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Abstract: This paper analyzed the four series-parallel (SP) compensation topologies to achieve
constant current (CC) and voltage (CV) output characteristics and zero phase angle (ZPA) input
conditions with fewer compensation components in the capacitive power transfer (CPT) system. There
are three main contributions. Firstly, the universal methodology of SP compensation topologies was
constructed to achieve CC, CV output, and ZPA conditions. Secondly, four specific SP compensation
topologies were investigated and summarized, including double-sided LC, double-sided CL, CL−LC,
and LC−CL topologies. Their input–output characteristics are provided, and system efficiency is
analyzed. Thirdly, the CL−LC and LC−CL topologies were proposed to realize ZPA conditions
under CC and CV output without any external regulating circuit. A CV output LC−CL experiment
prototype was implemented to validate the theoretical analysis.

Keywords: capacitive power transfer (CPT); compensation topology; zero phase angle; constant
voltage/current output

1. Introduction

Wireless power transfer (WPT) technology utilizing different energy carriers to transfer
electric power without physical contact has been a research hotspot recently due to its
advantages of flexibility and safety [1–4]. Inductive power transfer (IPT) and capacitive
power transfer (CPT) technologies are two main effective methods among WPT systems to
deliver power wirelessly [5]. IPT system using high−frequency magnetic fields to transfer
power has been employed in miscellaneous applications, such as biomedical implants [6,7],
wireless charging for consumer electronics (CE) [8], electric vehicles (EVs) [9–12], and
unmanned aerial vehicles (UAVs) [13,14]. As a result of the high−frequency magnetic
fields generated around the coupler structure in the IPT system, undesirable eddy current
loss would be induced in the metallic conductors shown around the IPT system [15]. In
addition, the IPT system usually adopts a coupler structure consisting of the expensive
Litz wire and ferrite core, increasing the system’s costs and weight [16,17]. Unlike IPT
technology, a CPT system using electrical fields as an energy carrier has the advantages of
low eddy current loss, lightweight, and good tolerance to metal disturbance [18]. Therefore,
the CPT system is more suitable for metal environmental and lightweight applications.

A CPT system usually consists of a power electronic converter, coupler structure,
and compensation topologies [19]. The converter (high-frequency inverter and rectifier)
supplies the AC signal to compensation topologies. It converts the alternating current to
DC load. The coupler structure realizes the wireless power transfer by generating high-
frequency electric fields between the transmitting and receiving plates. A capacitive coupler
structure would induce significant reactive power in the CPT system, degrading the power
transfer capability [20–22]. Therefore, the compensation topologies play an essential role in
eliminating the reactive power induced by the capacitive coupler [23–26]. For most charging
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applications, the output characteristics of constant current (CC) and constant voltage (CV)
are significant targets to extend battery life and ensure stable charging, which can also
be achieved by appropriate selections of compensation topologies [27]. Furthermore, the
parameters design of the compensation circuit can not only adjust the output voltage and
current gain but also optimize the system efficiency [28].

Currently, the research on compensation topologies in the CPT system can be divided
into basic compensated circuits and high-order compensated circuits [29–40]. The basic
compensated circuits are composed of series (S) compensation, parallel (P) compensation,
and series-parallel (SP) compensation, as shown in Figure 1. As the coupled capacitances
of the coupler structure in the CPT system are usually the pF-level, the compensation
inductors in the series compensated circuit would be large and heavy [29]. In addition,
the structure of the parallel compensated circuit limited the port voltage on coupler plates,
which imposed restrictions on transfer power [30]. Hence, the SP compensation and high-
order compensation topologies are preferred by researchers [33–39]. Lu et al. proposed
double-sided LCLC [29], double-sided CLLC [34], and double-sided LCL compensation
topologies [30] to reduce the resonant inductance and increase the port voltage on the
plates. At the same time, the plenty of external compensation components increased the
system’s complexity. They made the CPT system lose its advantages of lightness. Then,
as one of the SP compensation topologies, the double-sided LC compensation circuit was
proposed to achieve CC and CV output with only four external compensation components
(half the number of double-sided LCCL topologies). However, when the parameters of
double-sided LC are designed to achieve CV output, the zero phase angle (ZPA) condition
between the input driving current and driving voltage cannot be realized, which would
degrade the power transfer capability.

Electronics 2022, 11, x FOR PEER REVIEW 2 of 20 
 

 

DC load. The coupler structure realizes the wireless power transfer by generating high-
frequency electric fields between the transmitting and receiving plates. A capacitive cou-
pler structure would induce significant reactive power in the CPT system, degrading the 
power transfer capability [20–22]. Therefore, the compensation topologies play an essen-
tial role in eliminating the reactive power induced by the capacitive coupler [23–26]. For 
most charging applications, the output characteristics of constant current (CC) and con-
stant voltage (CV) are significant targets to extend battery life and ensure stable charging, 
which can also be achieved by appropriate selections of compensation topologies [27]. 
Furthermore, the parameters design of the compensation circuit can not only adjust the 
output voltage and current gain but also optimize the system efficiency [28]. 

Currently, the research on compensation topologies in the CPT system can be divided 
into basic compensated circuits and high-order compensated circuits [29–40]. The basic 
compensated circuits are composed of series (S) compensation, parallel (P) compensation, 
and series-parallel (SP) compensation, as shown in Figure 1. As the coupled capacitances 
of the coupler structure in the CPT system are usually the pF-level, the compensation in-
ductors in the series compensated circuit would be large and heavy [29]. In addition, the 
structure of the parallel compensated circuit limited the port voltage on coupler plates, 
which imposed restrictions on transfer power [30]. Hence, the SP compensation and high-
order compensation topologies are preferred by researchers [33–39]. Lu et al. proposed 
double-sided LCLC [29], double-sided CLLC [34], and double-sided LCL compensation 
topologies [30] to reduce the resonant inductance and increase the port voltage on the 
plates. At the same time, the plenty of external compensation components increased the 
system’s complexity. They made the CPT system lose its advantages of lightness. Then, as 
one of the SP compensation topologies, the double-sided LC compensation circuit was 
proposed to achieve CC and CV output with only four external compensation components 
(half the number of double-sided LCCL topologies). However, when the parameters of 
double-sided LC are designed to achieve CV output, the zero phase angle (ZPA) condition 
between the input driving current and driving voltage cannot be realized, which would 
degrade the power transfer capability. 

High-
order 

compen
sation

ZLUIN

IOUT

UOUT

IIN

Primary 
side

Secondary 
side

ZS1

ZP1

ZS2

ZP2 ZLUIN

IOUT

UOUT

IIN

Primary 
side

Secondary 
side

ZS1 ZS2

ZLUIN

IOUT

UOUT

IIN

Primary 
side

Secondary 
side

ZP1 ZP2 ZLUIN

IOUT

UOUT

IIN

Primary 
side

Secondary 
side

High-
order 

compen
sation

(a) (b)

(c) (d)  
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Figure 1. Compensation topologies in the CPT system. (a) Series compensation. (b) Parallel compen-
sation. (c) Series-Parallel compensation. (d) High-order compensation.

This paper analyzed the four SP compensation topologies to achieve CC and CV
output characteristics and ZPA input conditions with fewer compensation components in
the CPT system. There are three main contributions. Firstly, the universal methodology of
SP compensation topologies was constructed to achieve CC, CV output, and ZPA conditions.
Secondly, four specific SP compensation topologies were investigated and summarized,
including double-sided LC, double-sided CL, CL−LC, and LC−CL topologies. Their input–
output characteristics are provided, and system efficiency is analyzed. Thirdly, the CL−LC
and LC−CL topologies were proposed to realize ZPA conditions under CC and CV output
without any external regulating circuit. A CV output LC−CL experiment prototype was
implemented to validate the theoretical analysis.
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2. Modeling of SP—Based CPT Topology
2.1. The Capacitive Coupler Structure

The most widely used coupler structure in the CPT system is shown in Figure 2, which
is formed by two pairs of metal plates (P1, P2, P3, P4) stacked by each other with no contact.
The distance d between P1 and P3 or P2 and P4 is the so−called transmission distance.
Coupling capacitors Cij (i, j = 1, 2, 3, 4) are formed between plates Pi and Pj (i, j = 1, 2, 3, 4),
which can be calculated as expressed in Equation (1):

C =
εrS

4πkd
(1)

where εr represents the relative dielectric constant, S is the coupling area of coupler plates,
and k represents the electrostatic constant. Therefore, Figure 3a shows the full-capacitor
model of the four-plate capacitive structure and the equivalent induced current source
model is shown in Figure 3b. The relationships of port voltage V1, V2, and current I1, I2 are
expressed as follows. {

I1 = jωC1V1 − jωCMV2
I2 = jωC2V2 − jωCMV1

(2)
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According to Equation (2), the simplified π-type and T-type models of the four-plate
structure are presented in Figure 4, where the capacitance value satisfied the expressions
shown in Equations (3) and (4):

CM = C13C24−C14C23
C13+C23+C14+C24

C1 = C12 +
(C13+C14)(C23+C24)
C13+C14+C23+C24

C2 = C34 +
(C13+C23)(C14+C24)
C13+C14+C23+C24

(3)


Ca =

Ce1Ce2+Ce1CM+Ce2CM
Ce2

Cb = Ce1Ce2+Ce1CM+Ce2CM
Ce1

Cc =
Ce1Ce2+Ce1CM+Ce2CM

CM

. (4)

where Ce1 = C1 − CM, Ce2 = C2 − CM. This paper only introduced the classical four-plate
capacitive structure due to space constraints. Other structures are not included, such as
six−plates, matrixed plates, etc.
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2.2. The SP Compensation Topologies

The SP compensation topology in the CPT system is shown in Figure 5, where UIN
represents the output AC voltage of the high-frequency inverter, and ZL is the input
impedance of the rectifier. It should be mentioned that ZL is resistive when the parasitic
impedances of the rectifier are neglected, and the load can be considered as resistance. ZS1
and ZS2 represent the series compensation elements of the primary and secondary sides,
respectively. The paralleled compensation elements of the primary and secondary sides are
named ZP1 and ZP2.
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When UIN is designed to be constant, the input source is considered a constant voltage
source. The equivalent circuit is shown in Figure 6 by substituting the π-type model
of the coupler structure into the SP compensation topology CPT system. Z′P1 and Z′P2
are composed of the self−capacitance (C1 − CM) and ZP1 as well as (C2 − CM) and ZP2,
respectively, which satisfy the expressions as follows.{

Z′P1 = ZP1
ZP1 jω(C1−CM)+1

Z′P2 = ZP2
ZP2 jω(C2−CM)+1

(5)
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According to Kirchhoff’s law, the SP circuit can be expressed asUIN
0
0

 =

Z11 Z12 0
Z21 Z22 Z23
0 Z32 Z33

·
 IIN

ICM
IOUT

 (6)

where Z11 = ZS1 + Z′P1, Z12 = −Z′P1, Z21 = −Z′P1, Z22 = Z′P1 + Z′P2 + ZCM, Z23 = −Z′P2,
Z32 = −Z′P2, Z33 = Z′P2 + ZS2 + ZL. The output voltage UOUT and output current IOUT can
be calculated according to Equation (6), which can be written as UOUT = − UIN Z12Z23ZL

(Z′P2+ZS2+ZL)(Z2
12−Z11Z22)+Z11Z2

23

IOUT = − UIN Z12Z23
(Z′P2+ZS2+ZL)(Z2

12−Z11Z22)+Z11Z2
23

(7)

To achieve CC output characteristics, the following conditions need to be satisfied.

Z2
12 − Z11Z22 = 0

⇒ Z′P1 + ZS1//(ZCM + Z′P2) = 0
(8)

Then, the input impedance ZIN and the output current IOUT can be derived asZIN =
Z11Z2

23
Z2

23−Z22Z33

IOUT = UIN Z12
Z11Z23

(9)

The condition to achieve CV output characteristics is expressed as follows

(Z′P2 + ZS2)(Z2
12 − Z11Z22) + Z11Z2

23 = 0 (10)

The following condition Equation (11) can be obtained to achieve CV output by
simplifying Equation (10). {

ZS1 + Z′P1 = 0
ZS2 + Z′P2 = 0

(11)

The input impedance ZIN and the output voltage UOUT can also be calculated asZIN = Z11 +
Z33Z2

12
Z2

23−Z22Z33

UOUT = UIN Z12Z23
Z2

12−Z11Z22

(12)

When the inverter’s output current is constant, the CC or CV output condition can
also be derived according to the above theory. The compensation parameters to achieve CC
output should satisfy the following equation:

Z22 = 0⇒ Z′P1 + ZCM + Z′P2 = 0 (13)

The current gain can be calculated as

GI =

∣∣∣∣ IOUT
IIN

∣∣∣∣ = ∣∣∣∣Z′P1

Z′P2

∣∣∣∣ = ∣∣∣∣Z12

Z23

∣∣∣∣ (14)

Then, the input impedance ZIN can be derived as

ZIN = Z11 + G2
I Z33 (15)
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The condition to achieve CV output characteristics with a constant current input
source can be deduced based on the reciprocity of CC output with a constant voltage input
source, which is presented as follows.

Z2
23 − (Z33 − ZL)Z22 = 0

⇒ Z′P2 + ZS2//(ZCM + Z′P1) = 0
(16)

Similarly, the output voltage UOUT and the input impedance ZIN can be derived as UOUT = Z′P1(ZS2+Z′P2)
Z′P2

IIN

ZIN = − Z′2P1(ZS2+Z′P2)
ZLZ22

+ ZS1 +
Z′P1(ZCM+Z′P2)

Z22

(17)

To explicitly demonstrate the output characteristics of SP compensation topologies, we
have concluded the above theories in Table 1. Table 1 shows the conditions for realizing CC
output or CV output of the CPT system based on the SP compensation network when the
input source is a constant current source or a constant voltage source, and the expression
of system current or voltage gain under corresponding conditions. The following section
will analyze the specific SP-based compensation topology. As most application scenarios
adopted the voltage−driven inverter, and the circuit characteristics of SP compensation
with constant current input are similar to that of constant voltage input, the circuit analysis
of the constant current input source is not included in this paper.

Table 1. Comparison of SP-based compensation topologies.
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12−Z11Z22

UOUT =
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Input Impedance ZIN = Z11 +
Z33Z2
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23−Z22Z33
ZIN = − Z′2P1(ZS2+Z′P2)

ZL Z22
+ ZS1 +

Z′P1(ZCM+Z′P2)
Z22

3. Circuit Analysis of Specific SP Topology
3.1. Double-Sided LC Compensation Topology

Figure 7 shows the double-sided LC compensation topology with the π-type model
of capacitive coupler structure, where LS1 and LS2 are the series compensation inductors
and CP1 and CP2 are the paralleled compensation capacitors. Generally, large capacitance
CP1 and CP2 are paralleled on the coupler structure to eliminate the impact of variation of
Ce1 and Ce2. To achieve CC output characteristics, the derivation in Equation (8) can be
rewritten as

ω2LS1 =
C′P2 + CM

C′P1C′P2 + C′P1CM + C′P2CM
(18)
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where C′P1 = CP1 + Ce1, C′P2 = CP2 + Ce2. Then, the output current can be calculated as

IOUT = −jω
C′P1C′P2 + C′P1CM + C′P2CM

CM
UIN (19)
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Figure 7. Double-sided LC compensation topology with π-type coupler model.

The input impedance ZIN of double-sided LC compensation with CC output character-
istics can be calculated through Equation (9), and the condition to achieve ZPA operation is
derived as

ω2LS2 =
C′P1 + CM

C′P1C′P2 + C′P1CM + C′P2CM
(20)

Similarly, the condition to achieve CV output characteristics can be derived through
Equation (10), which is expressed as{

ω2LS1 = 1
CP1+Ce1

ω2LS2 = 1
CP2+Ce2

(21)

The voltage gain of double-sided LC compensation topology is presented as follows.

GV = −CP1 + Ce1

CP2 + Ce2
(22)

The input impedance ZIN of double-sided LC compensation with CV output charac-
teristics can also be calculated as

ZIN =
1

G2
V/ZL − jωC′P1(C

′
P1/CM + C′P1/C′P2 + 1)

(23)

As the result of C′P1/CM + C′P1/C′P2 + 1 > 0, there is always an imaginary part in ZIN,
which means the ZPA operation cannot be achieved with CV output characteristics.

3.2. Double-Sided CL Compensation Topology

The double-sided CL compensation topology is presented in Figure 8, where compen-
sation inductors LP1 and LP2 are paralleled on the coupler structure, and compensation
capacitors CS1 and CS2 are series with the coupler structure. Z′P1 and Z′P2 are composed of
LP1 and Ce1, LP2 and Ce2 in parallel, respectively. ZS1 and ZS2 represent the capacitive reac-
tance of CS1 and CS2. To achieve CC output characteristics, the derivation in Equation (8)
can be rewritten as {

ω2LP1 = Ce2
CS1Ce2+Ce1Ce2+Ce1CM+Ce2CM

ω2LP2 = Ce1
Ce1Ce2+Ce1CM+Ce2CM

(24)
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When the compensation elements satisfy the expression in Equation (24), the output
current can be calculated as

IOUT = −jω
CS1Ce2

Ce1
UIN (25)

Then the input impedance ZIN can be deduced as

ZIN =
1

jω(Cc + Cb − Cb
ω2LP2CS2

) + Cb
LP2

ZL
(26)

where the expression Cb and Cc is shown in Equation (4). ZPA operation condition of
double-sided CL compensation topology can be achieved when the reactive part of ZIN is
eliminated. Hence the following equation is derived from Equation (24).

CS2 =
C2

b
Cc + Cb

(27)

Same with the previous analysis, to achieve CV output characteristics, the compensa-
tion elements should satisfy the condition as{

ω2LP1 = Ce2
CS1Ce2+Ce1Ce2+Ce1CM+Ce2CM

ω2LP2 = Ce1
CS1Ce1+Ce1Ce2+Ce1CM+Ce2CM

(28)

The voltage gain GV is given by

GV =
CS1Ce2

CS2Ce1
(29)

The input impedance ZIN with CV output characteristics is deduced by

ZIN =
−1/ω2C2

S1

1 + (Ce2
Ce1

)
2
(1− 1

ω2C2
S2ZL

)− j Cc
ωC2

a

(30)

where Ca is expressed in Equation (4), as Cc is not equal to zero, the input impedance
consists of the real and imaginary parts. Therefore, the ZPA cannot be realized under the
CV mode of double-sided CL compensation topology.

3.3. CL−LC Compensation Topology

The CL−LC compensation topology with π-type coupler model is presented in
Figure 9, CS1, and LS2 represent the series compensation capacitor on the primary side and
the inductor on the secondary side, respectively. LP1 and CP2 are the compensation induc-
tor and capacitor paralleled in the primary and secondary ports of the coupler structure,
respectively. To simplify the analysis, the π-type coupler model is transferred to the T-type
circuit, as shown in Figure 10.
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As shown in Figure 10, the impedances corresponding with Figure 5 are circled by a
red box. Then, the Z11, Z12, Z22 of Figure 10 can be rewritten as

Z11 = 1
jωCS1

+ jωLP1

Z12 = −jωLP1
Z22 = 1

jωC′a
+ 1

jωC′c
+ jωLP1

(31)

The values of C′a, C′b, and C′c are given by
C′a =

Ce1C′P2+Ce1CM+C′P2CM
C′P2

C′b =
Ce1C′P2+Ce1CM+C′P2CM

Ce1

C′c =
Ce1C′P2+Ce1CM+C′P2CM

CM

. (32)

where C′P2 = Ce2 + CP2. Therefore, the CC mode of CL−LC compensation topology is
derived as

ω2LP1 =
( 1

C′a
+ 1

C′c
) 1

CS1
1

C′a
+ 1

C′c
+ 1

CS1

(33)

The expression of Equation (33) can be simplified as ZLP1 = (ZC′a + ZC′c)//ZCS1, where
ZLP1 = jωLP1, ZC′a = jωC′a, ZC′c = jωC′c, ZCS1 = jωCS1. The output current IOUT under CC
output characteristics is given by

IOUT = −jω(1 +
C′c
C′a

)UIN (34)

The condition to achieve ZPA of CL−LC topology with CC output can be deduced by

ω2LP2 =
1

C′b
+

1
C′c
− C′aC′c

C′a + C′c
(1 +

C′aC′c
(C′a + C′c)CS1

) (35)
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Then the input impedance ZIN is expressed by

ZIN =
C′aC′c

ZLCS1(C′a + C′c)
(36)

According to Equation (10), the condition to achieve CV output characteristics of
CL−LC topology is calculated as{

ω2LP1 = 1
CS1

= 1
C′a

+ 1
C′c

ω2LS2 = 1
C′b

+ 1
C′c

(37)

The voltage gain GV is given by

GV =
CS1

C′c
(38)

The input impedance ZIN is given by

ZIN = ω4C2
c L2

P1ZL (39)

It can be concluded from Equations (36) and (39) that the ZPA operation condition
can be achieved under arbitrary resistance value of ZL in CC or CV mode of CL−LC
compensation topology.

3.4. LC−CL Compensation Topology

The LC−CL compensation topology with the π-type equivalent circuit of the capacitive
coupler structure is shown in Figure 11. LS1 and CS2 represent the series compensation
inductor and capacitor, respectively. CP1 and LP2 represent the paralleled compensation
capacitor and inductor, respectively. Similar to the analysis of CL−LC topology, the LC−CL
compensation topology with a T-type coupler model is shown in Figure 12, where C′a, C′b,
and C′c is given by 

C′a =
C′P1Ce2+C′P1CM+Ce2CM

Ce2

C′b =
C′P1Ce2+C′P1CM+Ce2CM

C′P1

C′c =
C′P1Ce2+C′P1CM+Ce2CM

CM

. (40)
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The condition to achieve CC output, as shown in Equation (8) can be rewritten as

Z2
C′c
−
(

ZS1 + ZC′c

)(
ZC′c + ZC′b

+ ZLP2

)
= 0 (41)

By solving Equation (41), the compensation elements to realize CC output can be
derived as {

ω2LS1 = 1
C′a

ω2LP2 = 1
C′b

(42)

Then the output current IOUT is deduced by

IOUT = j
UIN
ωLP2

(43)

The input impedance ZIN under CC output condition is calculated as

ZIN =
1

(ωC′b)
2ZL + j[ωC′b(1−

C′b
CS2

) + ωC′c]
(44)

It can be seen that the input impedance consists of an imaginary and a real part.
Therefore, the following expression can be derived to achieve ZPA operation with CC
output characteristics.

ωC′b(1−
C′b
C′S2

) + ωC′c = 0

⇒ CS2 =
C′b

2

C′b+C′c

(45)

According to Equation (10), the CV output condition can be deduced as{
ω2LS1 = 1

C′a
+ 1

C′c
ω2LP2 = 1

CS2

(46)

Then the voltage gain GV is derived as

GV =
C′c
CS2

(47)

When the compensation inductor LP2 satisfies (48), the ZPA operation can be achieved,
and the input impedance ZPA is given in Equation (48). ω2LP2 = 1

C′b
+ 1

C′c
ZIN = ZL

ω4C′c
2L2

P2

(48)

The comparison of each SP-based CPT compensation topology has been listed in
Tables 2 and 3, which show output characteristics, ZPA condition, and compensation
conditions to achieve CC or CV output, respectively. To sum up, it can be concluded that
all four basic SP compensation topologies can realize the CC and CV output characteristics
through properly designing compensation parameters. However, the double-sided LC and
double-sided CL topologies cannot realize the ZPA condition when designed to achieve CV
output. On the contrary, the CL−LC and LC−CL topologies can achieve ZPA conditions
on both the CC output and CV output. Therefore, the following analysis concentrates on
the CL−LC and LC−CL topologies due to their advantages of good input characteristics.
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Table 2. Comparison of SP-based compensation topologies to achieve CC output.

Compensation Topologies CC Output
Conditions Output Current
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ω= 1 2

1

- S e
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e

C C
I j U

C
 

Where 

 + +
=


 + + =

1 2 1 2

1

1 2 1 2

e e e M e M
b

e

e e e M e M
c

M

C C C C C C
C

C
C C C C C C

C
C

 

Double-sided LC compensation topology

ω2LS1 =
C′P2+CM

C′P1C′P2+C′P1CM+C′P2CM
IOUT = −jω C′P1C′P2+C′P1CM+C′P2CM

CM
UIN

Where
C′P1 = CP1 + Ce1, C′P2 = CP2 + Ce2

ZPA can be achieved with the condition:
ω2LS2 =

C′P1+CM
C′P1C′P2+C′P1CM+C′P2CM
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{
ω2LP1 = Ce2

CS1Ce2+Ce1Ce2+Ce1CM+Ce2CM

ω2LP2 = Ce1
Ce1Ce2+Ce1CM+Ce2CM

ZPA can be achieved with the condition:
CS2 =

C2
b

Cc+Cb

ZIN = LP2
Cb ZL

IOUT = −jω CS1Ce2
Ce1

UIN

Where

{
Cb = Ce1Ce2+Ce1CM+Ce2CM

Ce1

Cc =
Ce1Ce2+Ce1CM+Ce2CM

CM
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Where
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ZPA can be achieved with the condition:
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Table 3. Comparison of SP-based compensation topologies to achieve CV output.

Compensation Topologies CV Output
Conditions Voltage Gain
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Double-sided LC compensation topology

{
ω2LS1 = 1
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ZPA cannot be achieved
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′
P1/CM+C′P1/C′P2+1)
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Compensation Topologies CV Output
Conditions Voltage Gain
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CL−LC compensation topology

{
ω2LP1 = 1

CS1
= 1

C′a
+ 1

C′c
ω2LS2 = 1

C′b
+ 1

C′c

GV = CS1
C′c

Where
C′a =

Ce1C′P2+Ce1CM+C′P2CM
C′P2

C′b =
Ce1C′P2+Ce1CM+C′P2CM

Ce1

C′c =
Ce1C′P2+Ce1CM+C′P2CM
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and C′P2 = CP2 + Ce2
ZPA can be achieved
ZIN = ω4C′c

2L2
P1ZL
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Table 4. Circuit Models Of Capacitor And Inductor With Parasitic Resistance. 
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LC−CL compensation topology
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ω2LS1 = 1

C′a
+ 1

C′c
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CS2

Where
C′a =

Ce1C′P2+Ce1CM+C′P2CM
C′P2

C′b =
Ce1C′P2+Ce1CM+C′P2CM

Ce1

C′c =
Ce1C′P2+Ce1CM+C′P2CM

CM

and C′P2 = CP2 + Ce2

ZPA can be achieved with the condition: ω2LP2 = 1
C′b

+ 1
C′c

ZIN = ZL
ω4C′c

2 L2
P2

4. Efficiency Analysis of SP-Based CPT Topology

The circuit simplified models of passive components with parasitic resistance are
presented in Table 4 [39], where rCS and rLS are the series resistance, rCP and rLP are the
paralleled resistance, QC and QL represent the quality factor of compensation capacitors
and inductors, respectively. To simplify the efficiency calculation, the circuit model of
parasitic resistance should be appropriately adopted according to the specified compensa-
tion topology. Figure 13 shows the four basic SP compensation topologies considering the
parasitic resistance of passive components. The system efficiency of double-sided LC and
double-sided CL compensation topology can be expressed as

η|LCLC = |IOUT |2ZL

|IOUT |2ZL+|IOUT |2rLS2+|IIN |2rLS1+
|V1|2
rCP1

+
|V2|2
rCP2

η|CLCL = |IOUT |2ZL

|IOUT |2ZL+|IOUT |2rCS2+|IIN |2rCS1+
|V1|2
rLP1

+
|V2|2
rLP2

(49)
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and inductors, respectively. To simplify the efficiency calculation, the circuit model of 
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Table 4. Circuit Models Of Capacitor And Inductor With Parasitic Resistance. 

 Capacitor Inductor 

Circuit model 
C rCS

 

C

rCP  

L rLS
L

rLP  
Parasitic resistance rCS = 1/(ωC·QC) rCP = QC/(ωC) rLS = (ωL)/QL rLP = ωL·QL Parasitic resistance rCS = 1/(ωC · QC) rCP = QC/(ωC) rLS = (ωL)/QL rLP = ωL · QL

The system efficiency of CL−LC and LC−CL topology can be expressed as
η|CLLC = |IOUT |2ZL

|IOUT |2ZL+|IOUT |2rLS2+|IIN |2rCS1+|ILP1|2rLP1+
|V2|2
rCP2

η|LCCL = |IOUT |2ZL

|IOUT |2ZL+|IOUT |2rCS2+|IIN |2rLS1+|ILP2|2rLP2+
|V1|2
rCP1

(50)
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Figure 13. SP-based CPT topology considering the parasitic resistance. (a) Double-sided LC com-
pensation, (b) double-sided CL compensation, (c) CL−LC compensation, (d) LC−CL compensation. 

The system efficiency of four SP-based compensation topologies can be derived from 
Equations (49) and (50). Taking the LCCL compensation topology as an example, its 
AC−AC efficiency is calculated as  
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(51)

where GV is equal to Cc/CS2, and C’a, C’c are expressed in (40). As shown in Equation (51), 
when the quality factor and impedance of passive elements are fixed, the efficiency of 
LCCL topology is decided by the load resistance ZL and system operation frequency ω. 
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The optimum load resistance to achieve the maximum system efficiency is calculated 
as follows. 
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Figure 14 illustrates the system efficiency curves against the variations of load re-
sistance for four SP compensation topologies. The output voltages of the four topologies 
are designed to be the same. The voltage gains of CLLC and LCCL are 0.2 and 5, respec-
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Figure 13. SP-based CPT topology considering the parasitic resistance. (a) Double-sided LC compen-
sation, (b) double-sided CL compensation, (c) CL−LC compensation, (d) LC−CL compensation.

The system efficiency of four SP-based compensation topologies can be derived from
Equations (49) and (50). Taking the LCCL compensation topology as an example, its
AC−AC efficiency is calculated as
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(51)

where GV is equal to Cc/CS2, and C′a, C′c are expressed in (40). As shown in Equation (51),
when the quality factor and impedance of passive elements are fixed, the efficiency of LCCL
topology is decided by the load resistance ZL and system operation frequency ω. Hence,
the maximum system efficiency can be derived as
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The optimum load resistance to achieve the maximum system efficiency is calculated
as follows.
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Figure 14 illustrates the system efficiency curves against the variations of load resis-
tance for four SP compensation topologies. The output voltages of the four topologies are
designed to be the same. The voltage gains of CLLC and LCCL are 0.2 and 5, respectively.
It can be seen that the system efficiency of CLLC topology is the highest among the load
variations, which is due to the CLLC topology in CV mode equivalent to the buck converter,
leading to the smallest loop current under the same power level. Each compensation
topology has an optimum load resistance to achieve the highest system efficiency. The
optimum load resistance can be adjusted according to the application requirements.
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5. Experimental Verification
5.1. Experimental Prototype

To verify the proposed theory, an experimental prototype of the CPT system with LCCL
compensation topology is built up, as shown in Figure 15. The coupler structure consists
of four 300 mm × 300 mm aluminum plates. The transfer distance is set to 5 mm. The
switching devices of the full−bridge inverter adopted C2M0160120D MOSFETS, and the
MSC020SDA120B−ND diodes were used in the full−bridge rectifier. In order to eliminate
the undesirable magnetic loss of ferrite in the traditional inductor, the compensation
inductors in the experiment adopted the air−core inductor constructed by PVC tubes
wounding with Litz wire. To reduce the size of inductors, the switching frequency of
MOSFETS was set to 1 MHz. The system parameters are listed in Table 5.
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Table 5. Experimental Parameters.

Symbol Value

Udc/V 20
RL/Ω 100

f /MHz 1
CM/pF 114.8
CP1/nF 1
CS2/pF 202.1
LS1/µH 25.28
LP2/µH 125.3

5.2. Experimental Results

When the voltage gain of the LCCL compensation CPT system is designed to 5, the ex-
perimental AC waveforms of UIN, IIN, UOUT, and IOUT are shown in Figure 16. The value of
UIN, IIN, UOUT, and IOUT is 18.7 V, 4.49 A, 90.8 V, and 0.89 A, respectively. The phase differ-
ence between the input voltage and the input current is close to zero degrees, and it can be
concluded that the ZPA operation of LCCL topology to achieve CV output is achieved with-
out an extra compensation circuit. As the parasitic resistances of compensation components
exist, the measured voltage gain with 100 Ω load resistance is 4.52.
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To verify the constant output voltage characteristics, the output voltage gains are
measured with load resistance changing from 100 Ω to 20 Ω. The measured results and
simulated results are illustrated in Figure 17. The simulated results are conducted in
MATLAB/SIMULINK models. When the load resistance increases to 5 times itself, the
voltage gain changes from 4.54 to 4.90 in simulation models. While in practice, due to
the impact of the parasitic resistance of passive components, the voltage gain increased
from 3.95 (79 V) to 4.54 (90.8 V), spaces missing, and the rate of voltage change reached
12.9%. The voltage drop can be reduced in practical applications by adopting compensation
elements with more minor resistance and more accurate passive components.
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Figure 18 shows the measured system efficiency and output power with changing
load resistance. As the output voltage is independent of load resistance, the output power
decreased from 334 W to 78 W with load resistance changed from 20 Ω to 100 Ω. Since the
losses of the inverter, rectifier, and capacitive coupler are not considered in the calculation
of system theoretical efficiency, the system experimental efficiency is obviously lower than
the system theoretical efficiency. The system efficiency increased with the increasing load
resistance, which is consistent with theoretical analysis. Therefore, the double-sided LC
compensation CPT system preferred the heavy load situation. The maximum system
efficiency when load resistance changes from 20 Ω to 100 Ω can reach 89% and the system
efficiency can be lifted further by using compensation elements with high−quality factors.
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6. Conclusions 
This paper analyzed the SP compensation topologies in the CPT system to achieve 
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6. Conclusions

This paper analyzed the SP compensation topologies in the CPT system to achieve
CC/CV output characteristics and ZPA input conditions. The T/Π circuit models of the
coupler structure were adopted to simplify the regular SP compensation circuit, and the
input–output characteristics of four specific SP compensation topologies were derived,
respectively. Under CC output conditions, four specific topologies can achieve ZPA input
property. In contrast, only CLLC and LCCL topologies can realize the ZPA input when
designed to achieve CV output. The system efficiency calculation methodologies were
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given and analyzed. The experimental verification was carried out, and the ZPA condition
and load−independent output characteristics were verified.
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