comparing the model’s output with the expected
output, and its parameters are readjusted, if necessary, until reaching an acceptable
threshold and predetermined. Figure 17 shows the processes in detail [25].
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Supervised learning is divided into two categories: classification or regression. The
classification problem is that when an algorithm predicts a discrete value, it identifies the
input data as a set of a particular class (such as if a photo has an annotation that has a
pre-identification of a specific animal). The algorithm is then evaluated by how accurately
it can correctly classify new images according to the annotation made. Regression issues
are related to continuous data.

• Unsupervised learning: Unlike the previous case, in this category, the data do not
receive previous annotations, the algorithm receives a set of data (without annotations)
and seeks to find similarities between groups of data.

In unsupervised learning, there is a division: there is the grouping of data, and
the extraction of information. In the clustering of data, known as clustering algorithms
(Figure 18), the data are grouped according to the similarities between them. In extracting
information (Figure 20), the algorithm associates the information from other information
obtained previously, such as, for example, a recommendation of a movie on a specific
website, based on the history of previously watched movies [26,27].

• Reinforcement learning is the training of machine learning models to make a sequence
of decisions from a bonus/punishment perspective. Briefly, the technique seeks to
fulfill a certain task, initially with a trial-and-error approach, then the results of each
attempt, regardless of its success, are used for training through a reward/punishment
system (Figure 19).
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Dataset is a set of data that serve as the basis for the development of an artificial intel-
ligence algorithm or other types of data science projects. Usually, the creation of a dataset
is a fundamental and time-consuming step with a direct influence on the performance of
the system and can be divided into training, validation, and test datasets (Figure 21):

• Training dataset: Samples used for model formation and convergence;
• Validation dataset: Samples used to impartially evaluate a model after training. At

this stage, and as a form of adjustment, it is already possible to determine whether or
not to change the algorithm’s hyperparameters in the training phase;

• Test dataset: Samples used for algorithm testing. It can be used to make a final
evaluation of the performance of a model. It is important that the test dataset samples
are not used in training or validation in order not to change the result.
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3.5. Neural Networks for Object Detection

Computer vision has gained enormous strength. So far, algorithms have been seen
that are aimed at classifying images, knowing if, for example, a dog or cat is present
in an image, if it is a car or a bicycle, etc. Now, the next step will be object detection.
The difference between object detection algorithms and classification algorithms is that
in detection algorithms, we try to draw a bounding box (object detector) or a bounding
curve (instant segmentation) around the object of interest to locate it in the image, for
example. Furthermore, in the same image, there can be several different objects to be
detected. A possible solution would be to take different regions of interest in the image and
use a convolutional neural network to classify the presence of the object within that region;
however this approach is that the objects of interest can have different spatial locations
within the image and different proportions and therefore would have to select a large
number of regions so that an image with few objects does not have a high computational
cost, but in an image of a highway detecting vehicles, this could computationally explode.
The solution to these issues was the creation of algorithms R-CNN, Fast R-CNN, Faster
R-CNN, R-FCN, YOLO, etc. [30].

YOLO

YOLO (You Only Look Once) was developed by Joseph Redmon and Ali Farhadi in
2015 during their PhD [31]. After its launch presentation in 2015, there were evolutions on



Electronics 2023, 12, 236 18 of 37

the initial version, and currently, it is in its seventh version, YOLOv7. YOLO is an object
detection algorithm different from the region-based algorithms seen in the previous topics.
This is a convolutional network that predicts the bounding boxes and class probabilities for
those boxes. YOLO divides the image into N grids, each with an equal-sized SxS dimension.
Each of these N grids is responsible for detecting and locating the object it contains. These
grids, in turn, predict the coordinates of bounding box B relative to cell coordinates, as
well as the item name and the probability of the object being present in the cell. Due to
many cells predicting the same item with varying bounding box predictions, this technique
considerably reduces computation because both detection and recognition are handled by
the cells in the image (Figure 22) [31,32].
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Figure 22. YOLO models the detection as a regression problem. It splits the image into an S × S
grid and for each cell of the grid predicts bounding boxes B, confidence for those boxes (thicker
lines, higher confidence) and class C probabilities. These predictions are encoded as a tensor
S × S × (B × 5 + C) (Adapted from [31,32]).

YOLO architectures are divided into three components (Figure 23):

• Backbone: Corresponds to a convolutional neural network that forms, and groups fea-
ture maps at different points. The Backbone is normally pre-trained on a classification
dataset, typically ImageNet;

• Neck: Consisting of a series of layers in which the remaining feature maps created in
the previous step are mixed and matched and, finally, make the necessary predictions;

• Head: This is the part of the network that receives the maps from the previous layer
and performs the steps of prediction of the bounding boxes and respective classes. It
is guided by the three YOLO loss functions for class, box, and objectivity.

However, this ends up producing many duplicate predictions. To solve this problem,
YOLO employs the Non-Maximum Suppression (NMS) method [33] which consists of
suppressing all bounding boxes with lower probability scores. YOLO does this by looking
at the probability scores linked to each option and selecting the one with the highest score.
The bounding boxes with the highest Intersection over Union (IoU) (Figure 24) with the
current high probability bounding box are then suppressed. The process ends later when
there are no more boxes to be deleted (Figure 25).



Electronics 2023, 12, 236 19 of 37Electronics 2023, 11, x FOR PEER REVIEW 19 of 37 
 

 

 

Figure 23. YOLO architecture and how it works (Adapted from [33,34]). 

However, this ends up producing many duplicate predictions. To solve this problem, 

YOLO employs the Non-Maximum Suppression (NMS) method [33] which consists of 

suppressing all bounding boxes with lower probability scores. YOLO does this by looking 

at the probability scores linked to each option and selecting the one with the highest score. 

The bounding boxes with the highest Intersection over Union (IoU) (Figure 24) with the 

current high probability bounding box are then suppressed. The process ends later when 

there are no more boxes to be deleted (Figure 25). 

 

Figure 24. Intersection over Union—B1: Predication Box and B2: Detection Box (Adapted from 

[33,34]). 

   

Figure 25. Non-Maximum Suppression Process example (Adapted from [33,34]). 

YOLO is much faster (45 frames per second) than other object detection algorithms. 

One of the limitations of the YOLO algorithm is the difficulty of detecting very small ob-

jects within the image due to the spatial restrictions of the algorithm itself. 

  

Figure 23. YOLO architecture and how it works (Adapted from [33,34]).

Electronics 2023, 11, x FOR PEER REVIEW 19 of 37 
 

 

 

Figure 23. YOLO architecture and how it works (Adapted from [33,34]). 

However, this ends up producing many duplicate predictions. To solve this problem, 

YOLO employs the Non-Maximum Suppression (NMS) method [33] which consists of 

suppressing all bounding boxes with lower probability scores. YOLO does this by looking 

at the probability scores linked to each option and selecting the one with the highest score. 

The bounding boxes with the highest Intersection over Union (IoU) (Figure 24) with the 

current high probability bounding box are then suppressed. The process ends later when 

there are no more boxes to be deleted (Figure 25). 

 

Figure 24. Intersection over Union—B1: Predication Box and B2: Detection Box (Adapted from 

[33,34]). 

   

Figure 25. Non-Maximum Suppression Process example (Adapted from [33,34]). 

YOLO is much faster (45 frames per second) than other object detection algorithms. 

One of the limitations of the YOLO algorithm is the difficulty of detecting very small ob-

jects within the image due to the spatial restrictions of the algorithm itself. 

  

Figure 24. Intersection over Union—B1: Predication Box and B2: Detection Box (Adapted
from [33,34]).

Electronics 2023, 11, x FOR PEER REVIEW 19 of 37 
 

 

 

Figure 23. YOLO architecture and how it works (Adapted from [33,34]). 

However, this ends up producing many duplicate predictions. To solve this problem, 

YOLO employs the Non-Maximum Suppression (NMS) method [33] which consists of 

suppressing all bounding boxes with lower probability scores. YOLO does this by looking 

at the probability scores linked to each option and selecting the one with the highest score. 

The bounding boxes with the highest Intersection over Union (IoU) (Figure 24) with the 

current high probability bounding box are then suppressed. The process ends later when 

there are no more boxes to be deleted (Figure 25). 

 

Figure 24. Intersection over Union—B1: Predication Box and B2: Detection Box (Adapted from 

[33,34]). 

   

Figure 25. Non-Maximum Suppression Process example (Adapted from [33,34]). 

YOLO is much faster (45 frames per second) than other object detection algorithms. 

One of the limitations of the YOLO algorithm is the difficulty of detecting very small ob-

jects within the image due to the spatial restrictions of the algorithm itself. 

  

Figure 25. Non-Maximum Suppression Process example (Adapted from [33,34]).

YOLO is much faster (45 frames per second) than other object detection algorithms.
One of the limitations of the YOLO algorithm is the difficulty of detecting very small objects
within the image due to the spatial restrictions of the algorithm itself.

4. Developed Prototype

The mechatronic prototype designed for this project contains a developed image
acquisition system and it is intended to be inserted into a designed textile yarn winding
and unwinding machine (Figure 26) [35].
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Figure 26. Textile yarn winding and unwinding machine.

4.1. Textile Yarn Winding and Unwinding Process

The mechanical system (Figure 27) that performs the function of unwinding and
winding the spool of textile yarn is composed of several components, which are listed in
Table 2.
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Figure 27. Mechatronic system developed (description presented in Table 2).

Table 2. Nomenclature of mechanical system components [35].

Alphanumeric Reference Numerical Reference

(A) Unwinding subsystem (1) Textile yarn
(B) Conduction subsystem (2) Coil to unwind

(C) Winding subsystem (3) Ceramic guide
- (4) Positive feeder 1
- (5) Chamber
- (6) Camera lens
- (7) Ring of light
- (8) Ceramic guides
- (9) Positive feeder 2
- (10) Servomotor
- (11) Grooved cylinder
- (12) Winding spool
- (13) Electrical circuit box

The mechanical system of this prototype consists of a subsystem (A) that initially pulls
the thread, from top to bottom, from the assembled bobbin (2) and guides it inside the
machine with the aid of ceramic guides (3). After entering the box, the wire is wound
around a positive feeder (4), which together with another one (9) pulls the wire and creates
tension in it to minimize oscillations during its movement, providing a more favorable
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image capture environment. In the space between the two positive feeders, the camera
(5) is mounted together with two ceramic guides that ensure that the wire passes in front
of its lens to capture the image. This entire process is carried out inside a closed box to
prevent the entry of natural light, thus guaranteeing total control over the brightness of
the image capture environment. Finally, after the wire passes through the second positive
feeder (9), the wire enters the winding phase (C), being led out of the box and into the
grooved cylinder (11), which is aligned with the winding spool. winding (12) and winds
the yarn around it, controlling the winding direction [35].

4.2. Subsystems and Kinematic Chains

This prototype is composed of three subsystems: unwinding, conducting, and winding.
The most prominent components are those that make up the kinematics chains of each and
they are the servomotor (10), the two positive feeders (4) (9), the grooved cylinder (11), and
the toothed belt that connects and transmits power, among all others. The two kinematic
chains are (Figure 28):

• (A)—Servomotor (10)→ Positive feeder 2 (9)→ Positive feeder 1 (4);
• (B)—Servomotor (10)→ Grooved cylinder (11).
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Figure 28. Kinematic chains ((A) and (B) are Servomotors) [32].

The connection between the two positive feeders not only allows the control of both
using only one servomotor, but also allows the maintenance of wire tension, maintaining
the speed ratio of 1 between both positive feeders.

4.3. Software and Hardware

The camera that is used to obtain images and videos of the textile yarn is from the
OMRON brand. Therefore, it is necessary to use a SENTECH control software, “StViewer”
(Figure 29). This program controls the way images are captured so that they can then
be analyzed.
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Figure 29. StViewer software executable.

Before proceeding with the capture, it is possible to change a wide variety of param-
eters, from exposure time, capture control, to captured images per second. All available
parameters must be defined and saved through the software (Figure 30) so that future
captures are consistent.
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Figure 30. Available parameter categories.

For the creation of the main program, a programming environment is necessary, and
one of the most complete is Microsoft Visual Studio. In it, it is possible to use several
programming languages together with several computational libraries, which allow the
addition of functionalities to the programming languages. However, what was necessary
to start the process of creating the yarn analysis program was the possibility of using
image processing in the development of the program, something that is not native to any
programming language. For this, it was necessary to resort to a computational library. One
of the most complete in this area is OpenCV. To obtain images and videos of the yarn for
analysis, the camera (Figure 31) from OMRON, in the USB3 Vision product range, is used.
Table 3 presents the list of specifications of the model used.
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Figure 31. Vision system.

Table 3. Camera technical specifications.

Model STC-MBS163U3V

Interface USB3 Vision
Sensor type CMOS
Resolution 1.6 MP (Megapixels)

Resolution (columns x rows) 1440 × 1080 pixels
Pixel Size (L x F) 3.45 × 3.45 µm

Frame rate 238 FPS (frames per second)
Color spectrum Gray scale

Model USB3 Vision
Interface CMOS

Sensor type 1.6 MP (Megapixels)
Resolution 1440 × 1080 pixels

In addition to this camera, a set of magnifying lenses was also used, visible in Figure 32,
with the ability to magnify the original image by a factor of 22×.
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Figure 32. Lens set already with a textile yarn holder.

4.4. Interface Developed

The program user interface consists of a window, which can be divided into two
sections as shown in Figure 33.
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Figure 33. User interface.

On the left side are all the program’s input parameters, in this case, the initial condi-
tions necessary for any thread test to be carried out, which we will now describe:

• Material—The first parameter to be defined is the material of the textile yarn put to
the test. It can be chosen between cotton yarn and polyester yarn. This parameter will
affect the value of internal variables in the calculation of some yarn parameters, more
specifically, the value of material density and porosity. If there is uncertainty about the
type of material that makes up the yarn, as can be seen in the image, there is a small
“?” help, which, when pressed, changes the “Debug Text” found in the lower right
corner, for information about the type of material that makes up each of the wires
intended for testing;

• File type—The second parameter allows the user to select which type of file he wants
to test. Enter a video file or an image file. This input parameter will affect the type of
function that will be called at the time of the test, since the file analysis methodology
is necessarily different, depending on whether that file is an image or a video, (which
is actually composed hundreds of images);

• File selection—The third parameter to be selected is, as the name implies, the selection
of one of the files present to perform the test. As you can see in the image, beside both
the checkboxes for videos and images, there are buttons that help the user. In the case
of image selection, the “View” button allows the user to visualize the selected image,
before proceeding with the test. In the case of video, the “Check Size” button changes
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the “Debug Text” so that it makes available to the user the number of “frames”, or
images, that make up the selected video;

• Tolerance (%)—The next input parameter is directly linked to one of the dimensional
output parameters. The tolerance in this case refers to the dimensional tolerance, that
is, it will define the point from which a section of wire is determined as a thick or thin
section. For example, a selection of tolerance of 10% will make samples that present a
difference above or below 10% of the average value be considered thick or thin zones,
respectively. For practical reasons, the selection of tolerance in the coarse and fine zone
is separated, in order to give the user a greater level of control over the test parameters;

• Number of samples—The last parameter will define the total number of samples
that the program will collect from the image/video to be analyzed. This parameter
has some conditions to be considered by the user before setting it. Initially, in the
case of videos, as it is a set of images, the number of samples cannot exceed the
number of frames or images that the video contains. For this reason, there is the
previously mentioned “Check Size” button, which gives information to the user about
that number for each video. Another condition to consider is that this parameter is
directly related to the resolution of the analysis. That is, if it required a resolution
like the USTER Tester, which takes a sample every 8 mm of yarn, we need to choose
a number of samples that considers both the length of yarn to be analyzed and the
yarn speed. If a number is not specified in this field, in the case of video analysis, the
number of video frames will be assumed as the value of the number of samples. On
the right side of the interface, we find all the output parameters, more specifically, all
the data that we are looking for with the wire test. These results can be divided into
three categories.

The first is formed by all the base parameters of the textile yarn:

• Yarn diameter;
• Linear mass;
• Volume;
• Twist step;
• Number of cables;
• Twist orientation.

The second category encompasses more specific hairiness data:

• Hairiness index;
• Number of loose fibers (this parameter is only calculated in the analysis of images,

since, in the case of video, thanks to the movement of the wire, the calculation of this
parameter becomes inconsistent).

The third category contains all the statistical parameters:

• Thin places;
• Thick places;
• Neps;
• Mean mass deviation (U%);
• Coefficient of mass variation (CV%);
• Hairiness standard deviation (sH%) (only calculated for videos, as the hairiness data

numbers of a single image are not enough to have an exact result).

After exposing all the parameters, both output and input of the program, we will
present the methodology that allows reaching the desired results, using image processing
tools combined with programming techniques. As mentioned, image and video analysis
methodologies are naturally different, as the former only deals with the analysis of an
image, unlike a large number of images, in the case of the latter. However, the methodology
for analyzing a single image, whether in the case of video or image, is very similar. The
main difference is related to the fact that, in the case of video analysis, the processes must
be repeated for each image that composes the video and the results are aggregated at the
end. Consequently, we only fully describe the image analysis methodology, periodically
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mentioning the video analysis methodology when it is sufficiently distinct. Due to the
diversity of results that one intends to obtain with just one image, there is no single line of
processes that leads to all the data. It takes a multifaceted approach to image processing
processes to get three different types of images from which to pull all the data:

• Image with insulated yarn core;
• Image with isolated hairs;
• Image with isolated winding particles.

The following flowchart (Figure 34) demonstrates the multifaceted approach used to
achieve each of the 3 image types.
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5. Experimental Results and Discussion

This section presents all the results obtained through the application of the program
created for video and image analysis of the yarns considered. First, the yarns considered
for the tests will be presented, then the results obtained by the USTER Tester 3 will be used
as an evaluation reference. Then, a comparison will be made between both measurements.
Finally, a brief analysis of the results obtained from the base parameters will be presented
to look for patterns in the detected defects and to assess the repeatability and reliability of
the methodology used.

Justifications or explanations of the results obtained are also presented.

5.1. Yarns Tested

When the results are completed, the algorithm returns all its information to the initial
window, the “Debug Text” is cleared to signal to the user that the test is over and the fields
with the calculated parameters are filled.

For the tests of this system, three different spools of yarn (Figure 35) were used:

• Purple cotton yarn;
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• Yellow cotton yarn;
• White polyester yarn.
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Figure 35. Three types of textile yarn tested.

The use of these three different types of yarn aimed to test the robustness and reliability
of the algorithms developed. Among the three yarn samples, there are differences in several
of the parameters to be evaluated: diameter, linear mass, hairiness, number of cables, and
material. To create a reference for the data to be evaluated, tests were carried out on the
three types of textile yarns with a length of 1 km in USTER Tester 3. An example of the
results obtained can be seen in Table 3.

Some of the parameters are not directly measured by the equipment; however, they
can be inferred from others. Table 4 shows the results obtained and used later as a reference
for the parameters of the analyzed threads.

Table 4. USTER Tester 3 equipment results.

Parameters Purple Cotton Yellow
Cotton White Polyester

Diameter (mm) 0.270 0.175 0.175

Linear Mass (tex) 56.4 23.8 20.9

Volume (mm3) 0.156 0.0654 0.0654

U (%) 7.01 8.78 9.18

CV (%) 8.76 11.06 11.59

Hairiness Index 5.48 4.77 3.61

sH (%) 1.24 1.21 0.82

Thick places (+50%) 6 10 25

Thick places (+100%) 0 1 0

Thin places (−50%) 0 0 0

Neps (+140%) 32 44 164

Neps (+200%) 5 11 48

5.2. Results Obtained with Image Processing (in Offline Mode)

The results that will be presented below are the result of analyses performed on images
taken from the available yarns. These results will be compared with the reference results
obtained USTER Tester 3. Table 5 details the results obtained through image analysis of a
cotton yarn.
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Table 5. Purple cotton results.

Parameters Prototype (Yarn Image
Analysis)

USTER Tester 3 (Capacitive
and Optical Sensors)

Diameter (mm) 0.275 0.27

Linear mass (tex) 58.7 56.4

Volume (mm3) 0.1616 0.156

Twist Orientation S n/a

Twist Step (mm) 1.19 n/a

Number of cables 2 n/a

Hairiness index 5.51 5.48

Number of loose fibers 7 n/a

Thin places (−50%) 0/km 0/km

Thick places (+50%) 0/km 38/km

Neps (+200%) 0/km 5/km

U (%) 2.45 7.01

CV (%) 3.06 8.76

sH (%) 1.07 1.24

Figure 36 presents an image with the result of one of the parts of the implemented
algorithm. After obtaining a reduced noise image, the Canny algorithm is applied to
perform a contour detection process. The resulting image will be just a silhouette, as can be
seen in Figure 36.
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Figure 36. Insulated contours of the textile yarn.

As can be seen in Figure 36, both the silhouette of the yarn as well as the hairiness
are demarcated. The objective from here is to remove the white pixels of this image that
correspond to the core of the yarn, to completely isolate its hairiness.

As can be seen in Table 5, in this comparison, there are data that are not possible to
compare directly between the prototype and the USTER equipment, because there are
data only provided by one of the machines. In the case of the developed prototype, all
characteristics were measured. In the case of USTER equipment, there are several data that
are not measured. For this reason, it is not possible to verify the accuracy of these data
through direct comparison with baseline results. Regarding the directly comparable results,
it is possible to observe that, in the base parameters of the yarn, there is a minimal difference
in the results (below 10% relative error). In the case of the hairiness index and even more in
the statistical data, it is possible to observe a considerable discrepancy between the results.
This difference is explained by the difference in the length of the yarn analyzed in both
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cases. As mentioned, the results obtained by the USTER equipment are the result of an
analysis of 1 km of yarn, while in the case of the prototype, only one image with 2.72 mm of
yarn (image size) was analyzed. Furthermore, the reference equipment takes measurements
every 8 mm, as opposed to 0.05 mm in this case for the prototype. For these reasons, it was
expected that the statistical results measured by the prototype would be higher.

5.3. Results Obtained with Image Processing Using Video Analisys (Online Mode)

In the case of video analysis, we already expect to have a majority of concordant
results between the prototype and the USTER Tester 3 equipment. In this case, the results
obtained by the prototype are the result of the analysis of 100 m of yarn, with a total of
100,000 samples with 1 mm samples distance. Table 6 and Figure 37 presents the results
obtained by the prototype and the reference values for comparison. The presented results of
the dimensional defects of the prototype were inferred from the results of 100 m obtained.

Table 6. Purple cotton results.

Parameters Prototype (Yarn Video Analysis) USTER Tester (Capacitive
and Optical Sensors)

Diameter (mm) 0.28 0.27

Linear mass (tex) 58.9 56.4

Volume (mm3) 0.125 0.156

Twist Orientation S n/a

Twist Step (mm) 0.033 n/a

Number of cables 2 n/a

Hairiness index 5.33 5.48

Number of loose fibers n/a n/a

Thin places (−50%) 0/km 0/km

Thick places (+50%) 560/km 38/km

Neps (+200%) 60/km 5/km

U (%) 3.94 7.01

CV (%) 4.94 8.76

sH (%) 0.45 1.24
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In Table 6 and regarding the directly comparable results, it can be observed that the
basic yarn parameters were calculated with a relative error of less than 10%, most of them
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less than 5%. At the level of statistical parameters, like the U, CV, and sH, a variation
greater than 10% was observed. This is justified by the presence of a greater number of
samples taken by the prototype relative to the results taken from images (Table 5). It should
be noted that it was possible to observe a reduction in the difference in results; compared to
those obtained through image analysis, there is still a small discrepancy. This inequality can
be explained by the difference in the yarn length analyzed, but more specifically, it comes
from the fact that there is a smaller number of samples to be considered in the case of the
prototype. The commercial equipment is taking a sample every 8 mm and the prototype
every 1 mm and there is a notable difference between the analyzed lengths.

5.4. Results Obtained for Spectrum Analysis

Using this approach (Equation (9)), the graph of Figure 38 was obtained, resulting
from a test of 100 m with 100,000 samples of a cotton yarn with an average linear mass of
56.4 tex.

Electronics 2023, 11, x FOR PEER REVIEW 29 of 37 
 

 

specifically, it comes from the fact that there is a smaller number of samples to be consid-

ered in the case of the prototype. The commercial equipment is taking a sample every 8 

mm and the prototype every 1 mm and there is a notable difference between the analyzed 

lengths. 

5.4. Results Obtained for Spectrum Analysis 

Using this approach (Equation 9), the graph of Figure 38 was obtained, resulting from 

a test of 100 m with 100,000 samples of a cotton yarn with an average linear mass of 

56.4tex. 

 

Figure 38. Mass spectrogram. 

These results can be compared to the results obtained by the USTER Tester 3 equip-

ment, represented in Figure 39. 

 

Figure 39. Mass spectrogram graphic obtained by the USTER Tester 3. 

The first observation to be made in Figures 38 and 39 is that the magnitude of wave-

lengths that both results present is not the same. However, it is possible to make a com-

parison in the wavelengths that both have. The most notable peak is in the range of 1 m, 

which can be observed in both results, thus indicating the presence of a periodic imper-

fection with a uniform periodicity of 1 m. In addition, there is also a small peak in the 

range between 20 and 30 cm which is also visible in both spectrograms. The results ob-

tained show that the developed image processing algorithms can capture the yarn param-

eters with a high level of precision and are capable to identify the various types of defects 

in the textile yarn. Figure 40 presents the results of spectrum analysis obtained in the user 

interface so that the prototype user can visualize these same results in real time. 

 

 

Figure 40. Presentation of spectral analysis results of purple cotton yarn in the user interface. 

  

Figure 38. Mass spectrogram.

These results can be compared to the results obtained by the USTER Tester 3 equipment,
represented in Figure 39.
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Figure 39. Mass spectrogram graphic obtained by the USTER Tester 3.

The first observation to be made in Figures 38 and 39 is that the magnitude of wave-
lengths that both results present is not the same. However, it is possible to make a compari-
son in the wavelengths that both have. The most notable peak is in the range of 1 m, which
can be observed in both results, thus indicating the presence of a periodic imperfection with
a uniform periodicity of 1 m. In addition, there is also a small peak in the range between
20 and 30 cm which is also visible in both spectrograms. The results obtained show that
the developed image processing algorithms can capture the yarn parameters with a high
level of precision and are capable to identify the various types of defects in the textile yarn.
Figure 40 presents the results of spectrum analysis obtained in the user interface so that the
prototype user can visualize these same results in real time.
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5.5. Preliminary Results Using Artificial Intelligence for Hairiness Identification and Classification

This subsection presents the results obtained in the tasks of training and classifying
hairiness in yarn. In this first phase, 50 images were collected, obtained with the vision
system implemented and with a good lighting system to obtain the maximum possible
quality in the images.

5.5.1. Dataset and Annotations

The dataset was hosted on the Roboflow website [36] where 50 images (purple cotton
textile yarn) were allocated and divided into two classes of annotations: protruding fibers
and loop fibers (in each of the images several annotations of protruding and loop fibers
were identified, allowing a dataset of hundreds of class annotation, as shown in Figure 41).
With this dataset obtained and annotations made, several tests and training tasks were
performed to obtain the most robust model that can be used to identify hairiness and
classify them in real time as loop fibers and protruding fibers. In this project, LabelME was
used, the annotations were made in polygonal mode. In Figure 41, there is an example of
annotations made in the work dataset made by LabelME.
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Figure 41. Annotations of an image of the yarn made by LabelME (loop fibers—green color and
protruding fibers—red color).

5.5.2. Data Augmentation

Data augmentation is a set of techniques to artificially increase the amount of data by
generating new images from existing images. Its purpose is the quantitative and qualitative
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increase of the dataset to perform the training, because the bigger and better the dataset,
the better the results obtained.

Some techniques are listed below and exemplified in Figure 42.
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• Geometric Transformations:

# Flip: Inversion of the image horizontally or vertically.
# Rotation: Image rotation from 0◦ to 360◦.
# Translation: change (displace) the image either to the right, left, up, or down.
# Crop: Crop the image.
# Zoom: Enlarge the image.
# Shear: shear effect, tilt the image.

• Photometric Transformations:

# Adding noise: adding digital noise to images, white dots, for example, giving
the notion of roughness.

• Color space transformation:

# Kernel (or spatial) filtering: Turn off a window over the original image in order
to obtain the desired result (convolution), such as removing the R channel from
an image, increasing brightness, removing R and G channels, and keeping
only the B. Another possibility could be the effect of blurring or sharpening
the image.

# Combination of images: Create an image from parts of others.
# Random Erasing: Erase random regions of the image.

In this dataset, more specifically for training, data augmentation was performed
through the Roboflow website [33]. On this site, it is possible to upload the images,
annotations of the images, and the data augmentation of the images that were considered:
saturation: between −25% and +25%; blur: up to 5px; noise: up to 5% of pixels; bounding
box: flip: horizontal and vertical (Figure 43).
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5.5.3. Techniques Used and Obtained Results

Based on the confusion matrix depicted in Figure 44, this scenario was only able to
achieve good results for the classification of protruding fibers and was not able to correctly
classify the loop fibers.
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The output results for the YOLOv5m algorithm, based on the training dataset, are
depicted in Figure 45. A total of 150 epochs were used to achieve a high precision, recall, and
mean average precision (mAP)—additional iterations would not have led to a substantial
gain. Among all the identified KPIs, these were the most relevant for our analysis, and
their values were obtained using Equations (10)—(12), respectively [37]:

Precision =
TP

(TP + FP)
(10)

Recall =
TP

(TP + FN)
(11)

IoU =
Intersection Area

Union Area
(12)

where:

• Precision measures how accurate predictions are;
• Recall measures how well all positives are found;
• mAP@.5 or mAP@50 or IoU = 0.50 mean average precision with an Intersection over

Union threshold of 0.5 or 50%; and
• mAP.5:95 means average mAP over different IoU thresholds, from 0.5 to 0.95.

Electronics 2023, 11, x FOR PEER REVIEW 33 of 37 
 

 

The output results for the YOLOv5m algorithm, based on the training dataset, are 

depicted in Figure 45. A total of 150 epochs were used to achieve a high precision, recall, 

and mean average precision (mAP)—additional iterations would not have led to a sub-

stantial gain. Among all the identified KPIs, these were the most relevant for our analysis, 

and their values were obtained using Equations (10)—(12), respectively [37]: 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑇𝑃

(𝑇𝑃 + 𝐹𝑃)
 (10) 

𝑅𝑒𝑐𝑎𝑙𝑙 =
𝑇𝑃

(𝑇𝑃 + 𝐹𝑁)
 (11) 

𝐼𝑜𝑈 =
𝐼𝑛𝑡𝑒𝑟𝑠𝑒𝑐𝑡𝑖𝑜𝑛 𝐴𝑟𝑒𝑎

𝑈𝑛𝑖𝑜𝑛 𝐴𝑟𝑒𝑎
 (12) 

where: 

• Precision measures how accurate predictions are; 

• Recall measures how well all positives are found; 

• mAP@.5 or mAP@50 or IoU = 0.50 mean average precision with an Intersection over 

Union threshold of 0.5 or 50%; and 

• mAP.5:95 means average mAP over different IoU thresholds, from 0.5 to 0.95. 

Table 7 presents the results of one configuration, based only on one setup. The calcu-

lation was performed on a laptop computer with an Intel Core™ i7-10750H CPU @ 2.60 

GHz and 32 GB of RAM. 

Table 7. Training configuration. 

 Configuration 1  

Image Size (pixels) 1280 × 1024 

Number of training images  90 

Number of test images  7 

Number of validation images  4 

Method  YOLOv5m 

Epochs  150 

Batch size 8 

Training time (minutes) 40 

 

Figure 45. Setup output results using the YOLOv5s algorithm. 

Figure 46 presents the classification results produced in the first image testing phase 

of the training process. These results were used to validate and adjust our classification 

model. As it can be seen, there is some hairiness that has not yet been classified, due to 

Figure 45. Setup output results using the YOLOv5s algorithm.

Table 7 presents the results of one configuration, based only on one setup. The
calculation was performed on a laptop computer with an Intel Core™ i7-10750H CPU @
2.60 GHz and 32 GB of RAM.

Table 7. Training configuration.

Configuration 1

Image Size (pixels) 1280 × 1024

Number of training images 90

Number of test images 7

Number of validation images 4

Method YOLOv5m

Epochs 150

Batch size 8

Training time (minutes) 40
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Figure 46 presents the classification results produced in the first image testing phase
of the training process. These results were used to validate and adjust our classification
model. As it can be seen, there is some hairiness that has not yet been classified, due to the
small dataset that was used at this stage (even considering a dataset of hundreds of class
annotations, due to the possible hairiness variation combinations, it must be increased).
However, correlating the results with the confusion matrix it can be concluded that the
obtained results require more images in the dataset for training (only some of the protruding
and loop fibers were identified).
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The obtained results with the YOLOv5s are very promising results. We can also
conclude that no significant gains were made when using higher versions of YOLOv5,
which provide similar accuracy but are more computationally demanding.

6. Conclusions and Future Work

The work presented here is part of an innovative project whose main objective is
the development of algorithms that allow the evaluation of yarn quality, using image
processing technology through image and video analysis, which aims to meet a growing
specific need of the textile industry. In addition, the instruments used in the development
of the prototype were exposed, from the software that allowed the capture of images, their
processing, and the execution of the developed algorithms, to the hardware responsible
for creating a proper image capture environment. The created algorithms were tested, and
the obtained results were compared with a reference equipment (USTER Tester 3). This
comparison allowed the research team to conclude that the main objective of creating image
processing algorithms, capable of evaluating the quality of yarn, was fulfilled, since it was
possible verify that the relative error level for most of the results obtained was below 10%.
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It is important to emphasize that nothing similar has been done so far. Only works
related to the implementation of artificial intelligence were created in the analysis of textile
fabric and not in yarn, due to its application complexity.

The scientific contribution of this work consists in the creation of an innovative method-
ology that allows the analysis of defects in textile yarn with a more precise way.

Regarding future developments of this project, artificial intelligence is being imple-
mented in the algorithms created and the adaptation of the interface to analyze the type
of hairiness and perform its automatic classification. At this moment, the use of artificial
intelligence in the prototype is a reality, as it has already been possible to obtain significant
results in the classification of the type of hairiness in the yarn. Using the created algorithms
in this project, it is possible to obtain a large number of images and results that can be used
as a basis for training an artificial neural network to identify imperfections in the yarn
images. This implementation could not only improve the algorithms in areas where they
are less reliable, but also increase their performance and reduce the computational costs of
each analysis. In addition, other types of yarns, with different constitutions, could possibly
be introduced.

The algorithms implemented with the vision system in the prototype play an important
role in the correct identification of objects, and this is only possible due to the contribution
of machine learning algorithms. The YOLOv5 algorithm has great potential for this type
of recognition tasks (types of hairiness in yarn) as well as for its classification with high
precision and repeatability.
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