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Abstract: In the last few years, due to the continuous advancement of technology, human behavior
detection and recognition have become important scientific research in the field of computer vision
(CV). However, one of the most challenging problems in CV is anomaly detection (AD) because of
the complex environment and the difficulty in extracting a particular feature that correlates with a
particular event. As the number of cameras monitoring a given area increases, it will become vital to
have systems capable of learning from the vast amounts of available data to identify any potential
suspicious behavior. Then, the introduction of deep learning (DL) has brought new development
directions for AD. In particular, DL models such as convolution neural networks (CNNs) and
recurrent neural networks (RNNs) have achieved excellent performance dealing with AD tasks, as
well as other challenging domains like image classification, object detection, and speech processing.
In this review, we aim to present a comprehensive overview of those research methods using DL
to address the AD problem. Firstly, different classifications of anomalies are introduced, and then
the DL methods and architectures used for video AD are discussed and analyzed, respectively. The
revised contributions have been categorized by the network type, architecture model, datasets, and
performance metrics that are used to evaluate these methodologies. Moreover, several applications of
video AD have been discussed. Finally, we outlined the challenges and future directions for further
research in the field.

Keywords: deep learning; anomaly detection; human behavior; video surveillance

1. Introduction

The actions that can be observed in a person as a result of being exposed to an internal
or external stimulus constitute what is known as human behavior. The environment,
including social interactions, provides external stimuli, while internal stimuli include
something like a person’s ideas, memories, perceptions, or attitudes [1]. Abnormal behavior
can therefore be defined as actions that are not expected to appear in a specific context.
From a computer vision (CV) point of view, abnormality refers to data patterns that are
skewed from normal data. It is also known as an anomaly, outlier, or novelty. It also may
be termed unusual, irregular, atypical, inconsistent, unexpected, rare, erroneous, faulty,
fraudulent, malicious, unnatural, or a strange activity [2,3]. Anomaly detection (AD),
aka. target detection, for video streams is a vital domain in many important areas of CV,
e.g., video surveillance, autonomous vehicles, robotics, virtual reality, smart cities, and
medical imaging [4]. AD has been used in many areas of video surveillance to detect
abnormal activities such as running, climbing, falling, fighting, and robbing [5–10]; violence,
loitering, and vandalism [11–15]; personal intrusion [16], autism and drug addiction [17],
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and reckless driving [18]. It is also used to detect abnormal behavior in specific places, such
as petrol stations [19] and elevators [20]. As previously stated, an anomaly is an irregular
scene in a particular time and place. For example, a crowd at a market on an average day is
regarded as normal, while the same crowd in the same place during a curfew is considered
abnormal. Similarly, a crowd at a marathon would not be regarded as an anomaly, but a
crowd in front of a building would be. In other words, the definition of anomaly can evolve
over time, and the current concept of normal or anomaly behavior might not be properly
represented in the future. In addition, challenges such as diversity in scenarios, noisy
videos, low probability of occurrence of anomalies, and infrequent and low availability of
labelled data for anomalous activity, all of which makes AD a challenging task for Artificial
Intelligence (AI) [21]. Usually, machine learning (ML) algorithms need reliable features
to function properly in order to both characterize the input data and classify the output
results. Therefore, correctly recognizing behaviors relies on well-designed features, which
have a direct impact on classification accuracy. Classification accuracy may decrease if
feature extraction is based on empirical experience. Unlike ML, deep learning (DL) uses
neural network (NN) models to automatically identify and extract features from input
data without requiring feature extraction stages. With the help of DL, a specific method is
available for classifying data that can scale to enormous amounts of data and incorporate
complex features. One of the main benefits of DL is that it eliminates the need for any
kind of preprocessing before acquiring feature descriptions. During training, the NN may
automatically determine a large number of unknown parameters. Training takes a lot
of time, however the results achieved pay off in the end [22]. Finally, the success of DL
methods tackling with the AD problem is due to the ability to extract valuable and complex
features from videos using nonlinear transformations. Furthermore, these kinds of methods
can detect anomalies in time and space. Here, the localization method finds each frame that
is abnormal and explains which portion of this frame is unusual, while detection focuses
on the video fragments that have anomalies across all videos [1,2]. DL models such as
convolution neural networks (CNNs), auto-encoders (AEs), generative neural networks
(GANs), and recurrent neural networks (RNNs) have achieved remarkable performance
addressing the AD problem. This paper provides the following main contribution:

• Review of the most relevant state-of-the-art contributions in the last four years dealing
with DL applied to the AD problem.

• Detailed categorization of the existing methods in AD by classifying the approaches
according to the specific DL methods and the adopted architectural models for AD.

• A comprehensive analysis of the DL architectures used in AD has been introduced to
make it easy for a researcher to choose which approach may be more appropriate for
the particular AD application.

• A performance evaluation of methodologies are discussed in terms of datasets and
measures of performance.

• A discussion of the current challenges and needs in the domain of DL applicable to
AD is put forth.

• A description of those new trends in DL-based AD are discussed to provide several
interesting ideas to be considered in future research.

This review is organized as follows: Section 2 introduces the classification of anomalies
in video streaming. Section 3 deals with DL methods for AD. Section 4 presents various
architectural models that are utilized for AD. Benchmarked datasets and performance
metrics are reviewed in Sections 5 and 6, respectively. Several applications and research
challenges in DL-based AD approaches are discussed in Sections 7 and 8, respectively. In
addition, this paper outlined the future direction and research opportunities in Section 9.
The conclusions of our work are drawn in Section 10.

Survey Methodology

The majority of significant research papers that have been reviewed in this article
were published during 2019–2022. The main focus was papers from the most reputed
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publishers, such as IEEE, Springer, ArXiv, Elsevier, and MDPI. We have reviewed more
than 100 papers on the topic of anomaly detection in video. The most keywords used for
search criteria for this review paper are (“Video Anomaly Detection” OR “Video Anomaly
Recognition”), (“Abnormal Human Behavior”), (“Deep Learning” AND “Anomaly Detec-
tion”), (“CNN” and “Anomaly Detection”), (“Applications of Video Anomaly Detection”),
and (“Challenges in Anomaly Detection”).

2. Classifications of Anomaly Detection

Anomaly detection in video depends on the type of the anomalies. Hence, video
anomalies may be classified as follows:

2.1. Image-Based and Video-Based Detection

Models used to detect anomalous behavior fall into two categories, depending on
whether they rely on a single frame (image-based detection) or a sequence of frames (video-
based detection) [7,23,24]. The first model processes still image frames to extract spatial
(shape)features and detect the target’s behavior, like falling or using a weapon. However,
this model frequently leads to misjudgments because it cannot effectively extract the
temporal (time) information of the behavior. Without temporal information, it is difficult
to recognize the motion of an action. For example, it is hard to identify the difference
between touching someone’s cheek and slapping them in a single frame. The second model
processes several consecutive frames to extract both spatial and temporal information in the
video to classify target behaviors like violence, robbery, and fighting. This model has scored
high accuracy as well as flexibility. Therefore, it has been widely studied and applied in
video-based human behavior analysis systems.

2.2. Single-Point Anomaly and Group Anomalies

Based on how many anomalies there are in a scene, anomaly events can be divided
into two categories: single point anomalies and group anomalies. In [25], a single point
anomaly is described as an anomalous activity of an individual entity, also known as an
entity-based anomaly. In other words, the data points that significantly differ from the
rest of the data points are what are known as point-anomalies, and some examples of
such behaviors include loitering. Interaction anomaly [26], also known as group-based
anomaly, is the unusual interaction of groups of entities. Examples include fighting people
or car accidents. From single entity-based anomalies to interaction-based anomalies, the
complexity and time requirements for anomaly detection and localization increase.

3. DL Methods of AD

The nature of the input data is the basic factor that determines which deep neural
network (DNN) is employed in the AD task. DL techniques used for AD can be classified
into the following categories based on the extent of availability of labels: (1) Supervised
video AD, (2) Semi-supervised video AD, (3) Unsupervised video AD, (4) Transfer learning-
based video AD. (5) Deep active learning-based video AD. (6) Deep reinforcement Learning-
based AD, and (7) Deep hybrid models.

3.1. Supervised Learning-Based AD for Video Streaming

These techniques utilize annotated data as input to train the model. Supervised DL
networks start with initial parameters, then these parameters are repeatedly updated using
a back-propagation algorithm to get an improved estimate for the preferred results [27].
Broadly, supervised DL-based classification models consist of feature extraction networks
and classification networks. Specifically, supervised networks in AD applications involve
the training of two types of classifiers: a binary classifier and a multiclass classifier. The
binary classifier uses labeled data of normal and abnormal samples, whereas, with a multi-
class classifier, the training data contains labeled instances of the normal class and multiple
abnormal classes. There are multiple supervised learning techniques that are used in AD,
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such as CNNs and RNNs. In addition, the CNN category includes VGG16, VGG19, and
Yolo series algorithms. While the RNN category includes long-short-term memory (LSTM)
and gated recurrent units (GRUs) algorithms [27,28]. The key advantage of these techniques
is the ability to gather data and produce data output from prior knowledge. Furthermore,
they are simpler and have higher performance compared to other DL techniques. On the
other hand, the disadvantage of these techniques is that decision boundaries might be
overstrained when the training set lacks examples that belong to a class. In addition, they
require precise labels for a variety of normal and anomalous classes, which are often not
available [25].

3.2. Semi-Supervised Learning-Based AD for Video Streaming

In the semi-supervised technique, the training process utilizes datasets with weakly
labeled instances where it is assumed that all training instances have a single class label.
Here, this technique develops a discriminative boundary around the normal instances.
Thus, test instances are marked as anomalous when they do not belong to the majority class.
This method takes advantage of both supervised and unsupervised methods. Generative
adversarial networks (GANs), GRUs, and LSTMs are used for semi-supervised learning in
AD models. One of the advantages of this technique is that it requires the least amount of
labeled data. On the other hand, the main drawback of this technique is that it is susceptible
to the over-fitting issue and that irrelevant input features found in training data may result
in wrong classification [25,27].

3.3. Unsupervised Learning-Based AD for Video Streaming

This technique allows one to perform the learning process in the absence of labeled
data. It learns the inherent data features such as distance or density to distinguish between
normal and abnormal data to facilitate AD by finding commonalities within the data. DL
techniques such as Auto Encoders (AEs), Restricted Boltzmann Machines (RBMs), Deep
Belief Networks (DBNs), and GANs, as well as GRUs and LSTM algorithms, have been
used for developing unsupervised learning-based models in AD applications. The success
of the unsupervised video AD methods depends on the availability of large video datasets
and high computational resources. One of the benefits of this method is that it is a low-cost
way to find outliers because the algorithms do not need to be trained with annotated
data [25,27].

3.4. Transfer Learning-Based AD for Video Streaming

In general, there are two ways to train NNs: scratch learning (SL) and transfer learning
(TL). In SL, a network starts to learn with random initial weights. This type of learning
needs a large amount of data, powerful computing power, and a very long processing time.
To address these challenges, the concept of TL has been proposed as a means of overcoming
these difficulties. TL is a technique that allows you to use the knowledge gained from one
task to improve the performance of a related task. This is done by using the weights and
parameters learned from the first task as a starting point for the second task. This can help
reduce the amount of training data and computational resources required to achieve good
performance [4,29–32].

3.5. Deep Active Learning-Based AD for Video Streaming

Active learning is the process by which an algorithm repeatedly asks human annotators
for labels to enhance training and improve performance. Broadly, active learning analyzes
data sets and makes the assumption that values for updating the model vary among
samples within the same data set. High-scoring examples are prioritized for inclusion in
the training set. This is done to improve the performance of the model, reduce the number
of false positives, and lower the cost of labeling. Active learning reduces the ambiguous
nature of anomalies in the AD framework by introducing suitable priors with the assistance
of a domain expert. Moreover, by simply demanding a minimal number of labels to boost
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model performance, it also tackles the issues of an unbalanced dataset, concept drift—where
data patterns are constantly changing—and the high labeling cost [33,34].

3.6. Deep Reinforcement Learning-Based AD

A strategy based on DRL actively looks out for novel classes of anomalies that fall
outside the purview of the labeled training data. This strategy learns to strike a balance be-
tween taking advantage of its current data model and looking for new classes of anomalies.
As a result, it can use the labeled anomaly data to increase the detection accuracy without
restricting the set of anomalies it searches for to the examples provided. The general concept
behind utilizing RL for decision-making issues is that an agent will be able to learn from the
environment by interacting with it and obtaining rewards for certain actions; this concept
derives from humans’ natural method of learning via their experiences. DRL combines RL
and DL to solve more complicated problems. Solving such challenges involves dealing
with high-dimensional data and environments, sparse reward signals, and uncertainties in
the agent’s observations. In particular, the DRL-based AD approach leverages the labeled
anomaly data to increase the detection accuracy without restricting the set of anomalies
sought to those provided as anomalous examples. The approach accomplishes this by
interacting with an environment created using the training data [35,36].

3.7. Deep Hybrid Models-Based AD for Video

The hybrid models combine multiple models together in such a way as to improve AD
for video streaming. These models also work well with input data that has high dimensions,
such as video data. Deep hybrid models mostly use DNNs as a feature extraction process
and traditional ML algorithms to detect anomalous activities. For instance, ref. [4] put
forth a hybrid approach for AD in video based on CNN and SVM. CNN is used to extract
descriptive features. Next, the feature vector is passed into a binary SVM to construct
the abnormal event detection model. While ref. [37] used 3D-ConVNet and AEs methods,
3D-ConVNet to learn video representation automatically and extract features from both
spatial and temporal dimensions, and AEs to predict the future frames. Next, the anomaly
score is calculated based on the reconstruction error. Another example, ref. [12] introduced
a model integrating two methods, GAN and multi-instance learning (MIL), in a single
framework to predict future anomalies. GAN for future frame prediction and MIL for
anomalies detection.

4. DL Architectures for AD

A DNN’s architecture specifies its layering, width, depth, and node types. Many
network structures have been proposed for extracting features and identifying actions.
For behavior recognition in videos, DL networks need to take into account more than
just spatial information extraction, as is the case with image-based systems. Without
temporal information, the motion of an action cannot be differentiated; for example, the
act of opening a door is similar to that of closing a door. Action recognition in video
can be improved by making use of temporal motion data. Clearly, there is a connection
between temporal motion data and video action detection. Table 1 presents state-of-the-art
DL methods used in anomaly detection in videos during the last three years. The DL
architectures used to find video anomalies can be roughly put into the following groups:

Table 1. DL approaches applied to AD for video.

[Ref.], Year Type of Network Proposed Architecture Dataset (Accuracy) Examples of Anomalies

[5], 2020 CNN

human skeleton,
YOLOv3,

Multi-scale information
fusion network

UVF-101, HMDN51, and
camera (96.3%) Run, fall, fight
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Table 1. Cont.

[Ref.], Year Type of Network Proposed Architecture Dataset (Accuracy) Examples of Anomalies

[4], 2020 CNN VGGNet-19 pretrained
network, binary SVM

UMN (97.44%),
UCSD-ped1 (86.69%)

Carts, bikers, skateboarders,
running, person walking over

the grass

[17], 2020 CNN, RNN Combined CNN-RNN NAHFE (89.5%) Drug addiction, autism,
criminal mentality.

[6], 2020 CNN
Canny edge

detection algorithm,
3D-ConVNet

HMDB51 and Hollywood2
(93%)

Climbing,
fighting, falling

[11], 2020 CNN, RNN ConvLSTMs
Hockey (99%),

Violent Flow (93.75%),
RLV (96.74)

Violence

[18], 2020 CNN YOLOv2 Camera (99.8% Reckless driving

[21], 2021 LSTM, AEs
Convolution AE and

sequence to
sequence LSTM

UMN (87%) Sudden running

[12], 2021 CNN, GAN 3D-ConVNet CUHK Avenue (68.94%),
ShanghaiTech (88.26%) Crime

[8], 2021 CNN 3D-ConVNet Behave (91.75%),
Caviar (92.86%) Robbery, fight

[10], 2021 GRU, FFN Human skeleton,
GRU-FFN

ShanghaiTech (82.6%),
Avenue (91.7%)

Running, falling down,
robbing, fighting.

[38], 2021 CNN, LSTM Human skeleton,
ConvLSTM

Weizmann (73.1%),
KTH (93.4%),

private (86.5%)
Punching, kicking

[39], 2021 RNN Human skeleton,
LSTM, GRU

UR Fall Detection and Fall
Detection (98.2%) Fall

[7], 2022 RNN LSTM and GRU Camera (84%) Fall, fight

[13], 2022 RNN, CNN 3D-ConVNet, LSTM
RLVS (96.5%),
Hockey (97%),

violent flow (93.2%)
Violence

[20], 2022 CNN Human skeleton,
ConvLSTMs Camera (85%) Door blocking, door picking

[9], 2022 CNN ConvLSTM Abnormal Activities
(97.64%)

Robbery, fight
hijack, harassment

[40], 2022 CNN, LSTM YOLOv5, ConvLSTM
Hockey fight (93.5%),

Cigarette smoker (90%),
Playing cards (93.8%)

Smoking, playing
cards, fighting

[19], 2022 CNN YOLOv5 Private (91%)
Not wearing safety helmet,

entering dangerous
area, smoking

[41], 2022 CNN, LSTM ConvLSTM Abnormal Activities
(96.19%)

Begging, Drunkenness, Fight,
Harassment, Hijack, Knife

Hazard, Robbery,
and Terrorism

[42], 2022 CNN
Human skeleton,
YOLOv3, VGG16

pre-trained network
Camera (95%) Walking, hugging, fighting
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4.1. Two-Stream Convolutional Architecture (Dual-Stream CNNs)

Simonyan et al. [43] proposed a two-stream CNN, also known as a dual-stream
CNN, to capture the spatial and temporal information, respectively. This model con-
tains two networks (as shown in Figure 1) to capture the space and time information of
video [5]. One network takes a single-frame image as the input, then obtains the spa-
tial domain information by extracting the features hidden in the image. Whereas the
input of the other network is a certain frame and n frames of images behind it in the
video, which is responsible for processing the optical flow information in the video by
stacking consecutive frames to extract temporal features. Finally, the outputs of the two
networks are fused to obtain the classification result. Several researchers implemented
two-stream CNN architectures for anomaly detection [43–46] and were shown to produce
state-of-the-art results.
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4.2. 3D Convolution Architecture (3D-ConvNet)

In 2015, Tran et al. [47] suggested an approach for spatiotemporal feature extraction
using deep 3-dimensional convolutional networks (3D-ConvNet) trained on a large-scale
supervised video dataset. Furthermore, they demonstrated that the performance of con-
volutional 3D (C3D) features exceeded that of 2D ConvNet features on a wide range
of video analysis tasks. By using 3D convolution and 3D pooling operations, 3D Con-
vNet can model both space and time to simultaneously find both spatial and temporal
features in a video. In AD based on 3D-ConvNet, the ordinary convolution kernel is
expanded to three dimensions, and the added dimension is responsible for processing
information in the temporal domain. 3D convolution stacks multiple consecutive frames
into a cube, and then uses the 3D convolution kernel in the composed cube to perform
the operation [5]. The biggest advantage of the 3D-ConVNet structure is its speed, this
encouraged many researchers to employ it in the AD area [8,12,18]. Figure 2 illustrates
3D operations. note that both input and filter have depth dimension D, and the 3D filter
slides in the depth direction, 3D convolution operations output a volume. illustrates the
3D-convolution operation.
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4.3. ConvLSTM Architecture

ConvLSTM is CNN combined with an LSTM network. It is like LSTM, but con-
volutional operations are done during layer transitions [41]. ConvLSTM performs on
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time-dependent data like video. As a result, the network is able to detect temporal and
spatial correlations at the local level. ConvLSTM determines the future state of a particular
cell in the grid using the inputs and past states of its local neighbors. By combining CNN
and LSTM, AD is possible in multiple dimensions, including spatial, temporal, and any
others that may be relevant to a given application [5]. Hence, correlating data from several
dimensions allows for the detection of contextual anomaly structures that may not exhibit
abnormal behavior in every single dimension. ConvLSTM-based AD methods are studied
in [11,13,20,40,48]. They used a CNN to learn the space features in the input image, and
then fed those features into an LSTM to identify features in the temporal domain. and then
make a decision regarding whether or not each individual frame has displayed anomalous
behavior. Figure 3 illustrates the architecture of ConvLSTM. Note that ConvLSTM layers
are just like the LSTM, but internal matrix multiplications are exchanged with convolution
operations. As a result, the data that flows through the ConvLSTM cells keeps the input
dimension instead of being just a 1D vector with features.
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4.4. Using Human Skeleton Data

Existing AD methods suffer from recognizing patterns in complex environments such
as background variation, lighting changes, changes in pedestrian clothing, and a lack of
dimensional information, all of which work against the efficacy of interactive behavior
detection systems. The data on the human skeleton is a high level of abstraction from the
body and can deal with interference pretty well [39]. Specifically, the methods based on
human key points are used to detect the anomalies in the video because they can effectively
eliminate background noise and extract human key points in crowded video scenes [13,38].
Multiple human skeleton-based methods have been proposed for action detection and
recognition, such as Openpose, Mediapipe, and Alphapose. The studies in [20,49–51] used
the Openpose method for human body extraction and recognition to provide a good basis
for action detection in video. The Openpose algorithm is the first real-time solution for
identifying key points in the human body, foot, hands, and face. It has also been added to
the OpenCV library [52]. Figure 4 presents 18 joint points in the human body estimated by
OpenPose. Mediapipe and Alphapose methods have been used in [10,53], respectively, to
achieve the extraction and detection of key points on the human body. Mediapipe is an
end-to-end, cross-platform skeletal software tool that works in real-time [53]. Furthermore,
Microsoft Kinect sensor is one of the most widely used approaches to estimating a human’s
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3D position. This technique works by transforming 2D image detection from several camera
views into 3D images [54,55]. Based on what has been found in the literature, a feature of
the human skeleton could be a good way to recognize human behavior.
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4.5. Miscellaneous Architectures

This section, various AD architectures that have been shown to be effective and
promising will be discussed. Ref. [21] proposed unsupervised learning approach based on
a sequence of convolution auto-encoders and sequence-to-sequence LSTM (seq2seqLSTM)
for the detection of anomalies in video. This work is implemented by passing a sequence
of video frames to a convolution encoder to learn the spatial features from videos. A
convolution encoder is trained by minimizing the loss between the model’s output and
the input. Thus, an encoded sequence of frames is obtained. Then, these encoded feature
vectors of consecutive frames are fed to seq2seq LSTM to extract temporal features in
the frames. Ref. [10] developed a framework of GRU layers and a dense Feed Forward
Network (FFN) to estimate human activity. In this architecture, the output of one GRU unit
is fed into the input of the next GRU unit. The generated feature formed by the GRU units
is then passed to a fully connected layer, where it is mapped into 2D image coordinates.
The fundamental benefits of this framework come from the use of dense FFN, which both
ensures feature learning capability and takes advantage of the memorizing advantage
provided by GRUs layers. Ref. [17] developed a combined method of CNN and RNN to
classify human abnormalities. This method examines the face to spot anomalies like drug
abuse, autism, and criminal behavior. It consists of convolution layers followed by the
recurrent network. A CNN layer extracts the spatial features within the face regions of the
image, while an RNN network takes into account the temporal dependencies that exist
inside the image. Figure 5 illustrates the architecture of the combined CNN-RNN.
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5. Benchmark Datasets

Evaluation and comparing system performance is greatly aided by the benchmark
dataset. Having a complete and reliable dataset allows us to evaluate the system’s per-
formance in a variety of ways. Many key factors must be taken into account when
building a dataset, such as the availability of labeled data, activity type, size of sam-
ples, test environments, the diversity of the captured video, etc. Most researchers divide
a dataset into two groups, training data and testing data, with certain percentages for
each group, such as 70% and 30% [6,56] or 80% and 20% [11,17,38] from samples for
training and testing, respectively. Few researchers divide their dataset into three sections:
training, testing, and validation. Refs. [9,41] divided the dataset into 70% training, 20%
testing, and 10% validation. Similarly, in ref. [40], the dataset is split into 80% training,
10% validation, and 10% testing. On the other hand, some researchers trained their models
on a specific dataset and then tested them on a completely different dataset [57,58]. Table 2
lists the most widely used AD datasets that have been used to benchmark DL approaches
in the academic literature. Furthermore, it provides the most relevant information needed
while working with DL methods, such as the main reference, description, number of videos,
examples of anomalies, and access details. A more detailed description of the existing
datasets used for AD is presented in reference [59]. Figure 6 show examples of different
anomalies in UCF-crime dataset.

Table 2. An overview of common datasets used for AD.

Dataset
[Ref.] Year Description No. of

Videos Resolution Example
Anomalies URL

CAVIAR
[60] 2004

It includes videos of two different
situations. The sequences are

ground truth labeled
frame-by-frame with bounding

boxes and a semantic description
of the activity in each frame. There
are 28 video sequences grouped

into 6 different activity scenarios.

28 384 × 288

Fighting and
leaving a

package in a
public place

https://homepages.
inf.ed.ac.uk/rbf/
CAVIARDATA1/
(accessed on 11

November 2022)

https://homepages.inf.ed.ac.uk/rbf/CAVIARDATA1/
https://homepages.inf.ed.ac.uk/rbf/CAVIARDATA1/
https://homepages.inf.ed.ac.uk/rbf/CAVIARDATA1/
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Table 2. Cont.

Dataset
[Ref.] Year Description No. of

Videos Resolution Example
Anomalies URL

UMN
[61] 2006

It’s a collection of 11 videos
depicting various escape scenarios
across three indoor and outdoor

scenes. Each clip starts with
examples of normal behavior and

then turns into
abnormal examples.

11 320 × 240 People running
(escape)

UCSD-
PED1
[62]

2010

It consists of clips of groups of
people walking towards and away

from the camera, and some
amount of perspective distortion.

There are 34 training and
36 testing videos, each containing

36 frames.

70 158 × 238

Movement of
bikers, skaters,
cyclist, small

carts, people in
a wheelchair

http://www.svcl.
ucsd.edu/projects/
anomaly/dataset.

html (accessed on 11
November 2022)

UCSD-
PED2
[62]

2010

It consists of a scene where most
pedestrians move horizontally.

The video footage of each scene is
sliced into clips of 120–200 frames.
There are 16 training videos and

12 testing ones.

28 240 × 360

Movement of
bikers, skaters,
cyclist, small

carts, people in
a wheelchair

http://www.svcl.
ucsd.edu/projects/
anomaly/dataset.

html (accessed on 11
November 2022)

BEHAVE
[63] 2010

It focuses on aberrant behavior
associated with criminal activity.
It has around 90,000 frames of

humans identified by bounding
boxes, with interacting groups

classified into one of
6 different behaviors.

4 640 × 480 Chase, fight,
and run

Hockey
fight
[64]

2011

It is collected of hockey games and
scenes from action movies to

describe the violent behaviors in
ice hockey matches. Each clip

consisting of 50 frames, is
manually labeled as

“fight” or “non-fight”

1000 720 × 576 Fight

https:
//academictorrents.
com/details/38d9
ed996a5a75a039b8

4cf8a137be794e7cee8
9 (accessed on 15
November 2022)

HMDB-51
[56] 2011

It is collected from a variety of
sources ranging from digitized
movies to YouTube videos. In

total, there are
51 action categories.

6766 Variable
resolution

Shoot gun,
climbing and

falling

http://serre-lab.clps.
brown.edu/

resources/HMDB/
(accessed on 15

November 2022)

Violent
Flow
[65]

2012

Data is compiled from various
sources to characterize the actions

of crowds in public areas like
parks, streets, and squares.

246 320 × 240 Violence

http://www.openu.
ac.il/home/hassner/
data/violentflows/

(accessed on 14
November 2022)

UCF-101
[66] 2012

A total of 27 h of footage, covering
101 different action categories, are
included. Users uploaded videos
with realistic camera movement

and cluttered backgrounds to
make the database.

13,320 320 × 240

Robbery, hijack,
harassment,
explosions,
and fight

http://crcv.ucf.edu/
data/UCF101.php

(accessed on 14
November 2022)

http://www.svcl.ucsd.edu/projects/anomaly/dataset.html
http://www.svcl.ucsd.edu/projects/anomaly/dataset.html
http://www.svcl.ucsd.edu/projects/anomaly/dataset.html
http://www.svcl.ucsd.edu/projects/anomaly/dataset.html
http://www.svcl.ucsd.edu/projects/anomaly/dataset.html
http://www.svcl.ucsd.edu/projects/anomaly/dataset.html
http://www.svcl.ucsd.edu/projects/anomaly/dataset.html
http://www.svcl.ucsd.edu/projects/anomaly/dataset.html
https://academictorrents.com/details/38d9ed996a5a75a039b84cf8a137be794e7cee89
https://academictorrents.com/details/38d9ed996a5a75a039b84cf8a137be794e7cee89
https://academictorrents.com/details/38d9ed996a5a75a039b84cf8a137be794e7cee89
https://academictorrents.com/details/38d9ed996a5a75a039b84cf8a137be794e7cee89
https://academictorrents.com/details/38d9ed996a5a75a039b84cf8a137be794e7cee89
https://academictorrents.com/details/38d9ed996a5a75a039b84cf8a137be794e7cee89
http://serre-lab.clps.brown.edu/resources/HMDB/
http://serre-lab.clps.brown.edu/resources/HMDB/
http://serre-lab.clps.brown.edu/resources/HMDB/
http://www.openu.ac.il/home/hassner/data/violentflows/
http://www.openu.ac.il/home/hassner/data/violentflows/
http://www.openu.ac.il/home/hassner/data/violentflows/
http://crcv.ucf.edu/data/UCF101.php
http://crcv.ucf.edu/data/UCF101.php
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Table 2. Cont.

Dataset
[Ref.] Year Description No. of

Videos Resolution Example
Anomalies URL

CUHK
Avenue

[67]
2013

It contains 16 training and
21 testing video clips with total

30,652 frames which describe the
movement and behavior of

pedestrians, cars, cyclist.

37 640 × 360

Running,
throwing

objects, and
loitering

http://www.cse.
cuhk.edu.hk/leojia/

projects/
detectabnormal/

dataset.html
(accessed on 14

November 2022)

ActivityNet
[68] 2015

It provides 203 activity classes,
with an average of 137 videos per

class, for a grand total of
849 video hours.

27,801 1280 × 720

http://www.
activity-net.org
(accessed on 15

November 2022)

Kinetics
[69] 2017

It contains 400 human action
classes, with 400–1150 clips for
each action, each from a unique

video. The clips average roughly
10 s in length and are all collected

from various videos available
on YouTube.

306,245 variable
resolution Violence

https:
//www.deepmind.
com/open-source/

kinetics (accessed on
16 November 2022)

ShanghaiTech
Campus

[70]
2017

It has 13 scenes with complex light
conditions and camera angles. It

contains 130 abnormal events and
over 270, 000 training frames.

330 846 × 480

Brawling,
chasing, skaters,

bikers, and
trolley on the

pedestrian
walkways

https:
//svip-lab.github.io/

dataset/campus_
dataset.html

(accessed on 16
November 2022)

UCF-
Crime

[71]
2018

It has 128 h of 1900 long and
untrimmed real-world

surveillance videos, with
13 realistic anomalies as well as

normal activities

1900 variable
resolution

Abuse, Arrest,
Arson, Assault,

Accident,
Burglary,

Explosion,
Fighting,
Robbery,
Shooting,
Stealing,

Shoplifting,
Vandalism.

http://crcv.ucf.edu/
projects/real-world/

(accessed on 16
November 2022)

RLVS
[72] 2019

It consists of violent clips that
involve fights in many different
environments, such as the street,
jails, and schools. The nonviolent

videos also feature human
activities, including playing

sports, exercising, and eating.

2000
Average
size of

397 × 511

Fight and
Violence

https://www.kaggle.
com/datasets/

mohamedmustafa/
real-life-violence-
situations-dataset

(accessed on 17
November 2022)

http://www.cse.cuhk.edu.hk/leojia/projects/detectabnormal/dataset.html
http://www.cse.cuhk.edu.hk/leojia/projects/detectabnormal/dataset.html
http://www.cse.cuhk.edu.hk/leojia/projects/detectabnormal/dataset.html
http://www.cse.cuhk.edu.hk/leojia/projects/detectabnormal/dataset.html
http://www.cse.cuhk.edu.hk/leojia/projects/detectabnormal/dataset.html
http://www.activity-net.org
http://www.activity-net.org
https://www.deepmind.com/open-source/kinetics
https://www.deepmind.com/open-source/kinetics
https://www.deepmind.com/open-source/kinetics
https://www.deepmind.com/open-source/kinetics
https://svip-lab.github.io/dataset/campus_dataset.html
https://svip-lab.github.io/dataset/campus_dataset.html
https://svip-lab.github.io/dataset/campus_dataset.html
https://svip-lab.github.io/dataset/campus_dataset.html
http://crcv.ucf.edu/projects/real-world/
http://crcv.ucf.edu/projects/real-world/
https://www.kaggle.com/datasets/mohamedmustafa/real-life-violence-situations-dataset
https://www.kaggle.com/datasets/mohamedmustafa/real-life-violence-situations-dataset
https://www.kaggle.com/datasets/mohamedmustafa/real-life-violence-situations-dataset
https://www.kaggle.com/datasets/mohamedmustafa/real-life-violence-situations-dataset
https://www.kaggle.com/datasets/mohamedmustafa/real-life-violence-situations-dataset
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6. Anomaly Detection Approach Performance Metrics

The effectiveness of AD systems has been evaluated in many ways by researchers. AD
models aim to achieve low false positive (FP) and false negative (FN) rates. On another
side, True positive (TP) and true negative (TN) rates should also be high. How many
negative (normal) and positive (anomaly) examples are correctly labeled is denoted by
TN and TP, respectively. While the FP and FN counts indicate how many instances were
incorrectly labeled as positive or negative. Table 3 presents the most significant metrics
used for evaluating AD model performance [27,73–76].

Table 3. Evaluation metrics used for AD approaches.

Metric Definition Equation

Accuracy

It measures the number of anomalous and normal
instances that are successfully classified with respect to
the overall dataset. Accuracy can be a useful measure if

we have a similar balance in the dataset.

TP+TN
TP+TN+FP+FN

Equal Error rate (EER)

It is a metric that evaluates the proportion of anomalies
and normal instances that are misclassified with respect

to the overall dataset. It’s used to show
biometric performance.

FP+FN
TP+TN+FP+FN

Recall (Sensitivity)
(True Positive Rate)

The ratio of detected anomalies to total anomalies is
calculated. Recall is very used when you have to

correctly classify some event that has already occurred.

TP
TP+FN

Precision (Detection rate)
It is a metric that compares the number of real anomalies

discovered to the total number of anomalies. It
calculates the accuracy of the True Positive.

TP
TP+FP

Specificity (True Negative Rate)

It determines the percentage of the samples that were
correctly labeled as normal. specificity is important

when the objective is to minimize the number of
negative examples that are incorrectly classified.

TN
FP+TN
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Table 3. Cont.

Metric Definition Equation

False Positive Rate (FPR)
It is the ratio of the number of anomalous instances that

are incorrectly classified in relation to all
normal instances.

FP
(FP+TN)

False Negative Rate (FNR) It measures the ratio of normal instances that are
incorrectly classified in relation to all normal instances.

FN
(FP+TN)

F1-Score

It calculates the harmonic Mean between recall and
precision rates. The greater the F1-Score, the better is the

performance of the model. It’s often used when class
distribution is uneven.

2 × Precision×Recall
Precision+Recall

J Score It is a single statistic that captures the performance of a
binary classification test. Sensitivity + Specificity − 1

Percentage of Wrong
Classifications (PWC)

It calculates the ratio between the number of incorrect
predictions and the total number of predictions. 100 × FP+FN

TP+TN+FP+FN

Receiver operating characteristic
curve (ROC)

It gives details on a curve that represents the percentage
of anomalies that were correctly recognized against

those that were missed at varying thresholds.

Area under ROC curve (AUC)

It is the area under the curve of the plot of FPR vs. TPR
at different points in [0, 1]. As the value increases, our

model’s accuracy improves. It yields good results when
the observations are balanced between each class.

sp−np(nn+1)/2
np×nn

TP: true positive, TN: true negative, FP: false positive, FN: false negative, sp: sum of all positive ranked samples,
nn and np: number of negative and positive samples, respectively.

7. Applications of AD for Video

Here, some applications of DL-based AD in videos will be discussed. More applica-
tions and techniques used are illustrated in Table 4.

Table 4. Examples of applications of DL-based AD.

Application Type Technique Used Ref.

Automated surveillance
CNN [77]

CNN and LSTM [78]

Autonomous driving
Autoencoder + semantic segmentation [79]

GAN + Post hoc statistics [80]

CNN + Gaussian Processes [81]

Industrial automation
LSTM and autoencoder [82]

LSTM, CNN, autoencoder [83]

Intelligent traffic monitoring YOLOv5 and decision tree [84]

Surgical Robotics Deep Residual Autoencoder [85]

7.1. Autonomous Driving

Autonomous vehicles mainly depend on techniques of perceptual vision that use
intelligent algorithms. One of the crucial challenges in this domain is to handle unexpected
situations and detect anomaly actions in time to avoid accident, like a person suddenly
passing the street, ghost driver. The ability to reliably detect such anomalies is essential
for improving automated driving safety, since it can significantly reduce the incidents
involving autonomous vehicles [86,87].
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7.2. Automated Surveillance

Intelligent surveillance video, commonly known as closed-circuit television (CCTV),
has been widely applied in many public places, such as roads [88], hospitals [89], banks [90],
campuses [40], elevators [20], and private homes [91]. Such intelligent surveillance systems
provide numerous advantages in lifestyle including protection of human resources, finan-
cial burden reduction, and anomalies behavior detection in time with high accuracy. The
fact that there is no clear definition of an anomaly is a big problem that hurts how well
these systems work.

7.3. Industrial Automation

Due to the spread of smart factory services, AI-based research is being conducted to
predict and diagnose manufacturing facility breakdowns or manufacturing site efficiency.
However, because of the characteristics of manufacturing data, such as a severe class imbal-
ance of abnormalities and ambiguous label information that distinguishes abnormalities,
developing classification or AD models is highly difficult. Industrial visual defect detection
is hard because mistakes can be small, like thin scratches, or big, like missing parts [92].

7.4. Medical AD

The medical analysis depends on the diagnosis task, which in turn is related to AD in
the physiological data of patients since it captures the unique features in the physiological
data of patients. Thus, the identification of anomalies in medical data is considered a
sensitive task in such a field [93]. AD systems in medical tests face extra challenges because
they are directly related to human life and health. Further, there are many patient-specific
characteristics that should be taken into account when designing these systems, such as
age and gender, that lead to variations in data samples. For these reasons, supervised
learning algorithms are mostly used when developing models of medical AD due to their
high ability to distinguish between normal and abnormal samples [94].

8. Research Challenges in DL-Based AD Approaches

In this section, we highlight the major issues to be resolved in current AD approaches
that prevent them from being applied effectively to detect anomalous actions in videos.

8.1. Anomaly Characteristics

The task of AD from a video is a challenging task because the anomaly activities occur
for a short duration of time and have a low probability of occurrence, as well as the context-
dependent nature of anomalies, and one anomaly class may have completely different
features from other anomaly classes. Furthermore, a diversity of anomaly scenarios [10,21].

8.2. Anomaly Definition

Current concept of normal or abnormal behavior may not be adequately representa-
tional in the future [16], and the definition of abnormality itself may change over time. The
lack of a clear definition of an anomaly in video surveillance is a big problem that makes it
hard for AD systems to work.

8.3. Environmental Factors

Environmental challenges indicate large variations in camera viewpoint and mo-
tion, cluttered background, and foreground scale variation [95]. Furthermore, changes in
position, human occlusion, low-quality and noisy video, illumination changes, weather
conditions, and appearances of the actors [8,56]. Some researchers tried to address these
issues. For example, ref. [23] used a panoramic camera to achieve 360-degree video ac-
quisition in order to address the problems of camera viewpoint and person occlusion.
Similarly, ref. [15] proposed a hybrid approach of distributed and centralized processing to
detect abnormal behaviors of various target entities. On the other hand, human skeleton
data is a high level of abstraction from the body and it has been utilized to address the
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problems of sparsely or moderately crowded video scenes and complex environments such
as background variation, lighting changes, and noisy video [13,38].

8.4. Division of Dataset

To guarantee a consistent comparative analysis of the presented DL models, it is
necessary to suggest a strong mechanism for dataset splitting. For DL networks to learn the
optimal model parameters, there is a certain amount of data needed for training. Although
there are AD datasets out there, the majority of them do not clearly separate the training
and testing data. Furthermore, most DL models have been optimized for a single video
or a group of similar videos, so the training and testing data are highly similar [57,96].
Moreover, the model would have an unfair advantage compared to other models if it
were trained using some frames from the test videos. In addition, the documentation
of incomparable outcomes is hampered by the fact that different articles use different
data split methodologies. One possible solution to address this issue is testing the model
over completely unseen videos to show its robustness. However, there is a need to have
well-defined data division strategies for both training and testing.

8.5. Data Diversity

It is challenging to gather large and diverse datasets for training AD networks [74].
Additionally, the application of DL-based models is hindered by the lack of anomalous
ground truth data, the ambiguous nature of anomalies, and the data imbalance between
normal and anomalous samples [97,98]. Transfer learning approaches can be a valuable
approach to overcome the limited training data problem. Furthermore, data augmentation
techniques can be utilized to artificially expand the size of the training dataset.

8.6. Data Annotation

Training a DL network requires large-scale labeled datasets. Additionally, human
motion time-series data annotation is a cumbersome and long process. Moreover, data
with ambiguous definitions, like abnormal human behavior, is challenging to annotate
since it is hard to understand which human action includes the anomaly [99]. There is a
need to employ scientific methods to detect, fix, and reduce the errors that occur in data
annotation in order to ensure that the final deliverable data is of the highest possible quality,
consistency, and integrity.

8.7. Feature Normalization

Human behavior data needs to be normalized in a way that can be processed in real
time, hence it is important to establish effective ways for doing so. Feature normalization
can help find and recognize human behavior when data from many different people is
used to choose the right set of features to improve the overall system performance and
computational complexity.

8.8. Model Generalization

Since human behavior is so context-and environment-dependent, it is challenging to
design a single model to detect anomalies across all scenarios and domains. One possible
solution to address this issue is training the model on data sets from many different people
and scenarios.

8.9. Real Time Systems

A majority of the current approaches utilized for video AD are very time-and space-
consuming. Because of this, real-world applications cannot make use of these tech-
niques [95]. Thus, it is important to provide algorithms for real-time AD. Possible solutions
include using online learning techniques to analyze anomalies in real-time by combining
online learning with deep models and making deeper networks with more layers and fewer
neurons [26].
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8.10. Lightweight Models

DL networks require a lot of computing power to perform video AD efficiently. So,
it is important to propose lightweight models that can work well with limited resource
devices like mobile devices. Some possible solutions have been proposed by [100–102].

9. Future Directions
9.1. Aerial Surveillance

Activity recognition and AD in aerial videos are considered important domains of
research due to their contribution to many vital tasks such as search and rescue and aerial
surveillance. Unmanned aerial vehicles, commonly known as “drones,” are usually used
to capture aerial video data. Some challenges make it hard to find anomalies in aerial
videos, like when the drone is moving in the opposite direction from the object or when the
object and drone are moving at different speeds [103,104]. To overcome these difficulties,
researchers in the future will need to develop innovative algorithms specifically for use
with aerial videos.

9.2. AD from Moving Cameras

The majority of existing research for DL-based AD deals with captured data from
fixed cameras, while AD from moving cameras is still a limited domain. Thus, this field
is a promising area of study [105]. Future work will require more effort to be put into the
collection of data and the development of algorithms for AD in moving cameras.

9.3. Self-Supervised Learning in Video

The activity detection techniques can offer solutions for the free labels to develop
self-supervised systems for several systems, like object detection [106], video order pre-
diction [107], and video representation learning [108]. Future work needs to create self-
supervised algorithms by leveraging existing techniques like intelligent surveillance and
AD techniques.

9.4. Human–Robot Collaboration

The human–robot collaboration will play a crucial role in the future of industrial
production lines [5]. Future trends in DL-based human behavior recognition might be
toward human movement prediction by understanding human intentions. There is a need
to create new artificial algorithms that use the patterns of human movement as input data to
modify the robot’s trajectory or speed to avoid people. This research domain will improve
the social environment of humans and robots.

9.5. Ensemble Approaches

Ensemble methods are a promising research domain. Ensemble approaches have been
shown to be effective in improving the efficiency of AD [109]. The ensemble detection
of deviations is another promising area for future study because it has the ability to
greatly improve the algorithms’ detection accuracy. However, this field of research is still
undiscovered and requires more comprehensive study.

10. Conclusions

This review aimed to be a significant research contribution to the study of DL in
the intelligent surveillance domain by analyzing and summarizing the DL techniques
utilized in AD for video streaming. In particular, our broad study used two categories to
categorize AD. The first category considered the number of frames used during detection,
while the second one the number of anomalies in a scene. Moreover, our study analyzed
the efficacy of many popular DL techniques for detecting anomalies, categorizing them
according to the network type and architectural design. Moreover, the benchmark datasets
and performance metrics used to evaluate the effectiveness of DL approaches were listed in
detail. Furthermore, our contribution highlighted the applications as well as the key issues
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in DL-based AD approaches that are still open and need to be addressed for efficient AD.
Finally, we are convinced that the community researchers working on this topic will surely
find this review helpful in gaining a better understanding of this crucial area of research.
Then, our main goal was to encourage researchers to carry out more research in this area so
that it can move forward in the near future.
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