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Abstract: The internet of things (IoT) is one of the growing platforms of the current era that has
encircled a large population into its domain, and life appears to be useless without adopting this
technology. A significant amount of data is generated from an immense number of smart devices
and their allied applications that are constructively utilized to automate our daily life activities. This
big data requires fast processing, storage, and safe passage through secure channels to safeguard
it from any malicious attacks. In such a situation, security is considered crucial to protect the
technological resources from unauthorized access or any interruption to disrupt the seamless and
ubiquitous connectivity of the IoT from the perception layer to cloud computers. Motivated by this,
this article demonstrates a general overview about the technology and layered architecture of the
IoT followed by critical applications with a particular focus on key features of smart homes, smart
agriculture, smart transportation, and smart healthcare. Next, security threats and vulnerabilities
included with attacks on each layer of the IoT are explicitly elaborated. The classification of security
challenges such as confidentiality, integrity, privacy, availability, authentication, non-repudiation, and
key management is thoroughly reviewed. Finally, future research directions for security concerns are
identified and presented.

Keywords: internet of things; IoT architecture; security challenges; privacy

1. Introduction

The internet of things (IoT) has emerged from conventional internet technology with
immense capabilities to establish a strong interconnection between humans and machines
and machines and machines by utilizing numerous sensing and actuating devices. The
intelligence in the omnipotent technology of the IoT is made possible because of the integra-
tion of various cutting-edge contemporary technologies of data science, wireless sensory
networks, edge and fog computing, and big data analytics. Moreover, notable progress in
the wireless discipline of information and communication technology, electromechanical
devices, and industrial types of equipment designs have greatly expanded the scope of
the internet of things [1,2]. In addition, the management of IoT networks has become
challenging as it grows exponentially. Different objects networked in the internet of things
are automatically interacting with one another and are determined according to pre-design
communication protocols without the involvement of human beings [3]. The IoT has a
pivotal role in managing the day-to-day activities of humans. Thus, a significant amount
of human effort and time is saved by the effective coordination of connected sensors and
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actuators designed to perform specific tasks in a smart home. Similarly, the IoT has sig-
nificantly provided a solution to assist physically disabled people without making much
effort. The occupancy sensors are installed to detect the motion of humans that conse-
quently turn on/off the lights and fan. The energy consumption bill is lowered through
the implementation of the internet of things. People risk various natural calamities such
as tsunamis, earthquakes, and floods and are timely evacuated by the early warning of
integrated technology of the IoT through remotely installed sensing devices. Likewise, the
IoT has automated many tasks of industries, healthcare, supply chain management, crop
yield, and other business firms.

With the increased use of IoT devices in the home and commercial entities, there
is a great risk of extracted data from smart gadgets being compromised. Intruders can
illegally penetrate these networks and access data without being detected for a longer
period. These hackers can bypass the security setup and gain access to the internet of things
ecosystem without being identified, authenticated, and authorized. As these smart objects
are interconnected and exchange information through open-channel internet connections,
they allow attackers to carry out any malicious activities without informing anyone, as
presented in Figure 1. Presently, the IoT environment is confronted with numerous security
issues such as access control, privacy, verification, authorization, data management, and
storage [4]. Smartphones are fulfilling human needs by providing global connectivity with
the help of the digital environment; however, the security of information flow is never
guaranteed. Attackers arrange to intercept users’ signals, so the privacy of IoT users is
critically breached. The confidence of the internet of things users can simply be ascertained
in the adoption of technology by addressing the privacy and control of secure personal
data [5]. In short, the enhancement of the IoT is subject to the resolution of security issues.
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Figure 1. Smart Objects.

The overall connectivity of IoT objects with the internet has made them prone to
malicious attacks. Mainly, traditional data dissemination schemes are responsible for these
kinds of assaults. Temporary measures such as gossiping, gradient-based routing, directed
diffusion, and one-phase pull diffusion are not adequate to secure the IoT from threats.
Some loopholes such as data validation, verification of data packets, data maintenance,
the latency of the network, and security requirements need to be addressed in prevailing
dissemination schemes. Furthermore, the end-to-end security of the IoT is conditional on
the safety of its elements and networks. As networking and other related objects are new to
implementing the IoT, security is not given a high priority during the design of products [6].
IoT security and privacy challenges can be overcome by intercepting eavesdropping,
spoofing, and malicious signal injection. These assaults are adversely affecting security
such as authenticity, reliability, and privacy-related features. Thus, it is mandatory on the
part of the network operator to redress these issues to safeguard IoT products and services.
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In case of any hacking attacks, the user data are accessed and exploited for malicious
intentions, and IoT services are severely interrupted and, thus, shoulder the responsibility
of the service provider to secure the network against any cyber-attacks [7]. Because the
number of connected IoT devices are exceeding 50 billion with users of wide and diverse
backgrounds, naturally, the security of these gadgets and data has attained paramount
importance and has become a hot topic in the industrial sector [8]. Due to the increase in
heterogeneity of IoT networks, the security complexities also enhance in intricacy as well.
Moreover, access control is posing a big threat to data from different sources; hence, it is
mandatory to provide legal access to the user for authenticity, confidentiality, and integrity.

This research article is intended to analyze and review the privacy and security issues
related to the IoT. The paper is organized as follows: Section 2 comprises the basic architec-
ture of the IoT and its layers. In Section 3 of the article, smart applications, for instance,
home, agriculture, transportation, and healthcare of the IoT, and the corresponding security
issues, are identified and examined. In Section 4, security threats and vulnerabilities are
introduced and confronted with each layer of the IoT. In Section 5, the security challenges
are classified into seven different classes to elaborate on the threats of the IoT with the help
of different models. Finally, in Section 6, the concluding remarks are added.

2. Internet of Things (IoT) Architecture

The internet of things is broadly categorized into three layers based on architecture.
Each layer performs its predefined functionalities without overlapping the task of one
another. Each layer of the IoT is meticulously designed to tackle the crucial phenomena of
privacy and security. Addressing security issues in each layer will protect the entire IoT
system against any malicious attacks, as depicted in Figure 2.
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Figure 2. IoT Layered Architecture and Attacks.

2.1. Sensing Layer

This layer is alternatively called the Recognition Layer, Perception Layer, Sensory
Layer, and Device Layer. This layer is responsible for sensing the environment-related
data and the further submission to the communication layer for onward transmission to
data warehouses or the cloud. The number of sensing devices in this layer are varied
according to the practical requirement of the internet of things application, and data are
collected in a plug-and-play mechanism [9]. The purpose of the layer is to collect the
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data from the real world and store the information for further processing in the controller.
Various physical parameters such as light, humidity, and location are sensed from the
surroundings and are designed to perform the function of identification on the basis of
distinct features. The smart gadgets in the sensing layer can also be programmed to execute
the mechanical function as per sensing and processing information. Moreover, to minimize
human interaction, devices in the layer can work in collaboration among heterogeneous
devices. To enhance the scalability, devices in the layer can be configured into the mesh,
ad-hoc, and multi-hop environment. The common devices used are Radio-Frequency
Identification (RFID) readers, the Global Positioning System (GPS), Quick-Response (QR)
code readers, Bluetooth devices, and numerous types of sensors [10].

2.2. Communication Layer

This layer normally known as the Network Layer or Transport Layer provides inte-
gration of a variety of protocols, technologies, and heterogeneous networks. To decide
on behalf of the IoT system, the data perceived by the Perception Layer are transmitted
for processing (Data Mining, Aggregation, and Encoding) through this layer. The Core
Network in this layer acts as the backbone for the transmission of information. The internet
has a significant role in internetworking, communicating physical items, and observing and
controlling the actuators remotely [11]. The scope of geographically distributed networked
devices is broadened through Wide Area Networks (WANs).

2.3. Application Layer

It consists of applications that are purposed to control and manage functionalities
of the network globally. At the service layer, the decision is made based on processed
data collected from the perception layer. Several intelligent processing and computational
actions are conducted on the score of the enterprise services platform. Other activities such
as data filtration, recognition, and categorization into spam, valid, and non-valid are also
carried out at this layer of the IoT. Furthermore, the quality of service and directory service is
ensured through service-oriented architecture. In addition, middleware functionalities such
as intelligent computations, cloud computing, and the machine-to-machine application
models service support platform is performed by the service layer [12]. Examples of
consumer-oriented applications at this layer of the IoT are smart healthcare, smart homes,
logistics and retail, intelligent transportation, safety and surveillance, resource and energy
management, and smart cities. The application of the internet of things is made more
accessible and user-friendly through numerous hand-held smart gadgets, for instance,
laptops, mobile, and personal digital assistants.

3. Applications of the Internet of Things

The internet of things has numerous applications in a variety of real-life fields.

3.1. Smart Home

The term is frequently used for the application of innovative technologies such as
artificial intelligence and the internet of things to create more ease and facilities in the home.
Other related attributes are the capability to obtain information from surrounding areas and
to receive responses accordingly [13]. The overall aims of introducing smart technologies
are to upgrade the well-being of humans, and it has emerged as a strong pillar of innovative
technologies [14]. The paradigm shifts of turning routine products and services into smart
ones have revolutionized the technologies and have assisted to create the awareness of
interoperability among heterogeneous devices [15]. The immense advantages of implanting
small gadgets in the home to achieve significant objects have captured the attention of
not only academicians but also the service providers in the IoT [16]. The functionalities
of a smart home are drawn in Table 1 in the form of the type of IoT devices intended
to realize the smart home and the purpose of the devices. Lifestyle and health-related
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monitoring, automation for kitchenware, remote control, entertainment, and provisioning
smart environments are key attributes of a smart home.

Table 1. Home Functionalities.

IoT Devices Installed at Smart Home Purpose

Blood Pressure machine

Upgradation of Lifestyle and Health

Temperature sensor
Glucose level machine
Physiological signs monitor
Heart rate
EGG for an epileptic, sleep disorder, Seizure
Infrared Sensors
Wearable Accelerometer
Wearable Sensors
Tele-healthcare

Kitchenware
AutomationWashing

House Gates

Remotely controlledWindows
Garden
Wardrobe

TV
Smart EntertainmentInternet

Laptop

Heating and Ventilation
Comfortable environmentElectricity

Gas

3.2. Smart Agriculture

With the innovations of the latest sensor technologies in the IoT, the traditional way of
farming has been fundamentally modified. Numerous farming issues have been redressed
by the effective integration of wireless sensors that were previously impossible, for instance,
pest control, yield optimization, drought response, and suitability of land. IoT sensors
have a crucial role to acquire field information and conditions in the implementation of
smart agriculture, as illustrated in Table 2. These smart objects are abundantly implanted
in advanced agriculture machinery and tools as per the requirement.

Table 2. IoT involvement in Smart Agriculture.

Smart Agriculture Sensors Function Application

Acoustic Sensor Work on the changes in noise level Pest identification and detection [17], seed classification [18]

Optoelectronic Sensor Differentiation of plant type
Detect herbicides, weeds, and unwanted plants [19],
differentiation of soil and vegetation based on reflection
spectra [20]

Airflow Sensor Measure the moisture contents and
air permeability

Determine different soil characteristics, e.g., structure,
moisture, and compaction [21]

SWLB (Soft-Water-Level-Based) Sensor Determine hydrological behaviors Measure the stream and water flow, rainfalls [22]

Electromagnetic Sensors Record the electromagnetic response
and electrical conductivity Various chemicals such as organic matter and nitrates [23]

Mechanical Sensors Soil mechanical resistance based on
pressure Different levels of compaction [24]

Eddy Covariance-Based Sensor Determine continuous flux on a large
part of land [25]

Gases exchange quantification, that is, carbon dioxide,
methane, and water vapor [26]

Optical Sensor Soil’s capability to the reflection
of light [27]

Soil moisture, organic substance, and clay contents and
minerals [28]

Ultrasonic Ranging Sensors Work in association with the
camera [29]

Uniform spray coverage, and tank and crop canopy
monitoring [30]

Telematics Sensors Collection of data from non-accessible
points to avoid visits [31] Reduce environmental effects through data management [32]
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Table 2. Cont.

Smart Agriculture Sensors Function Application

Remote Sensing Management and manipulation of
geographical data [33]

Identification of pests and plants, degradation mapping, land
cover, and yield dates forecasting and modeling [34]

FPGA (Field-Programmable Gate
Array based) Sensor

Real-time monitoring due to
reconfiguration flexibility but high
cost [35]

Transpiration, humidity, and irrigation [36]

Electrochemical Sensor Chemical analysis of soil [37] Soil characteristics are pH, salinity, and soil macro- and
micronutrients [38]

LIDAR (Light Detection & Ranging) Estimation of dynamic measurement
of agriculture data [39]

Monitoring erosion, 3-D modeling, and land mapping and
segmentation [40]

Mass Flow Sensors Measure the quantity of grain flow [41] Grain moisture contents [42]

3.3. Smart Transportation

The Intelligent Transportation System (ITS) has created numerous opportunities in
terms of navigation, route optimization, reduction in energy consumption and car emis-
sions, and detection of traffic conditions based on streetlights and smart parking sys-
tems [43]. Smart parking reservation systems with the aid of visual devices, infrared
sensors, and magnetic fields allow the reduction in searching time and availability of space
at parking lots [44]. Information regarding road surfacing provided by implanted sensors
is communicated to the application of handheld devices for taking timely action to avoid
any accidents, as demonstrated in Table 3. Furthermore, an organized accident prevention
system is also developed by using IoT smart gadgets. Moreover, vehicles are managed
to exchange information not only with other vehicles but also with a social network in a
machine-to-machine IoT system that has opened the floodgates of new avenues and possi-
bilities [45]. The security issues related to connected and autonomous vehicles (CAVs) have
been thoroughly reviewed to apply safe and reliable practices in intra- and inter-vehicle
systems. The self-driving vehicle could be protected against cyberattacks by the application
of AI practices [46].

Table 3. Key Features of Intelligent Transport System.

Intelligent Transport Features

Accident Prevention

• Real-time monitoring of vehicles [47]
• Vehicle-to-vehicle communication
• Vehicle-to-social-network communication
• Detection of blind spots by smart vehicles [48]
• Traffic congestion detection [49]
• The consciousness of drivers is continuously monitored [50]
• Identification of accident-prone areas [51]
• Detection of any obstacles or elements in the street [52]

Parking System

• Identification of free parking lots and creation of image [53]
• Creation of parking lot databases [54]
• Installation of smart signboards [55]
• Availability inside the park is ensured through ultrasonic sensors [56]
• Payment for the parking is made through the Android app
• Furthermore, parking preferences are made by ASPIRE [57]
• Communication to the local cloud is carried out with a private cloud server [58]

Road Condition • Detection of potholes and bumps is processed with FF-NN [59]
• Difficulties regarding the detection of distress are conducted [60]

Smart Street Light

• Lower the energy consumption and provide dynamic operation
• The intensity of lights is adjusted according to the crowd in areas
• The location of SSL is updated by GPS
• ON/OFF of SSL are triggered by light sensors to save energy [61]
• Wi-Fi hotspot transmits the information to the central server [62]
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Table 3. Cont.

Intelligent Transport Features

Transport Infrastructure

• M2M communication provides V2V (vehicle-to-vehicle) framework [63]
• Near cars, location, and speed and movement data are fed to cars locally
• User experience is promoted through the bus fleet monitoring system
• IoT is combined with social network principles into the Social Internet of Vehicles
• Congestion in communication is decreased by protocol (VSNP) [64]

Optimization of Route

• The opted best route for a specific location reduces congestion
• Fuel consumption and time to travel are decreased
• SERSU approach along with weather condition, pollution sensors, and

camera optimize the route
• Shortest time and path estimation is performed by crowdsourcing

route planning [65]

3.4. Smart Healthcare

Comprehensive and intelligent health systems are used to coordinate the people from
the different relevant departments that respond actively to the medical ecosystem with the
assistance of the IoT, wearable devices, and mobile applications along with features, as
shown in Table 4. The allocation of required resources and informed decisions is accordingly
made. In other words, the information and communication system become part of the
healthcare system [66].

Table 4. Key Features of Intelligent Healthcare System.

Intelligent Health Care Features

Health Management

• Chronic diseases are confronting new challenges in terms of cost and treatment [67]
• Traditional health model is not adequately capable to deal with disease [68]
• Feedback of health data, self-management, and intervention doctors are possible with the

application of IoT
• Physiological indicators are received and monitored by implantable devices
• Prognosis of abnormalities, if appropriately monitored, will lower risk [69]
• Smartphone integrated with biosensors monitors the body and environment [70]
• A healthy lifestyle is also associated with the implementation of smart home [71]
• Integrated management strengthens medical decisions, resource utilization, and cost [72]
• Numerous online facilities such as doctor–patient interactions, online appointments, and

examinations [73]

Diagnosis and Treatment

• It happens more precise and accurately with the emergence of IoT, AI, and robots
• AI diagnosis accuracy has surpassed human decisions [74]
• IBM Watson is simply exemplary in clinical decision support systems [75]
• In the treatment of tumors, the process can be dynamically observed through

radionics [76]
• Fast recovery and better results can be achieved by the involvement of robots in surgery

even remotely [77]
• Subversive changes are brought about due to clinical treatment and medical education [78]

Drug Research

• It comprises discovery of drugs, target screening, and clinical trials
• Traditionally overlooked and slow target screening is significantly fast, e.g.,

genomic study [79]
• The discovery efficiency of compounds for a drug can be improved [80]
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Table 4. Cont.

Intelligent Health Care Features

Smart Hospital

• ICT infrastructure in hospitals is automated and optimized by IoT [81]
• Services for medical, patient, and administrators are the main components of

smart hospitals
• IoT helps to identify instruments, biological specimens, and staff management
• It also has a critical role in inventory management, circulation, drug production, and

anti-counterfeiting [82]
• Decision-making on the part of performance and quality analysis lowers the cost and

increases the utilization of resources
• Overall benefits include shorter waiting time, concise treatment process, online

appointments, and increased doctor–patient interaction

Virtual Assistance

• Algorithm virtual assistance helps in language understanding and session experience [83]
• VA actively responds to parties, saving both material resources and manpower [84]
• VA plays a responsible role to treat mentally ill patients and bring spiritual health

to the patient [85]

Disease prevention and
Risk Monitoring

• Results on data from wearable devices are analyzed and uploaded to the cloud
in real-time [86]

• Human lifestyle and behavior are adjusted by integrated and connected systems [87]

4. Security Threats and Vulnerabilities in IoT

In “Authorized Access”, the devices are physically protected to deny any access. The
majority of IoT devices are vulnerable to intruding into devices without obtaining any
permission from an authorized service provider, as detailed in Figure 3. In the internet
of health things, sensitive wearable gadgets to monitor human health are accessed and
authenticated by the hospital authority. Meanwhile, in “Sniffing-Attacks”, malicious
sensors or authorized gadgets are placed on IoT devices to establish a link to working
devices. During communication, spy devices capture data and further exploit them for
malicious intentions. “Physical Tampering” normally occurs in an unattended environment
and IoT elements are mainly susceptible to physical harm through the change in hardware.
In another scenario of “Loss of Power”, the energy of IoT devices is accessibly consumed,
turning objects off undesirably. To counter the attack, the power-saving strategy of the
sleep mode is introduced by manufacturers. The IoT devices are adversely affected by
“Environmental-Attacks” by applying extreme heat, cold, wind, snow, or rain. Hence, the
operation of sensing objects is made unstable and unreliable in such a harsh environmental
situation. Sometimes, attackers use “Hardware Failure” to attack internet of things devices,
resulting in the wrong or incomplete information badly damaging the data stream. Thus,
the wrong decision is taken based on misinformation, and RFID systems do not support any
encryption scheme, because of memory limitation, so intruders’ endeavor to implant their
transmitter to misguide or hack the entire system, normally termed “Eavesdropping”. The
big data acquired from IoT devices is uploaded to fog or cloud computers and is arranged
to store over each other. IoT devices perform their function as per the installed memory.
However, in the case of compromise such as “Storage Attacks”, the linked internet of
things items is adversely affected; hence, the protection of this storage is pivotal to smooth
the operation of the system. In the internet of things, the exchange of information takes
place through wireless communication. High-frequency impulses or undesirable “noise”
can seriously interrupt and cause packet loss at the receiving end.

The communication path in the “Man-in-the-Middle Attack” is hacked by intruders
and manipulated data are provided to the intended devices. The receiving devices remain
unaware of misinformation; however, in the case of invalid data entry, the compromised
network considers this error in the network [88]. Protection at the perception layer has be-
come possible due to low-price sensory gadgets. Normally, “Spoofing” is the phenomenon
of copying the Tag information and forwarding it to an RFID reader; however, attackers
arrange to place data on the fake tag to obtain an illegitimate advantage [89]. Similarly,
whenever a clone Tag is used to download network data from the transmitter and copy



Electronics 2023, 12, 88 9 of 20

it for malicious intention, it is called a “Cloning Attack”. Both spoofing and cloning are
generally categorized as the same menace. Spoofing is a process of transferring the data on
new data, while, in later cases, captured data are corrupted and the sender is misguided.
Through “Malicious Code Attacks”, malware is introduced on the internet to attack a
specific operating system. In this scenario, the connected devices operate abnormally,
which become disastrous in sensitive applications such as a self-driving car. The attackers
in “Tag Modification” exploit the modifiable tag to fulfill their malicious intention. In
the majority of the cases, RFID tags are widespread and read-only but intruders search
for the vulnerable tag and delete/modify the valuable information. To counter the assail,
a read and write protection policy must strictly be implemented to avoid any damage
and sensitive information. The inappropriate reaction observed in the system, whenever
fed with the wrong information, is termed as an “Injecting Fake Data Attack”. Numer-
ous “Wi-Fi-based attacks” are experienced in IoT-based network infrastructure where
ciphering of the stream is compromised to recover the encryption key to determine the
initialization vectors.
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5. Classification of Security Challenges of the Internet of Things

Major security challenges confronted with IoT technologies are confidentiality, in-
tegrity, privacy, availability, authenticity, non-repudiation, and key management, as pro-
vided in Figure 4.

A significant amount of data is generated by internet of things items that require
collection, processing, and onward submission for storage. The data comprised personal,
commercial, and business confidentialities that must be protected against any possible attacks.

I. In the context of business scenarios, data are a valuable asset to remain competitive
in the market. The traditional treatment through “confidentiality” algorithms is not
adequate to handle resource scarcity, heterogeneity, and scalability of data. To ensure
the confidentiality of the IoT system, access control, authentication, and supervision
of the network need strict compliance. Confidentiality of the data is compulsory to
predict and estimate real-world problems. An IoT-based earlier warning system for
tsunamis or earthquakes has a significant role in the evacuation of the population at
risk to safeguard human life. The data obtained from the system must be accessible
only to the pertinent body and disaster management department that issues necessary
guidelines from time to time. The indiscriminate spread of such sensitive information
may cause panic, unrest, hazards, public disorder, and law and order situations among
a large group of people that may become out of control in some cases. Likewise, food
company data of biosensors on bacterial composition must safely be stored and
remain confidential. The leakage of the data may severely damage a firm’s reputation
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and competitive advantage over competitors. The confidentiality of IoT data cannot
directly be dealt with by customer solutions, due to scalability and changing access
rights. To manage knowledge systems, trust-based techniques remain effective to
handle the sheer amount of IoT data, out of which Role-Based-Access-Control is
standard and has emerged as successful as compared to traditional access control, as
illustrated in Figure 5. Each departmental user has different roles and permissions;
however, access rights can be altered by dynamically modifying role assignments. In
the context of the IoT as compared to a static database, the entire stream in real-time
can be accessed through RBAC, termed a data stream management system [90].
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Furthermore, RBAC is protected against any unauthorized access by applying an
operator at the stream level to sort out output tuples to maintain access control. In the
case of the IoT, this approach has weaknesses to define certain control policies for the data
from different sources [91]. The layer-wise security challenges confronted by the internet of
things (IoT) are illustrated in Table 5.
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Table 5. Layer-wise security challenges.

IoT Layers Security Challenges

Application Layer

• Establishment of privacy protection
• Authentication among different devices
• Flexibility in terms of framework authorization
• Key management

Communication

• Denial-of-service attack
• Encryption of data
• Man-in-the-middle attack
• Authentication and data access
• Creation of communication Session
• Availability
• Non-repudiation

Sensing Layer

• Authentication of the wireless sensory network (WSN)
• Confidentiality of network
• Integrity
• Radio-frequency security issues
• Node security and related threats
• Creation of fake node
• Node authentication

II. The second challenge associated with the security of the IoT is “Integrity”, which
means ensuring the data received to/from the perception layer are actual and pure
from any kind of alteration. Further processing of manipulated data from sensors will
give out erroneous results and, therefore, must not be trusted. The integrity is to be
ensured for the internet of things system in general and data in particular [92]. The
characteristics of integrity are extremely difficult phenomena to determine that data
are received from the first and actual device. Moreover, the protection of information
is not possible with the implementation of a password policy. This requires a sophis-
ticated algorithm to establish integrity among devices and their data. In addition,
advanced operating systems and configuration patterns support the algorithm. To
fully implement integrity, an IoT system has three different states of information to
consider that is either in motion, at rest, or in the processing stage. While traveling
from the perception layer to communication channels to cloud computers for stor-
age, the information must be protected against any modification in it. In the second
stage of integrity, i.e., at the resting stage, the verification of information is carried
out during the booting process. During the process in the third stage of integrity,
periodic checks are conducted at operations at start-up and end. The sole purpose of a
checksum of data during integrity is to make sure neither outer physical interference
nor any cybercrime is committed [93]. In this connection, the uniqueness of contents
and removal of errors from the data are ensured through CRC (Cyclic Redundancy
Check) or Checksum techniques in caparison to traditional approaches of mathemati-
cal techniques such as SHA (Secure Hash Algorithm). Previously, the SHA technique
was frequently applied; however, abusers arrange to modify the data, and the hash
is recalculated; therefore, it becomes ineffective and obsolete [94]. In this connection,
the internet of things system is shielded from Man-in-Middle assails after ensuring
that data are unaltered and safely received. The framework in this context is also
determined in research endeavors conducted in [95].

III The third security challenge is “Privacy” in which data intended for a specific user
can only be accessed. Privacy can be preserved in the internet of health things by
exchanging sensitive information between patients and systems. Most of the exchange
of data of IoT systems is performed through wireless communication technologies that
are always vulnerable to threats and present numerous issues of privacy violations.
Some common attacks in this respect are masking and eavesdropping attacks. Hence,
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the adoption of the IoT is strong for the resolution of privacy-related matters. Multiple
models have been proposed to curtail the privacy problems of the IoT, for instance,
Kaos, Tropos, NFR, GPRAM, and PRIS [96].

Out of this, a later model has demonstrated the actual definition of preserving the
privacy of the IoT. The prominent feature in the model is the inclusion of comprehensive
requirements even in the design phase of the IoT, as depicted in Figure 6 for transformation
into rules and further implementation into techniques. The construction of a privacy-
preserving mechanism is confronting a score of challenges. However, practical work will
be developed from the general privacy model processing all fundamental parts and their
intra-model relationship.
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IV. The fourth security challenge is “Availability”, which is alternatively used for reliability
and defined as the probability of performance of an element of the network system
to give the desired output at a specific time under specific environmental conditions.
Availability is particularly used to calculate the performance of any component of
a system that becomes operational after recovering from a faulty status. It is worth
mentioning that failure in the large-scale internet of things can be disastrous to
operations when encountering an emergency in public facilities. It is pivotal to ensure
resilience, reliability, and availability in large IoT public network deployment, and
this must be included in future research directions [97]. To make reliable internet of
things systems, significant numbers of IoT elements are required to be connected to
design a large complex network. In addition, the objects should to mobile, and the
dynamics and configuration are subject to change as per the network requirements.
As the mentioned network is constituted of smart but heterogeneous objects, the
interoperability and coordination among them, the environment, the platforms, and
the supporting software are to be taken into special consideration. Specific hardware
standards have been developed to ensure the reliability of the network of the IoT; the
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first attempt in this regard was conducted in the military manual and termed MIL-
HDBK-217, adopted by the majority of the engineering fraternity for the calculation
of commercial and industrial reliability standards [98]. In contrast, software reliability
is performed with numerous models that are not all acceptable, due to the non-
specification of requirements, especially in the IoT. Safety and reliability are used in
combination for the realization of the mutual goal defined for the software. Another
terminology considered with availability is maintainability to obtain the optimal
cost of the IoT life-cycle that should be taken into account even in the design phase.
In the case of failure, and maintainability of the internet of things, the problematic
components should easily be replaced without interruption of service and provide
seamless connectivity. A highly maintainable system must produce effective, efficient,
and satisfactory output [99].

The availability of IoT systems is described by the given equation:

Availibility =
Mean Time to f ailure

Mean Time to f ailure + Mean Time to Repair

Other factors such as protocols, security, energy efficiencies, and standardizations
influence the phenomena of availability. Out of these parameters, energy efficiency has
turned out to be a pressing issue in the domain of sensors. Various low consumptions of
energy measures have been proposed in [100]. Keeping in view the failure of smart gadgets,
new vulnerabilities in security arise. For example, hacking of self-driving cars and infusion
pumps presents a threat and can cost human lives [101].

V. The fifth security challenge is that “Authentication” is solely required in the internet
of things to prevent intrusion into the system and the theft of private information.
Normally, the heterogeneous devices connected to the network communicate with
the local gateway for the outward provisioning of information. The local gateway
obtains necessary permission from the cloud computing system to send the required
information to the outside world. To filter out unauthorized persons, application
request information must first authenticate to gain access into the network. The
phenomenon of approving any smart object or user to grant permission for the
collection of network information or data is called authorization, illustrated in detail
in Figure 7. It comprises identification, putting requests by the user to the gateway or
cloud platform, followed by authorization and authentication. Without following the
requisite process, access will not be granted and authentication will fail.
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Traditionally, the SSL (Secure Socket Layer) has been prevalent by securing secret
keys and web platforms on the internet. However, with the emergence of new techniques,
passwords are applied less for large-scale internet applications. A similar situation is
the case of the IoT to preserve the network from access by an unauthorized user. The
IoT consists of a spectrum of large-scale domains such as wearables, smart homes, smart
cities, and smart industrial applications. Therefore, it has become impossible to manually
collect, analyze, and make the decision without a computer application. By considering
the security of the system as the supreme requirement and preventing any damage caused
by malicious gadgets, several protocols in this regard are proposed in [102], keeping in
view multi-criteria classification. The authentication of the IoT can be classified on the
bases of token-based, architecture, procedure, HW-based, IoT layers, and authentication
factors [103,104], as depicted in Figure 8.
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In token-based authentication [105], an identity token or piece of data is generated by
the server. The procedure for authentication involves one, two, or three-way authentication,
and out of two parties, only one party, both parties, and a third-party act as a central party,
and two interested parties will be authenticated for three types. Based on architecture, the
authentication may be distributed or centralized among parties’ members. Similarly, it is
also divided based on application, network, or perception layers. While defining based
on hardware-based (HW-based), it may be implicit or explicit. Authentication factors are
the identity (use hash, symmetric, or asymmetric cryptographic algorithms) or context
(physical or behavioral).

VI. The sixth security challenge is “non-Repudiation”, which is the computational settling
of the dispute between the sender and receiver in a case when the sender refuses
to send the message and the receiver declines to receive the message. Numerous
protocols have been designed to minimize the denying phenomena [106]. In this
situation, the distrusted parties may overall create an ineffective way of communi-
cation and a lack of promising service provision that unnecessarily causes concerns
and anxiety among prime stakeholders. Some traditional non-repudiation mecha-
nisms have been developed and divided into TTP (trusted party)-based approaches
and non-TTP-based schemes to determine another way to control impediments to
acceptance and development. In the former scenario, TTP plays the role of middle-
man between the client and service provider and helps to facilitate the exchange of
information and acknowledgment of receiving the message [107]. Another method
of activation of an off-line TTP service is where the sender provides encrypted data
with a TTP key so that the receiver acquires the decrypted service only after obtaining
acknowledgment [108]. These phenomena experience performance bottlenecks and
single-point failure in distributed IoT systems because of the unavailability of third
parties. It is dominated by a non-TTP-based approach in which the service provider
manages to forward the message in encrypted form and then provide the true and
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fake password for attempting multiple iterations. If the response is not received from
the client side, the service provider terminates the process. One of the drawbacks
of this scheme is that clients can cheat based on a true password [109]. The process
has been further refined by proposing a protocol where the server furnishes part of
the decryption key to run a series of iterations. Some disadvantages on the part of
non-TTP-based schemes are lacking fairness, the high cost, and the performance issues
to iterate for confirmations, which is certainly not possible for the internet of things
technology. Currently, reliability and trustworthiness have been enhanced in terms
of the security of industrial and transportation IoT by applying a non-repudiation
mechanism in electronic events [110]. Furthermore, the non-repudiation mechanisms
are digital signature (service provider sends private key and receiver verifies its au-
thenticity), digital watermarking [111] (embedded with unique code for distribution
to claim the ownership), sign-encryption [112] (signed by the originator and then en-
crypted), public key cryptography [113] (integrity and authentication), and certificate
cryptography [114] (custody of user’s secret key).

VII. The seventh security challenge is “Key Management”, which is an integral part of
security infrastructure that is responsible for the management of numerous tasks
of IoT systems. The key management may be asymmetric, as shown in Figure 9,
or symmetric. In this connection, a symmetric-shared key [115] ensures safe and
secure communication in resource-constrained IoT devices. The keys generated for
the security of the entire system are generated and stored; however, the real issue
confronted in the mobile system is their distribution [116]. Various standards and
protocols are developed for IoT applications to redress security threats. Although
MQTT (message queuing telemetry transport) and CoAPs (constrained application
protocols) are frequently used by an IoT that lacks security mechanisms, the security
services of SSL (Secure Socket Shell) are utilized [117].
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To enhance the security of IoT devices and two-factor authentication, the improved
version of single-factor authentication termed KMS is introduced to minimize the associated
risk with IoT objects.

6. Conclusions

The internet of things is presently providing an immense number of applications with
a significant range of conveniences such as ease of use, efficiency, and cost-effectiveness to
end users. The positive trend has been witnessed by market players to invest significantly
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due to the sensing and communication potential capabilities of smart objects. This emerging
technology has enabled connectivity and interconnection between anything and everything.
Fully connected smart gadgets, sensors, and actuators are producing and dispatching sig-
nificant quantities of data from expanded networks of ubiquitous IoT platforms. However,
the dissemination of data on the protected medium is pivotal to safeguarding the interests
of end users and service providers.

This article provides an overview of the internet of things (IoT) and its network, which
is comprised of a three-layer architecture of the IoT. Various applications of the internet
of things with special emphasis on smart agriculture, smart health systems, smart homes,
and intelligent transport systems are judiciously discussed to highlight the significant
features of the entire arena. We have reserved adequate space to understand and discuss
the possible attacks that may adversely affect the data and infrastructure at various layers
of the IoT. This indicates that the security and privacy of data are critical areas of data
dissemination. The classification of security challenges is the last but not least part of data
transportation and storage that is considered future research directions in the area of the
internet of things. Furthermore, protocols applicable to security issues of IoT infrastructure
and data are greatly proposed.
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