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Abstract: Smart energy management and control systems can improve the efficient use of electricity
and maintain the balance between supply and demand. This paper proposes the modeling of a
decentralized energy management system (EMS) to reduce system operation costs under renewable
generation and load uncertainties. There are three stages of the proposed strategy. First, this paper
applies an autoregressive moving average (ARMA) model for forecasting PV and wind generations
as well as power demand. Second, an optimal generation scheduling process is designed to minimize
system operating costs. The well-known algorithm of particle swarm optimization (PSO) is applied to
provide optimal generation scheduling among PV and WT generation systems, fuel-based generation
units, and the required power from the main grid. Third, a demand response (DR) program is
introduced to shift flexible load in the microgrid system to achieve an active management system.
Simulation results demonstrate the performance of the proposed method using forecast data for
hourly PV and WT generations and a load profile. The simulation results show that the optimal
generation scheduling can minimize the operating cost under the worst-case uncertainty. The load-
shifting demand response reduced peak load by 4.3% and filled the valley load by 5% in the microgrid
system. The proposed optimal scheduling system provides the minimum total operation cost with a
load-shifting demand response framework.

Keywords: microgrid; demand response; autoregressive moving average; particle swarm optimization;
generation scheduling

1. Introduction

Over the last decades, renewable energy resources (RESs) have been encouraged to
reduce dependency on fuel-based generation and greenhouse gas (GHG) emissions [1–3].
Renewable energy resources are one of the solutions to the above issues and an option
for future clean energy. Higher renewable penetration, such as wind and solar, in the
power grid can significantly raise uncertainties in the systems and has adverse effects on
the proper operation of the power systems. As a result, efficient forecasting of the RES
generation has become necessary for the power systems with high RES penetration, and it
has the potential to improve power efficiency and system reliability. Some critical aspects
of power generation forecasting included high RES penetration rates, power supply and
demand imbalances, and optimal system operation. In recent years, time-series statistical
models have been the most commonly applied forecasting technique [4]. The mathematical
formulation of the time-series method was developed and can be applied to observe near-
future predictions based on available historical data [5]. Moreover, an accurate demand
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forecasting can help the utility with decisions in various aspects, such as purchasing and
generating electricity, load switching, and improving system infrastructure. In addition,
demand variation was a significant issue for system management in electricity markets.
This variation created the distribution network’s vulnerability and had an economic effect
on the electricity spot price, at which decisions were made based on the existing plants’
expanded investment. Thus, demand forecasting has also become an essential aspect of the
emergence of competitive electricity markets [6,7].

The distribution network is being deregulated and changed to open a new window
of a competitive electricity market by increasing system efficiencies, reducing operation
costs, and minimizing utilities’ financial losses. The restructured design has been mainly
partitioned into two sectors: the generation side and the load aggregator or end-user
side [8]. While the conventional system has generated energy to meet total power de-
mand requirements every time-step, the restructured system becomes more effective way
for supply–demand balancing that keeps power fluctuation within the threshold level.
Moreover, balancing in the conventional system cannot be achieved quickly due to several
limitations, such as unexpected production outages, power transferring system failures,
and unpredictable system load changing [9]. For this reason, the demand response (DR) has
been changed for a sustainable electricity service system by changing consumers’ behavior
which is responding to the real-time price tariffs program or the incentives offered by the
program and also responding to the jeopardy of the system’s reliability circumstances [10].
Therefore, the new power system infrastructure with a demand response (DR) strategy was
the more effective and lower investment for reliable power system operation. DR programs
did not need more capital investment for system updating for more production units and
power transferring capacities [9]. With the high penetration of distributed generation
resources into the system, the reliable design function of DR provided positive impacts
for the whole system through level-up system security and economic benefit [11]. The DR
program has participated as a role in the active distribution network. The DR also plays as
a chance to mitigate the system fluctuations due to the ability of fast action to meet system
balancing in the event of resource shortage. It offered adjustment to the demand side rather
than power procurement from the generation side. In this way, the electric consumer can
fully participate in the active distribution network [12].

The microgrid EMS monitors and controls the operational status of optimal power
allocation from the various energy resources to the controllable and critical loads. In
advanced restructured design, controllable loads can be dispatched to ensure system
reliability and stability. The EMS was designed to collect load profiles and forecast the
energy resource information, consumer preference, policy and electricity market price for
optimal power flow (OPF), energy price, load dispatching and generation scheduling [13].
Decentralized EMS is the autonomous intelligence controller considering several local
controllers. Because local controllers only need to make decisions and communicate locally,
communication congestion and computational burden are much lower than that in a
centralized EMS system [14]. The uncertainties of RES and demand can cause difficulty
managing optimal generation. All entities in distribution networks with microgrid clusters
are interconnected systems and have different operational objectives and decision variables
due to the impact of the local operating environment. Therefore, the centralized energy
management system is no longer an option for the generation scheduling of the distribution
networks with the MG cluster. The decentralized EMS has become a solution to tackle
the microgrid operation [15]. In this scheme, local controllers must determine the optimal
power output locally. Therefore, the decentralized EMS will significantly reduce the
computational power requirement in the entire microgrid. Because local controllers have
local authority, troubleshooting security issues could be difficult [14].

Generation scheduling is a common problem in feasible microgrid planning. It was
usually solved by the optimization process. The optimal planning techniques can be ap-
plied to both renewable energy allocation and energy management systems. The energy
management systems applied different optimization methods based on technical, environ-
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mental, and economic constraints and uncertainties [16]. In recent years, optimal planning
techniques have become popular in the energy management systems in smart homes, smart
buildings, and smart grids. Decision-making-based energy modeling has become a sustain-
able design for planning and controlling optimization issues [17]. Uncertainties of the RES
generation exacerbated the balancing between generation and demand [2]. Therefore, it
is required to schedule generation units in the microgrid planning stage to closely match
with the forecasted demand profile between generation and demand. The problem of
optimal appliance scheduling with the DR program and the uncertainty of rooftop PV
were analyzed in [18]. In this work, the uncertainty of solar radiation was tackled with
the Weibull probability density function (PDF). This system can reduce computation time
with high computational accuracy. The result showed that the proposed model provided
an economically feasible microgrid operation under solar uncertainty. The work in [19]
presented the optimization of hybrid DG while taking demand and supply uncertainties
into account. The model of demand variation was investigated by the probability density
function. Controllable and uncontrollable DG mitigated the uncertainty of the supply side.
The results demonstrated that the optimal combination of hybrid DG captured the demand
uncertainty in the reconfigurable microgrid. The bi-level algorithm for decentralized energy
management systems in microgrids was presented in [2]. The first step predicted generation
set-points, while the second step adjusted generation outputs based on various scenarios.
The simulation results provided the stable operation of networked and islanded modes
under the stochastic nature of DG’s output power. The work in [20] put forward the ideas
of a decentralized framework with DR from the point of view of a system operator who
wanted to balance supply and demand and changed generation curves to match changes
in demand. The results showed that the proposed algorithm minimized the suppliers’
operation cost, the consumers’ discomfort, and the transmission system’s congestion. The
work in [21] was to demonstrate the active disturbance rejection control (ADRC) paradigm
to ensure the effect of exogenous disturbances on the PV generation uncertainty. In this
work, the performance of modified ADRC was compared with linear ADRC (LADRC),
conventional ADRC, and improved ADRC (IADRC). The results showed that the proposed
model provided high performance in the tracking system to capture PV uncertainty. The
risk-seeking stochastic optimization was proposed to coordinate electricity markets with
wind generation in [22]. The results showed that the procurer profit maximization can be
provided by adjusting the parameters of the risk-seeking stochastic optimization model. A
two-stage optimization model was implemented for profit maximization scenarios, and
a probabilistic statistical perspective was used to capture wind power uncertainty. The
risk-averse two-stage stochastic model was proposed for short-term schedules for the
pool electricity market in [23]. The results showed that contracts with withdrawal penalty
(CWP) and contracts with option (CWO) were the new options that provided retailers
profit maximization in the pool electricity market. The electricity tariffs and demand un-
certainties were considered to show the effect on the retailer profits/risk and retail price.
The previous model applied a stochastic process that was embedded in the sophisticated
decision-making model [15,20,24–26].

Although the stochastic model was applied in the operation and planning of the elec-
trical power system, this model generated different scenarios to achieve optimal solutions
and required a significant amount of computation time [27]. Moreover, the stochastic
model is difficult to interface with the complex scenario-based forecasting models and the
sophisticated decision-making model. The work in [28] proposed a decentralized multi-
agent control scheme to manage the power sharing of the distribution network with RESs.
However, the nature of RE resources uncertainty and the role of demand response were
not considered in this work. The results presented that the proposed model provided a
balanced active/reactive power sharing during stable/unstable demand events. The decen-
tralized multi-agent robust optimal model with integrated demand response was presented
in [29] for the electricity–gas–heat systems. The integrated demand response was used to
handle the uncertainty of RESs. This work showed the effectiveness of the multi-agent
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decentralized robust optimal dispatching compared with the centralized robust optimal
dispatching. The simulation results showed that the demand response market can handle
the nature of RE resources uncertainty. The Benders decomposition technique is introduced
for networked microgrid energy management in [30] to address the unbalanced condition.
Probabilistic scenarios was generated to capture RE resources and demand uncertainty.
The simulation results showed that the increased use of expensive generation resources
constantly increased the operation cost. The proposed model provided a cost-effective
interaction of operators and distributors. Nowadays, the use of electricity is increasing,
and the electricity is generated from various renewable sources such as wind, hydro and
solar power. Therefore, it is very important to plan and manage the power generation for
effectively supplying power systems. This paper focuses on managing power generation
systems to reduce the peak load of the microgrid system using an optimization method.

Three options are available to handle uncertainty problems: generating more power or
buying more energy from the main grid, using energy storage systems, and participating in
a demand response program [31]. Due to economic operation and environmental concerns,
the first conventional solution has the drawback of power reserving [32]. The previous
work did not highlight common possible uncertainties in the power network, especially
the intermittent nature of wind and solar generations and demand variation. The concept
of DR cooperation in the microgrid energy management system is to reduce operating
costs and to mitigate the intermittent nature of RE resources. To recover a certain amount
of uncertainty, energy management from the generation side is an option to maintain
system security. To address the shortcomings, this article proposes a decentralized energy
management model by considering RES uncertainty and demand response. The proposed
EMS system is a controllable structure to manage the generation source from the upstream.
From this regard, this work is to investigate the cost-effective active distribution network
by introducing the local energy management system with demand response.

The major contributions of this article are summarized as follows:

• The time-series forecasting ARMA model is introduced to predict wind and PV gener-
ations as well as load demand for the proposed decentralized energy management
system, which can reduce the computational burden.

• The particle swarm optimization (PSO) technique is applied to implement the optimal
generation scheduling based on the forecast data of wind, PV, and load demand to
reduce the operation costs of the microgrid system.

• The proposed method incorporates the demand response (DR) which does not require
probability constraint parameters to tackle the deviation from the forecasting data.

The rest of the paper is organized as follows. Section 2 presents the proposed method-
ology of the paper. In this section, the forecast technique, well-known particle swarm
optimization technique, and problem formulation are introduced and discussed. Section 3
presents verification simulation results and discussions. Finally, Section 4 concludes
the paper.

2. Methodology

The proposed strategy consists of three stages. In the first stage, hourly average energy
demand and hourly average WT and PV power generations are predicted by using an
ARMA (2,1) for a particular month. This work used two-year historical data to forecast the
present-time RE generation and demand profile. The second step is scheduling available
generation resources with the system’s constraints, such as power balance constraint,
generation capacities, and spinning reserves. This step requires the information setup
necessary for the system, such as forecasting RE and power demand, electricity price,
and distributed generation characteristics. A particle swarm optimization algorithm was
used for optimal scheduling to minimize system operating costs. All available generation
resources are scheduled optimally by the PSO optimizer according to actual and forecast
data for a particular month. The final step is generating a demand response program from
optimally scheduled results. If the generation capacities are less than the power demand at
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a particular time, the required power demand is suggested to shift the valley period. Finally,
the network operators provided the demand decision information to the demand side to
respond to the load in a particular hour. The proposed framework is shown in Figure 1.
The decentralized forecasting and optimization model are implemented using MATLAB
2021. The simulation is performed with an Intel(R) Core(TM) i7-6500U, 2.50 GHz CPU
speed, and 8.00 GB RAM. A flowchart of the proposed decentralized energy management
system is given in Figure 2.

In the next subsections, the forecasting technique used to predict WT and PV genera-
tions and load demand based on historical data is presented. Then, the problem formulation
based on the particle swarm optimization technique is given and discussed.

 

Figure 1. The proposed framework of the decentralized energy management system.

2.1. Forecasting Technique

An ARMA model based on statistical and Box–Jenkins methods was adopted. The
ARMA model is commonly applied to stationary time-series data as it is a superior tool
to predict the future values of stationary time-series [33]. The Yule–Walker estimator was
used to estimate the sample autocorrelation coefficient [34] which is expressed by,

x̄t =
m

∑
i=1

φixt−i +
n

∑
j=0

θjωt−j, (1)

where φi is the i-th AR coefficient; xt−i is the time series value; ω is the white noise with
zero mean and constant variance; and θj is the j-th MA coefficient.

A series of measurement data sets for the specific site is required to forecast the
output of a RES generation using statistical methods. The selected site for obtaining the
historical data is Nakhon Ratchasima Province (14.979900 latitudes, 102.097771 longitudes),
Thailand. The historical wind speed, solar irradiation data, and load profile were taken
from the selected site location [35–37]. The enormous amount in the applied data set can
be reduced without losing information by employing statistical data treatment. Synthetic
data for a typical year that represent the actual multi-year measured data statistics can be
generated [38].

The ARMA model is a suitable prediction tool if the historical time-series is station-
ary. The stationary time-series have statistical properties such as all mean, variance and
autocorrelations that are constant or meaningful over all time horizons. Therefore, a sta-
tistical forecasting technique in which the stationary time-series is changed by statistical
transformations will be applied.
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Figure 2. Flowchart for implementation of the proposed decentralized energy management system.

The stationary times-series provided an easy implementation process that gave the
predicted results according to the historical data. Thus, the time-series sequence can
provide a clue to the search process for the forecasting model [39].

For seasonally non-stationary data, the yearly data set is divided into the seasonal
monthly segments. Daily non-stationary data are removed by subtracting the hourly mean
value from the actual data set and dividing it by the standard deviation to reduce the
data to a normal process with a mean of 0 and a variance of 1 [3,40]. The time-series
of the particular month of the year is the standardized velocities for removing diurnal
non-stationary and it can be denoted as

V∗(n, y) =
V′n,y − µ(t)

σ(t)
, (2)

with the period function as

µ(t) =
∑d·Y−1

i=0 V′24i+1
d ·Y , 1 ≤ t ≤ 24, (3)

σ(t) =

[
∑d·Y−1

i=0 (V′24i+1 − µ(t))2

d ·Y

] 1
2

, 1 ≤ t ≤ 24, (4)

where V∗(n, y) is the standardized hourly average wind speed; V′n,y is the hourly average
wind speed; µ(t) and σ(t), respectively, are the sample mean and standard deviation of all
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transformed wind speeds in 24 h; d and Y are the number of days considering for a month
and year, respectively.

Then, the statistic series is compared with the measured data series by mean absolute
error (MAE) to show the performance index as given by

MAE =
1
n

n

∑
i=1
|X̄i − Xi|, (5)

where Xi represents the forecast time-series values; X̄i represents the observed time series
values and n is the total number of samples.

2.2. Optimal Generation Scheduling

In general, demand shifting and peak shaving that response from the demand side
significantly impacted the whole system context under stringent operating conditions.
The demand-shifting function removes the demand from peak time to an off-peak time
interval to mitigate operation stress in the design and reduce energy costs for end-users.
The system operator’s perspective is to minimize system operation costs by replacing more
expensive energy production with cheaper production [41]. Metaheuristic is a powerful
technique to search feasible solutions from the discrete large search space, while classical
methods cannot find optimal points from a large search space. The metaheuristic is a robust
optimization technique with high exploring and exploiting. The classical method cannot
solve all types of the optimization problem, and it requires extensive computation time to
obtain the optimum points [16]. Bio-inspired optimization is an emerging metaheuristic
technique inspired by the nature of biological evolution. Swarm intelligence and evolution-
ary computing are two main types of bio-inspired optimization methods. Particle swarm
optimization (PSO) is a popular swarm intelligence bio-inspired optimization method [17].
The PSO is a robust technique and can search the global optimum points with fast conver-
gence speed [42]. The PSO method is an easy-to-understand optimization method with
few parameters and efficient global best solutions. So, this method has been chosen by the
several researchers.

In this section, optimal generation scheduling is implemented by employing the
particle swarm optimization technique. The working principle of the particle swarm
optimization is inspired by the behavior of swarm species that worked cooperatively and
search their requirement in the search space. The local best experience (Pbest) and global
best experience (Gbest) were used to search for the next movement to guarantee the best
solution. c1 and c2 factors accelerate the best searching positions, and the random numbers
are generated between wmin and wmax [43]. The velocity of the particle and the particle’s
position are expressed by

Vk+1
i,j = ωVk

i,j + c1r1(Pbestk
i,j − Xk

i,j) + c2r2(Gbestk
i,jX

k
i,j), (6)

Xk+1
i,j = Xk

i,j + Vk+1
i,j , (7)

where Xk
i,j is the position of particles i and j with iteration k; Vk

i,j is the velocity of particles i
and j with iteration k; ω is the inertial factor; c1arec2 are the acceleration factors; r1arer2 are
the random number [0, 1]; Pbest is the best particle and Gbest is the best global solution.

2.3. Proposed Objective Function

In this section, an energy management system is implemented with the optimal
generation scheduling. The objective function of the optimization is the operation cost
minimization with system constraints. The system constraints included power balance
constraints, spinning reserves constraints, and generation capacities constraints. The
spinning reserves protect the system from unexpected power outages and sudden load
changes in this work. The system’s objective function includes the operation cost of the
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two-generation units, PV and wind generations, and required power from the main grid.
The operation cost of the generation unit is taken from [31]. The power purchasing price
from the main grid considered in this study is a time of use (TOU) from [44]. The operating
costs are defined as follows: the purchase price of electricity from the grid is based on the
Thai TOU electricity trading rate on-peak = 0.17 $/kWh and off-peak = 0.076 $/kWh. The
PV and WT only have the operation and maintenance costs [24,45]. The operation and
maintenance costs of PV and WT are 0.1095 $/kWh [24]. Therefore, the purpose of cost
reduction is manage the DGs during on-peak periods where the operating costs are high.
The PSO technique is used for optimizing the arrangement of DGs to generate the energy at
peak load times. The optimization problem formulations of the DR program are defined by

Min Coperation =
T

∑
t=1

Pt
windλwind + Pt

PVλPV + Pt
gridλgrid + [aP2

g + bPg], (8)

where Coperation is the total operation of the system; Pt
PV , Pt

wind, Pt
grid and Pt

g are the power
delivered from the PV, wind, grid and the generator at time t, respectively; a, b are the
cost coefficients of DG units. λwind and λPV represent the coefficient of the operation and
maintenance cost of wind and PV. λgrid represents the prices of operation costs.

The proposed objective function of the optimization problem is subject to the follow-
ing constraints.

Power balance constraint:

T

∑
t=1

Pt
wind + Pt

PV + Pt
grid + Pt

DG = Pt
d, (9)

where Pt
wind and Pt

PV , respectively, are the active power of wind and PV units at time t; Pt
grid

is the power delivered from the main grid at time t; Pt
DG is the active power of fuel-based

DG unit at time t and Pt
d is the total power from the demand side at time t.

Spinning reserves constraint:

T

∑
t=1

Pt
G ≥ Pt

d + PL, (10)

where Pt
d represents the total power from the demand side at time t; Pt

G and PL are the total
generation capacity of the system and the line losses at time t, respectively.

Generation capacities constraints:

Pmin
PV ≤ Pt

PV ≤ Pmax
PV ; (11)

Pmin
wind ≤ Pt

wind ≤ Pmax
wind; (12)

Pmin
DG ≤ Pt

DG ≤ Pmax
DG ; (13)

Pmin
grid ≤ Pt

grid ≤ Pmax
grid . (14)

3. Results and Discussion

In this section, the microgrid test system used for verifying the effectiveness of the
proposed strategy is introduced. Then, the output powers of the wind, PV, and load for
the demand forecasting module are given. Finally, simulation results obtained from the
proposed strategy are provided and discussed.

3.1. Test System

The test system that is used for verification of the proposed strategy is illustrated
in Figure 3. As seen in the figure, there are two DG units connected to Buses 22 and 28,
respectively. All information of the test system can be found in [46]. The characteristics of
the cost function of the two DG units are given in Table 1. In addition, there is one wind
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turbine unit and one PV source connected at Buses 15 and 12, respectively. The microgrid
system is connected to the main grid at Bus 1.

1

2 3 4 6 7 8 13 14
23

24

20

19

17 181615

26

27

28

29

21 22

33

34

30 31 32

5

9

10

11

12

25

Grid

PV

DG2

DG1

Wind

VR2

VR1

C1

C2

 

Figure 3. Microgrid test system [46].

Table 1. Generation characteristics of the two DGs.

DGs a b Pmin, (kW) Pmax, (kW)

1 0.000430 21.60 30 33
2 0.000394 20.81 125 143

3.2. Forecasting Output Powers of Average Hourly Wind, PV and Load

ARMA (2,1) is implemented in the process of time-series analysis for PV and demand
forecasting. The technique applied two-year hourly wind speed data of a particular month.
ARMA (3,1) is applied for forecasting wind speed. The historical data set of the seasonally
selected data set is used for future average hourly prediction series. Figures 4–6 show
the simulation results obtained based on average solar irradiance, wind speed, and load
profile, respectively. Renewable energy has a capacity limit that changes with time due to
environmental disturbances [47]. The irradiation, temperature, and unexpected weather
condition have a considerable deviation effect on the efficiency and power generation of
the PV system [21,48]. The nature of time-varying is due to exogenous disturbance, which
will affect power generation, and demand. This limitation is known as uncertainty [32,47].
When the system operates with high penetration of RE resources, this system is required to
ensure the balance of generation and demand [49]. In this work, it was assumed that the
error percentage is the percentage of uncertainty. In generation forecasting, the forecast
(MAE) errors of WT and PV were 11.43% and 10.45%, respectively, while in load predicting,
the percentage (MAE) error of the peak day was 17.71%. In this paper, it is assumed that
the error percentage obtained here is the percentage of uncertainty in the microgrid system.
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3.3. Generation Scheduling and Demand Response Program

This section provides simulation results of the optimal generation scheduling and
load-shifting demand response program. The effectiveness of the proposed strategy is
evaluated in three cases as follows.

• Case I: Cost minimization of the microgrid system with forecast PV, wind, and load
demand data without considering uncertainty.

• Case II: Cost minimization of the microgrid system considering uncertainty, the uncer-
tainty of PV 10.45%, the wind of 11.43%, and the load demand of 17.71%.

• Case III: Cost minimization of the microgrid system for the day-ahead forecast PV
and wind uncertainty (PV of 10.45% and wind of 11.43%) as well as the actual load
demand requirement.

It is assumed that the microgrid system participates in the DR program in all cases.
The amount of maximum power that can be exchanged by the main grid is 300 kW.

The load shifting changed the required amount of load from peak-demand time to
off-peak time to reshape the load profile. In the case studies, the two distributed generators
(DG1 and DG2) are working as the dispatchable generation while the PV and WT units are
non-dispatchable generations.

In Case I, when the PV and wind generated maximum power during the daytime, the
two DG units and the grid provided less power, as seen in Figure 6. All generation sources
are not able to provide the required demand at peak days. Hence, the DR program will be
applied to solve the power requirements. The option of the proposed strategy is to provide
priority to the DG units while maximizing RES generations. The available resources such
as DG units and the main grid are planned to optimally schedule in the microgrid system.
Figures 6–8 show the simulation results of the optimal generation scheduling with actual
and forecast data.

1 
 

 

Figure 7. Case I: Microgrid generation scheduling for peak day with forecast data.

The objective function and system constraints are the standard parameters used in the
microgrid scheduling process to achieve cost–benefit under a RES uncertain environment.
According to Figures 7 and 8, optimal generation scheduling with a demand response
program can reduce the peak load on peak days at 19–24 h and 1–5 h. Load shifting
occurred in the off-peak period when the total loads are less than the generation capacity at
6–18 h. Figures 8 and 9 compare the load demand and the available generation capacity
of Case II and Case III. The capacity difference is high when the PV and wind had not
provided sufficient generation. Moreover, in Cases II and III, as the actual demand is
more than the forecast demand, the power requirement is more dependent on the local
dispatchable generation units and the main grid.

Based on Figures 7–9, the loads of the microgrid test system from the three case
studies can be shifted by using the proposed decentralized EMS, as illustrated in Figure 10.
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According to Figure 11, the optimization method provided the economic operation costs for
Cases I, II, and III at peak time (20 h–23 h), although the microgrid have wind generation
and demand uncertainties. After the optimal generation schedule program has been
implemented, the simulation results provided the preferred amount of power that must be
shifted to a particular period.
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Figure 8. Case II: Microgrid generation scheduling for peak day with actual data.
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Figure 9. Case III: Microgrid generation scheduling for peak day with PV and wind forecast data and
actual demand.

In Case I, the power is planned to receive from the cheaper generation such as wind,
solar, and the main grid, and the power is supplied from expensive DG generation during
the nighttime. Therefore, the total operation cost is saving by 58% compared to that without
optimal scheduling. The demand response program is less than Cases II and III. However,
the possible uncertainty effect is not considered in this case. The operation costs for the
microgrid with and without optimal scheduling are 80,287 $ and 137,020 $, respectively.

In Case II, the robustness of the EMS is tested with the worst-case uncertainty of RESs.
The PV generation uncertainty increased to 11%, wind power decreased to 10%, and the
total demand changed to 17%. The available wind output power is lower than the forecast
value, and the available PV power and the actual load demand level are higher than the
forecast value. Therefore, the local generation and operation costs are higher than that
of Cases I and III. This is because the proposed system properly considered the higher
system’s uncertainty that will impact the distribution system. Therefore, Case II needs
more generations to immunize against a higher level of uncertainty. Table 2 shows that
production costs increased significantly to cover worst-case RES uncertainties. From Table 3,
the powers from the DG increase with growing uncertainty, and load shift DR also increases
to compensate for the worst case. The optimal scheduling has effectively controlled more
power generation without violating the objective function and system constraints. The
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operation costs for the microgrid with and without optimal scheduling are 131,020 $ and
137,020 $, respectively. Although the scheduling is implemented with possible system
uncertainty (RE and demand), the operation cost is 4% less than the operation cost without
optimal scheduling.

Case III only considered RE generation uncertainty to evaluate the system’s supply
and demand balance. This is because the proposed system elevated the use of RE resources.
The results show that the scheduling process retained 22% of cost savings. The operation
costs for the microgrid with and without optimal scheduling are 104,060 $ and 137,020 $,
respectively. Due to generation uncertainty, the power requirement is more dependent
on the local dispatchable generation units and the main grid. From Figures 8 and 9,
the total generation from available local resources is stable for 24 h. This is because the
optimal schedule process provided the stable operation cost for Cases II, and III, although
the microgrid has RE and demand uncertainties. However, in Case II, the total power
from the main grid and local generation are 7200 kW and 4452 kW, respectively. In Case
III, the total power from the main grid and local generations are 4732 kW and 3767kW,
respectively. Therefore, the grid and local generation’s dependency decreased by 52%
and 18%, respectively. However, the DR program of Case III is 38% more than that of
Case II. Thus, the total operational cost is reduced by optimal generation scheduling. The
cost-saving results in the three case studies are 55%, 4%, and 22%, respectively.

The system operation cost minimization is the objective function in case studies, and
demand response is to mitigate system uncertainty by shifting demand. It is noteworthy
that the total RES power is available more at the off-peak time. The possible demand
response after applying the optimal generation scheduling is shown in Figure 10. The
positive power is the required amount of power to shift at the peak time period, while the
negative power is the extra generation capacities at the off-peak time period. The load at
the peak time period of 19–4 h can be transferred to the off-peak time of 6–18 h. In Case II,
the demand response decreased the peak load by 4.3%, and the valley load filled by 5.0%.
In Case III, the peak load reduced by 7.2%, and the valley load filled by 7.3%.
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Figure 10. Hourly−shiftable demand response program in peak day.

According to Figure 11, the optimization method provided the economic costs for
Cases I, II, and III at peak time (20–23 h), although the microgrid has wind and demand
uncertainties. The optimal operation process maintained the system’s operational security
under 11% PV generation, 10% wind power uncertainty and 17% demand uncertainties.
In all case studies, the dispatch of the DG units and the grid power was able to balance
the generation and demand under uncertainty. In the economic aspect, the optimization
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results can provide an economic cost interval of (1355 $/h, 7075 $/h). Table 2 shows the
optimization results of the operation cost over 24 h for the three case studies.
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Figure 11. Comparison of operation cost of case studies and without optimization.

Table 2. Total operation cost of generation units.

Time (h) w/o Optimization, ($/h) Case I, ($/h) Case II, ($/h) Case III, ($/h)

1 6834 4429 5421 3355
2 7615 5545 7042 6471
3 6100 3618 5993 4433
4 6941 6507 6319 4995
5 7090 6714 7075 6537
6 5775 2361 6640 5687
7 5451 2076 6650 5545
8 6288 2050 6496 5750
9 5322 2002 5528 4947

10 4858 1854 4915 4457
11 4746 1733 4586 4570
12 3209 1500 3764 3824
13 3543 1553 3867 3631
14 4524 1734 4520 4312
15 3831 1537 4210 3317
16 3596 1355 4227 2727
17 5891 2162 5790 4797
18 2305 1362 4427 2174
19 4871 1593 5000 2558
20 8806 6717 6775 5950
21 7318 6463 4675 2269
22 7319 5639 4874 2362
23 8983 6715 6960 6326
24 5804 3069 5270 3069

Total 137,020 80,287 131,020 104,060

Table 3 shows the impact of system uncertainties on the DR program and generation
resources. After introducing system uncertainties, the load was cut and shifted more than
the load in Case I, and more energy was exchanged from the main grid. It is observed that
Case II mainly depended on the grid, and local generation was the second option to meet
the peak demand. The DR program was a less desirable option than that of Case III. In
Case II, the optimization method provided optimal energy management and distributed
the peak load among the DR, local generation, and the main grid. When the uncertainty
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increased in the microgrid system, the electricity generation also increased in the local
generation capacity to meet demand variation from 12,197.1 to 14,330.7 kW.

Table 3. Power requirements for each case study.

Case Studies DRTotal , (kW) Local Generation, (kW) Grid Power, (kW)

Case I 248 3009 3174
Case II 2678 4453 7200
Case III 3697 3767 4733

To evaluate the performance of the proposed strategy, the energy management system
presented in [48,50–52] is compared with the proposed system in terms of operation cost
minimization. The works in existing and proposed methods considered load-shifting de-
mand response in the distribution network. The method’s effectiveness is demonstrated by
operation cost reduction with the system’s uncertainty. The comparison results are shown
in Table 4. The work in [50] proposed multi-agent generation scheduling and demand-side
management without considering system uncertainty. In this work, the proposed system
provided 5% cost savings by shifting the load. The work in [51] investigated the impact of
high penetration of wind power on the operation cost savings with the introduction of de-
mand response. In this work, the wind uncertainty was assumed at 10%, and the operation
cost is saved by 27%. The article [52] optimized the network–load interaction framework to
capture market price DR uncertainty. The results showed that the optimization method can
reduce the network operation cost by 16.9%. The work in [48] represented the PV power on
a sunny and cloudy day, potentially impacting the operation cost. The demand response
with battery energy storage was introduced for industrial microgrid facilities. The results
in this work showed that the proposed model provided a 15.6% cost saving on a cloudy
day and 12.8% on a sunny day.

In the proposed system, the cost saving is 22% with the optimal scheduling method.
This is because the objective of the local EMS system is to use full power from RE generation
and expensive DG power used as a dispatchable generation. Consequently, the proposed
method properly considers higher system uncertainties than the existing works. By com-
paring with the results obtained by the existing works, the proposed method provided
higher cost savings than the existing methods under the worst uncertainty. It is shown
that the optimal generation scheduling with demand response can effectively manage local
generation under uncertainties to achieve operational cost savings.

Table 4. Results comparison with existing works.

Articles System’s Uncertainty Operation Cost Reduction

[48] PV uncertainty 15.6%
[50] Not consider 5%
[51] Wind uncertainty (10%) 27%
[52] Price uncertainty 16%

Propose method 11% PV uncertainty, 10% wind
uncertainty 23%

4. Conclusions

The energy management system has been used to provide advanced load management
techniques and control facilities. This paper proposed a decentralized energy management
system to minimize the system’s operation cost by shifting the flexible load in the microgrid
system. In the proposed strategy, the local generation resources were scheduled optimally,
and the DR program was used to maintain the power balance of supply and demand. The
uncertainties of RES generations and load demand were taken into account in this strategy.
Particle swarm optimization and an autoregressive moving average model were applied
for the implementation of the proposed strategy. In addition, mean absolute error (MAE)
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was used to evaluate the accuracy of the forecasting technique for a considered time period.
Three case studies were given to evaluate the effectiveness of the proposed strategy. As a
result, the proposed strategy was able to increase the utilization rate of the RESs and to
reduce the system’s uncertainty with minimum operating cost. In the proposed strategy,
the customers can participate in the active distribution network by changing demand
patterns. Moreover, the proposed strategy also provided the balance of robustness and cost
benefits of the microgrid operation. The proposed system managed power sharing among
RE and dispatchable generation units in the microgrid system to provide operational cost
minimization. The demand response program was introduced in the system to cope with
the 11% PV generation uncertainty, 10% wind power uncertainty, and 17.71% demand
uncertainty. The simulation results showed that the optimal generation scheduling can
minimize the operating cost under the worst-case uncertainty. Using the demand response
model, the customers can participate in the active distribution network by changing the
load pattern to respond to the system’s uncertainties. The load-shifting demand response
reduced the peak load by 4.3% and filled the valley load by 5%. There are several benefits
of accurate generation forecasting, such as alleviating generation uncertainties, increasing
in system stability, allowing more renewable penetration into the system, and minimizing
maintenance costs.

In future work, the day-ahead generation scheduling integration with the deep learning
technique may extend this work. The deep learning model can provide more accurate fore-
casting results and perform short-time predictions of RESs for network energy management.
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Abbreviations
The following abbreviations are used in this manuscript:

ARMA Autoregressive Moving Average
DNO Distribution Network Operator
EMS Energy Management System
LC Local Controller
MAE Mean Absolute Error
MGCC Microgrid Central Controller
MO Market Operator
PDF Probability Density Function
RES Renewable Energy Resource
TOU Time of Use
Φi The i-th AR coefficient
Xt−i Time-series values
θt The j-th MA coefficient
ωt−j White noise
V∗(n,y) Standardized hourly average value
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V′(n,y) Average hourly value

µ(t) Sample mean and standard deviation of all transformed values in 24 h
σ(t) Sample standard deviation of all transformed values in 24 h
d Number of days for considering month and year
Y Number of considering years
Pbestk

i,j
Local best update solution of the j-th and i-th component with iteration k

Gbestk
i,j

Global best update solution of the j-th and i-th component with iteration k

Coperation Total operation cost of the system ($)
Pt

PV Output power of PV at time t (kW)
Pt

wind Output power of wind at time t (kW)
Pt

grid Power delivered from the main grid at time t (kW)
Pt

g Output power of fuel-based generation at time t (kW)
Pt

d Total power of demand at time t (kW)
PL Total distribution line losses (kW)
Pt

G Total available generated power from system’s resource (kW)
λPV , λwind The coefficient of operation and maintenance cost ($/kWh)
λgrid Prices of operation ($/kWh)
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