
Citation: Wu, Y.; Chen, H.; Zhou, M.;

Yu, F. A Machine Learning Approach

for the Forecasting of Computing

Resource Requirements in Integrated

Circuit Simulation. Electronics 2023,

12, 95. https://doi.org/10.3390/

electronics12010095

Academic Editors: Andrea Prati, Luis

Javier García Villalba and Vincent

A. Cicirello

Received: 22 November 2022

Revised: 20 December 2022

Accepted: 23 December 2022

Published: 26 December 2022

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

electronics

Brief Report

A Machine Learning Approach for the Forecasting of Computing
Resource Requirements in Integrated Circuit Simulation
Yue Wu, Hua Chen *, Min Zhou and Faxin Yu

School of Aeronautics and Astronautics, Zhejiang University, Hangzhou 310000, China
* Correspondence: chenhua@zju.edu.cn

Abstract: For the iterative development of the chip, ensuring that the simulation is completed in
the shortest time is critical. To meet this demand, the common practice is to reduce simulation time
by providing more computing resources. However, this acceleration method has an upper limit.
After reaching the upper limit, providing more CPUs can no longer shorten the simulation time,
but will instead waste a lot of computing resources. Unfortunately, the recommended values of the
existing commercial tools are often higher than this upper limit. To better match this limit, a machine
learning optimization algorithm trained with a custom loss function is proposed. Experimental
results demonstrate that the proposed algorithm is superior to commercial tools in terms of both
accuracy and stability. In addition, the simulations using the resources predicted by the proposed
model maintain the same simulation completion time while reducing core hour consumption by
approximately 30%.

Keywords: machine learning; computer resource; integrated circuit simulation; prediction

1. Introduction

Faster time-to-market is critical for integrated circuit products and can seriously affect
market returns. Therefore, how to minimize simulation iteration time has always been a top
priority. A common practice is to provide more computing resources to boost simulation.
However, following Amdahl’s law [1], the maximum number of cores used to speed up
is limited by the parallelizable proportion of the program. After the provided resources
reach the optimal resources, adding more cores can no longer accelerate the simulation. A
speedup example for simulation that is 50% partially parallelizable is shown in Figure 1.
Therefore, how to accurately predict the optimal resource has become a key issue. In the
case of underestimation, the simulation time can be unnecessarily lengthened, whereas
overestimation not only leads to a waste of resources but also decreases the number of
concurrent simulation tasks in a computing cluster [2], which renders it impossible to
simultaneously process massive simulation tasks.

Traditional computing resource prediction relies heavily on the experience of engineers.
However, as the structure of integrated circuits becomes more complex and larger, it is
difficult for engineers to predict the optimal cores with intuition alone. To address this issue,
commercial tools from Cadence, including Spectre X [3], Accelerated Parallel Simulator
(APS) [4], and UltraSim [5], have proposed a forecasting method. Nevertheless, the problem
of overestimation still exists, as seen in Figure 1.

Fortunately, machine learning has shown great power in predicting the consumption
of resources by applications [6]. However, current research (listed in Table 1) focuses
primarily on the prediction of resource demands from the perspective of resource providers,
particularly the optimization of allocating resources to users to increase resource utilization
and provider revenues [7].

Electronics 2023, 12, 95. https://doi.org/10.3390/electronics12010095 https://www.mdpi.com/journal/electronics

https://doi.org/10.3390/electronics12010095
https://doi.org/10.3390/electronics12010095
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/electronics
https://www.mdpi.com
https://orcid.org/0000-0003-2326-5223
https://doi.org/10.3390/electronics12010095
https://www.mdpi.com/journal/electronics
https://www.mdpi.com/article/10.3390/electronics12010095?type=check_update&version=1

Electronics 2023, 12, 95 2 of 12

Electronics 2023, 12, x FOR PEER REVIEW 2 of 13

particularly the optimization of allocating resources to users to increase resource utiliza-
tion and provider revenues [7].

Table 1. Literature review.

Author Proposed Methodology Main Finding
Mahdi Rezaei and
Alexey Salnikov
(2018) [8]

A machine learning (ML) system based on the
collection of statistical data from the reference

queue systems.

The accuracy of prediction is highly associ-
ated with prior information before submitting

jobs.

Mahesh Balaji Philips
and Aswani Kumar
Cherukuri (2016) [9]

An innovative Predictive Resource Management
Framework (PRMF) to overcome the drawbacks
of the reactive Cloud Resource Management ap-

proach.

Reduced user-request rejections (error count),
shorter user-wait time, higher request pro-

cessing, and efficient utilization of available
cloud resources.

Nikravesh et al.,
(2015) [10]

A predictive auto-scaling system for the Infra-
structure as a Service (IaaS) layer of cloud com-

puting.

Achieved dynamic selecting the most appro-
priate prediction algorithm as well as sliding

window size.

Belgacem, Beghdad
Bey and Nacer (2020)
[11]

A scheduling method based on the Symbiotic Or-
ganism Search algorithm (MOSOS) to solve the
dynamic resource allocation problem in cloud

computing.

Achieved minimized makespan and cost, and
adapted to the dynamic change of the cloud.

Vadivel Ramasamy
and SudalaiMuthu
Thalavai Pillai (2020)
[12]

A novel dynamic resource allocation approach
based on Hybrid Particle Swarm Optimization

and Modified Genetic Algorithm (HPSO-MGA).

Achieved less time for dynamically allocating
the resources in terms of average waiting

time, response time, load balancing, relative
error, and throughput.

Chaitra et.al. (2022)
[13]

An independent task scheduling approach using
a multi-objective task scheduling optimization
based on the Artificial Bee Colony Algorithm

with a Q-learning algorithm.

Outperformed in terms of reducing
makespan, reducing cost, reducing the degree
of imbalance, increasing throughput, and av-

erage resource utilization.

Ali Belgacem et al.,
(2020) [14]

A multi-objective search algorithm called the
Spacing Multi-Objective Antlion algorithm (S-

MOAL) to minimize both the makespan and the
cost of using virtual machines.

Outperformed in terms of makespan, cost,
deadline, fault tolerance, and energy con-

sumption.

Figure 1. Speedup for simulation that is 50% partially parallelizable. Figure 1. Speedup for simulation that is 50% partially parallelizable.

Table 1. Literature review.

Author Proposed Methodology Main Finding

Mahdi Rezaei and Alexey
Salnikov (2018) [8]

A machine learning (ML) system based on the
collection of statistical data from the reference

queue systems.

The accuracy of prediction is highly associated
with prior information before submitting jobs.

Mahesh Balaji Philips and
Aswani Kumar Cherukuri
(2016) [9]

An innovative Predictive Resource Management
Framework (PRMF) to overcome the drawbacks

of the reactive Cloud Resource Management
approach.

Reduced user-request rejections (error count),
shorter user-wait time, higher request processing,

and efficient utilization of available cloud
resources.

Nikravesh et al.,
(2015) [10]

A predictive auto-scaling system for the
Infrastructure as a Service (IaaS) layer of cloud

computing.

Achieved dynamic selecting the most
appropriate prediction algorithm as well as

sliding window size.

Belgacem, Beghdad Bey
and Nacer (2020) [11]

A scheduling method based on the Symbiotic
Organism Search algorithm (MOSOS) to solve

the dynamic resource allocation problem in
cloud computing.

Achieved minimized makespan and cost, and
adapted to the dynamic change of the cloud.

Vadivel Ramasamy and
SudalaiMuthu Thalavai
Pillai (2020) [12]

A novel dynamic resource allocation approach
based on Hybrid Particle Swarm Optimization

and Modified Genetic Algorithm (HPSO-MGA).

Achieved less time for dynamically allocating
the resources in terms of average waiting time,

response time, load balancing, relative error, and
throughput.

Chaitra et.al. (2022) [13]

An independent task scheduling approach using
a multi-objective task scheduling optimization
based on the Artificial Bee Colony Algorithm

with a Q-learning algorithm.

Outperformed in terms of reducing makespan,
reducing cost, reducing the degree of imbalance,

increasing throughput, and average resource
utilization.

Ali Belgacem et al.,
(2020) [14]

A multi-objective search algorithm called the
Spacing Multi-Objective Antlion algorithm

(S-MOAL) to minimize both the makespan and
the cost of using virtual machines.

Outperformed in terms of makespan, cost,
deadline, fault tolerance, and energy

consumption.

Although these resource prediction methods improve the overall efficiency of high-
performance platforms, they ignore the need to obtain simulation results in the shortest time
possible. This paper proposes a machine learning-based model for predicting integrated circuit
simulation resource requirements. The contributions of this work include the following:

Electronics 2023, 12, 95 3 of 12

• Our algorithm outperforms commercial tools in terms of precision and consistency.
• To our knowledge, our method is the first to apply machine learning to predict the

optimal resources required for integrated circuit simulations.
• Our model uses the custom Mean Squared Error (MSE) to enhance overall prediction

outcomes and reduce simulation time.
• Our method can reduce core hour consumption by approximately 30% compared to

commercial tools while maintaining the same completion time.

In this paper, we investigate machine learning models for integrated circuit simulation
resource prediction. Implementing machine learning models for resource prediction in-
volves five steps: data collection, data preprocessing, training, prediction, and application.
The workflow of developing resource prediction models using machine learning is depicted
in Figure 2. Initially, simulation samples comprised of a netlist, simulation options, and
optimal computing resources are collected. Then, data preprocessing is performed on the
netlist and simulation parameters to obtain model features. After data preprocessing, the
k-fold cross-validation method is used to select the optimal hyperparameters for training
a neural network. After training, the model estimated the required resources for the sim-
ulation in the test set. Finally, the simulation is provided with the predicted resources,
and the resource consumption of circuit simulations is analyzed. The article structure as
corresponds to the procedure is arranged as follows. In Section 2, the model engine and
the data preprocessing for obtaining model features are presented. Section 3 introduces
the experiments and discussion, including data collection, training, prediction results, and
application effects. Section 4 concludes this paper.

Electronics 2023, 12, x FOR PEER REVIEW 3 of 13

Although these resource prediction methods improve the overall efficiency of high-
performance platforms, they ignore the need to obtain simulation results in the shortest
time possible. This paper proposes a machine learning-based model for predicting inte-
grated circuit simulation resource requirements. The contributions of this work include
the following:
• Our algorithm outperforms commercial tools in terms of precision and consistency.
• To our knowledge, our method is the first to apply machine learning to predict the

optimal resources required for integrated circuit simulations.
• Our model uses the custom Mean Squared Error (MSE) to enhance overall prediction

outcomes and reduce simulation time.
• Our method can reduce core hour consumption by approximately 30% compared to

commercial tools while maintaining the same completion time.
In this paper, we investigate machine learning models for integrated circuit simula-

tion resource prediction. Implementing machine learning models for resource prediction
involves five steps: data collection, data preprocessing, training, prediction, and applica-
tion. The workflow of developing resource prediction models using machine learning is
depicted in Figure 2. Initially, simulation samples comprised of a netlist, simulation op-
tions, and optimal computing resources are collected. Then, data preprocessing is per-
formed on the netlist and simulation parameters to obtain model features. After data pre-
processing, the k-fold cross-validation method is used to select the optimal hyperparam-
eters for training a neural network. After training, the model estimated the required re-
sources for the simulation in the test set. Finally, the simulation is provided with the pre-
dicted resources, and the resource consumption of circuit simulations is analyzed. The
article structure as corresponds to the procedure is arranged as follows. In Section 2, the
model engine and the data preprocessing for obtaining model features are presented. Sec-
tion 3 introduces the experiments and discussion, including data collection, training, pre-
diction results, and application effects. Section 4 concludes this paper.

Start

Collect netlist,
simulation options, and

optimal resource.

Raw Database

Data preprocessing to
get model features

Cleaned
Database

Split database into
training, validation,

testing set

Train database with
machine learning

Evaluate by
performance metrics

Satisfy

Cross validation&
Hyperparameter

Tuning

Predict new data
Analysis resource
consumption in

simulation

End

Y

N

Figure 2. Workflow for implementing machine learning models for resource prediction.

Figure 2. Workflow for implementing machine learning models for resource prediction.

2. Proposed Approach
2.1. Model Feature

According to the circuit simulation mechanism, the simulation-relevant properties
can be divided into two parts: the netlist, which describes the connectivity of the circuit,
and the simulator options, which influence the simulation process [15]. Consequently,
the model features are derived from the netlist and simulator options. In this paper, the
distribution of components calculated by a hierarchical tree approach is chosen as a part
of the model feature. On the other hand, we analyze the simulator solution process and

Electronics 2023, 12, 95 4 of 12

select the component parameters and simulation options that influence computing resource
requirements as model features.

2.1.1. Component Distribution

In general, circuit simulation consists of pre-layout simulation and post-layout simula-
tion. Unlike the pre-layout simulation netlist, the post-layout simulation netlist contains
numerous parasitic elements. Meanwhile, the post-layout simulation requires different
computational resources than the pre-layout simulation. Consequently, it is necessary to
select the distribution of components as a part of model features.

In large designs, it is common practice to describe circuits using a folded hierarchical
netlist. To determine the component distribution, the folded hierarchical netlist is de-
composed by the hierarchical tree method. Figure 3 shows a folded hierarchical netlist
of a two-stage operational amplifier circuit at the schematic level. The corresponding
hierarchical tree is shown in Figure 4.

Electronics 2023, 12, x FOR PEER REVIEW 4 of 13

2. Proposed Approach
2.1. Model Feature

According to the circuit simulation mechanism, the simulation-relevant properties
can be divided into two parts: the netlist, which describes the connectivity of the circuit,
and the simulator options, which influence the simulation process [15]. Consequently, the
model features are derived from the netlist and simulator options. In this paper, the dis-
tribution of components calculated by a hierarchical tree approach is chosen as a part of
the model feature. On the other hand, we analyze the simulator solution process and select
the component parameters and simulation options that influence computing resource re-
quirements as model features.

2.1.1. Component Distribution
In general, circuit simulation consists of pre-layout simulation and post-layout sim-

ulation. Unlike the pre-layout simulation netlist, the post-layout simulation netlist con-
tains numerous parasitic elements. Meanwhile, the post-layout simulation requires differ-
ent computational resources than the pre-layout simulation. Consequently, it is necessary
to select the distribution of components as a part of model features.

In large designs, it is common practice to describe circuits using a folded hierarchical
netlist. To determine the component distribution, the folded hierarchical netlist is decom-
posed by the hierarchical tree method. Figure 3 shows a folded hierarchical netlist of a
two-stage operational amplifier circuit at the schematic level. The corresponding hierar-
chical tree is shown in Figure 4.

Figure 3. Folded hierarchical netlist.

Figure 3. Folded hierarchical netlist.
Electronics 2023, 12, x FOR PEER REVIEW 5 of 13

D
es

ig
n

C
ir

cu
it

Output Stage

ISOURCE

ISOURCE

ISOURCE

Current Mirrror

RESISTOR

VSOURCE

CAPACITOR

VSOURCE

VSOURCE

Current Mirrror

NMOSFET

NMOSFET

PMOSFET

PMOSFET

PMOSFET

PMOSFET

NMOSFET

NMOSFET

NMOSFET

NMOSFET

Input Differential pair

PMOSFET

NMOSFET

NMOSFET

NMOSFET

Design Circuit

Sub Circuit

Electronic component

VSOURCE

Figure 4. Hierarchical tree.

In the hierarchical tree, the root node represents the entire design circuit, and the leaf
nodes represent instances of electronic components. Each leaf node records two charac-
teristics: type and connection. The type indicates the type of component, such as a resistor,
capacitor, source, etc. The connection is the internal connection ports of a component, such
as a drain and gate of a metal–oxide–semiconductor field-effect transistor are connected
together. Considering that the internal connection of components influences the conver-
gence of the circuit, the component with the same type and port connection has become
the smallest statistical unit for component distribution. Table 2 displays the component
distribution of the hierarchical tree in Figure 4.

Table 2. Component distribution.

Type Self-Connection Number
ISOURCE null 3
VSOURCE null 3
NMOSFET null 7
NMOSFET gate, drain 2
PMOSFET null 4
PMOSFET gate, drain 1
RESISTOR null 1

CAPACITOR null 1
INDUCTOR null 0

NDIODE null 0
PDIODE null 0
PNP-BJT null 0
PNP-BJT emitter, base 0
NPN-BJT null 0
NPN -BJT emitter, base 0

Figure 4. Hierarchical tree.

Electronics 2023, 12, 95 5 of 12

In the hierarchical tree, the root node represents the entire design circuit, and the
leaf nodes represent instances of electronic components. Each leaf node records two
characteristics: type and connection. The type indicates the type of component, such
as a resistor, capacitor, source, etc. The connection is the internal connection ports of a
component, such as a drain and gate of a metal–oxide–semiconductor field-effect transistor
are connected together. Considering that the internal connection of components influences
the convergence of the circuit, the component with the same type and port connection
has become the smallest statistical unit for component distribution. Table 2 displays the
component distribution of the hierarchical tree in Figure 4.

Table 2. Component distribution.

Type Self-Connection Number

ISOURCE null 3
VSOURCE null 3
NMOSFET null 7
NMOSFET gate, drain 2
PMOSFET null 4
PMOSFET gate, drain 1
RESISTOR null 1

CAPACITOR null 1
INDUCTOR null 0

NDIODE null 0
PDIODE null 0
PNP-BJT null 0
PNP-BJT emitter, base 0
NPN-BJT null 0
NPN -BJT emitter, base 0

2.1.2. Simulation Options

The development of Electronic Design Automation is accompanied by a concomitant
proliferation of more emulators, each with a unique naming convention for the parameters.
Despite the differing naming regulations, the substantive meaning of the parameters of the
same emulator type remains the same. This naturally guarantees that the simulator options
selected as model features exist in multiple simulators.

Simulation is the process of solving nonlinear differential-algebraic equations itera-
tively. The simulator estimates the voltages at each node of a circuit and then calculates
the mesh currents using the conductance. The currents are then utilized to recalibrate the
voltages at each node, and the iteration is repeated until all of the node voltages have
stabilized within predefined tolerance limits. During a transient analysis, the simulator
executes this iterative process at each time step until the stop time is reached. If the voltage
does not converge at a time step, the simulator will decrease the time step and repeat the
iterative process.

Table 3 lists the simulation options that affect the simulation process. The minimum
period of the signal source and the start and end time of the simulation determines the
change of the signal, which affects the convergence process. The convergence accuracy and
error accuracy, as well as the simulator accuracy, directly determine the convergence of
the simulation. The time step determines the number of retries during the process. These
options contain both categorical and numerical attributes. Categorical labels are converted
to numeric values ranging from one to the number of types for the attribute. For example,
the simulator accuracy is categorized as liberal, moderate, or conservative. When accuracy
is conservative, the feature corresponding to simulator accuracy equals three. For numeric
attributes, the attribute value was recorded after being unified into the smallest unit. For
example, the time step attribute is unified into femtoseconds, such as one picosecond being
converted to one thousand femtoseconds for recording.

Electronics 2023, 12, 95 6 of 12

Table 3. Simulation options.

Feature Attributes

Simulator type categorical
Simulator accuracy categorical

Error preset accuracy categorical
Minimum Port source period numerical

Minimum Voltage source period numerical
Minimum Current source period numerical

Relative convergence criterion numerical
Voltage absolute tolerance convergence criterion numerical
Current absolute tolerance convergence criterion numerical
Charge absolute tolerance convergence criterion numerical

Transient Analysis start time numerical
Transient Analysis stop time numerical

Transient Analysis Minimum time step numerical
Transient Analysis Maximum time step numerical

2.2. Model Engine
2.2.1. Support Vector Regression

The application of a Support Vector Machine (SVM) to traditional regression analysis
is known as Support Vector Regression (SVR). The cost function of SVM is the l2-normed
coefficient vector instead of the MSE. In SVM, the error term is processed in the constraints
by setting the absolute error to define the specified boundaries. The most important part
of SVM lies in the kernel function. The common no-linear kernel function in SVM is the
Gaussian Radius Basis function, defined as

K(x, z) = e(−
||x−z||2

2σ2) (1)

The σ parameter can be seen as the radius of influence of samples selected, and
||x− z||2 is the squared Euclidean distance between two feature vectors x and z.

2.2.2. Neural Network

A neural network consists of an input layer, an output layer, and multiple hidden
layers consisting of a set of neurons. The neurons arranged on the hidden layer transform
the information from the neurons in the previous layer by performing linear combinations
and non-linear activation functions. After the transformation, the network quantifies the
loss calculated by the loss function based on the deviation between the output value and
the expected value. The backpropagation algorithm is then used to update the weights and
biases within the neural network. Following a predetermined number of iterations, model
training is complete. A key strength of a neural network is its ability to capture non-linear
attributes in data [6]. An additional benefit is that a neural network’s loss function can be
tailored to meet diverse requirements. In this work, two loss functions are investigated.
One is the commonly used standard MSE, defined as

JMSE =
1
n

n

∑
i=1

(yi − ŷi)
2 (2)

where yi refers to the best resource and ŷi is the estimation result calculated by the neural
network. A second index for quantifying error is a customized loss function for the
prediction of computing resources, which is defined as

J = JMSE +
1
n

n

∑
i=1

(
|yi − ŷi|+ yi − ŷi

yi
)

2
(3)

Electronics 2023, 12, 95 7 of 12

Compared to standard MSE, this customized loss function imposes additional penal-
ties in the case of underestimation (ŷi < yi). The principle is that the increase in simulation
time caused by underestimation is unacceptable in comparison to the waste of resources
resulting from overestimation. According to Amdahl’s law [1], simulations with different
parallelizable ratios require different optimal computing resources. The same prediction
bias has inconsistent effects on speedup for simulations requiring different computational
resources. For example, when the target value is large and the model prediction is slightly
smaller than the target, the deviation may have little effect on the acceleration of the simu-
lation. However, when the target value is small and the prediction has the same deviation,
this deviation may have a significant effect on the acceleration of the simulation. Therefore,
the penalty term is constructed based on the error rate.

2.2.3. Random Forest

A random forest (RF) model is comprised of multiple decision trees, where each tree
constructed from independent samples generates predictions based on a multi-level if-then-
else rule. To mitigate the instability of each tree, the overall forecast results are produced
by averaging the results from each tree in the forest. Compared to the neural network
model, the random forest model is considerably more interpretable. However, off-the-shelf
random forest engines rarely support custom loss functions.

3. Experiments and Discussion

In this research, the SVR and RF models were implemented using the Scikit-Learn
library [16], while the neural network was constructed using Keras. Moreover, these
machine learning models, the commercial tools for estimating the computational resources
required for circuit simulation are compared in the experiment.

3.1. Establishing Dataset

A circuit simulation task consists of the circuit, simulation options, and simulator. In
this experiment, the collected circuits were taken from several sources, including standard
textbooks [17,18] and papers in the literature [19–24], which are designed using standard
foundry analog libraries and commercial CMOS technology. The simulation options are
set by circuit design experts; Spectre X, APS, and UltraSim are selected as simulators. A
total of five thousand post-layout simulation tasks were gathered. Then, to obtain the
model target, varied computing resources are assigned to each simulation task, and the
resource with the shortest elapsed time is collected as the optimal computing resource.
Finally, we employ the method proposed in Section 2.1 to extract component distribution
and resource-related simulation options from the simulation task as model features. To
obtain a more comfortable distribution, the natural logarithm is applied to the skewed data.
The collected dataset is visualized in Figure 5.

3.2. Model Training

The expressive capacity of a machine learning model is heavily influenced by param-
eter selection. During the five-fold cross-validation process, the grid search method was
used to determine the optimal hyperparameters of the targeted method. For the SVR model,
the Gaussian kernel function was used as the kernel function, and the kernel coefficient and
regularization parameters were set to 0.0625 and 26, respectively. For the RF model in this
research, the number of decision trees and the maximum depth of the tree were selected
as 146 and 12, respectively. In the neural network model, the Adam [25] method was
employed for optimization, while the Rectified Linear Unit (ReLU) served as the activation
function. Using MSE as the loss function, a neural network with 10 hidden layers and
eight units per layer achieves the highest level of prediction accuracy. In contrast, when a
custom MSE was used as the loss function, the best predictions came from a model where
the hidden layer had 8, 8, 6, 6, 4, 4, 4, and 4 units in order.

Electronics 2023, 12, 95 8 of 12

Electronics 2023, 12, x FOR PEER REVIEW 8 of 13

3.1. Establishing Dataset
A circuit simulation task consists of the circuit, simulation options, and simulator. In

this experiment, the collected circuits were taken from several sources, including standard
textbooks [17,18] and papers in the literature [19–24], which are designed using standard
foundry analog libraries and commercial CMOS technology. The simulation options are
set by circuit design experts; Spectre X, APS, and UltraSim are selected as simulators. A
total of five thousand post-layout simulation tasks were gathered. Then, to obtain the
model target, varied computing resources are assigned to each simulation task, and the
resource with the shortest elapsed time is collected as the optimal computing resource.
Finally, we employ the method proposed in Section 2.1 to extract component distribution
and resource-related simulation options from the simulation task as model features. To
obtain a more comfortable distribution, the natural logarithm is applied to the skewed
data. The collected dataset is visualized in Figure 5.

(a) Input: Transient Analysis stop time

(ns)
(b) Input: Transient Analysis Maxi-

mum time step (ps)
(c) Input: Minimum Voltage source pe-

riod (ps)

(d) Input: Log of NMOSFET (e) Input: Log of PMOSFET (f) Input: Log of RESISTOR

(g) Input: Log of CAPACITOR (h) Input: Log of gate-drain connected

NMOSFET
(i) Input: Log of gate-drain connected

PMOSFET

Electronics 2023, 12, x FOR PEER REVIEW 9 of 13

(j) Input: NDIODE (k) Input: PDIODE (l) Output: Optimal Resource (core)

Figure 5. Distribution of collected dataset.

3.2. Model Training
The expressive capacity of a machine learning model is heavily influenced by param-

eter selection. During the five-fold cross-validation process, the grid search method was
used to determine the optimal hyperparameters of the targeted method. For the SVR
model, the Gaussian kernel function was used as the kernel function, and the kernel coef-
ficient and regularization parameters were set to 0.0625 and 26, respectively. For the RF
model in this research, the number of decision trees and the maximum depth of the tree
were selected as 146 and 12, respectively. In the neural network model, the Adam [25]
method was employed for optimization, while the Rectified Linear Unit (ReLU) served as
the activation function. Using MSE as the loss function, a neural network with 10 hidden
layers and eight units per layer achieves the highest level of prediction accuracy. In con-
trast, when a custom MSE was used as the loss function, the best predictions came from a
model where the hidden layer had 8, 8, 6, 6, 4, 4, 4, and 4 units in order.

3.3. Prediction Results
Since the number of CPU cores is an integer and the predictions are decimals, the

predictions were rounded up to ensure that the simulation could be done as quickly as
possible. In accordance with generally accepted standards for measuring model perfor-
mance, the accuracy of a model is usually determined by two factors: the mean square
error (MSE), which indicates how far the predicted values deviate from the target values;
and the correlation coefficient, which indicates how closely the predicted values match
the model’s input features.

Table 4 displays the performance of the model on the valid dataset during five-fold
cross-validation. Among these models, the neural network model employing the standard
MSE as a loss function achieved the highest correlation and smallest MSE, whereas the
commercial tools achieved the lowest correlation and largest MSE. In addition, the neural
network model with custom MSE achieves nearly the same correlation and MSE as the
model with standard MSE. The experiment demonstrates that neural network models out-
perform commercial tools in terms of MSE and correlation coefficients

Table 4. Five-fold cross-validation results.

Model MSE Correlation
Commercial tools 29.561 0.521

Random Forest 9.887 0.827
Support Vector Regression 13.891 0.804

Neural network (Standard MSE) 2.163 0.942
Neural network (Custom MSE) 0.942 0.939

Figure 5. Distribution of collected dataset.

3.3. Prediction Results

Since the number of CPU cores is an integer and the predictions are decimals, the
predictions were rounded up to ensure that the simulation could be done as quickly as
possible. In accordance with generally accepted standards for measuring model perfor-
mance, the accuracy of a model is usually determined by two factors: the mean square
error (MSE), which indicates how far the predicted values deviate from the target values;

Electronics 2023, 12, 95 9 of 12

and the correlation coefficient, which indicates how closely the predicted values match the
model’s input features.

Table 4 displays the performance of the model on the valid dataset during five-fold
cross-validation. Among these models, the neural network model employing the standard
MSE as a loss function achieved the highest correlation and smallest MSE, whereas the
commercial tools achieved the lowest correlation and largest MSE. In addition, the neural
network model with custom MSE achieves nearly the same correlation and MSE as the
model with standard MSE. The experiment demonstrates that neural network models
outperform commercial tools in terms of MSE and correlation coefficients

Table 4. Five-fold cross-validation results.

Model MSE Correlation

Commercial tools 29.561 0.521
Random Forest 9.887 0.827

Support Vector Regression 13.891 0.804
Neural network (Standard MSE) 2.163 0.942
Neural network (Custom MSE) 0.942 0.939

3.4. Neural Network with Custom Loss Function

The model accuracy of neural network models with different loss functions is com-
parable, which is insufficient for selecting the optimal model. In order to further evaluate
neural network models with different loss functions, the prediction results of neural net-
work models are examined. The prediction results are shown in Figure 6, where the black
line represents the optimal fit between the predictions and target results. It can be seen
that the model with custom MSE shifts the forecasts upward, reducing the quantity of
underestimated computing resources. Consequently, the model using the custom MSE as
the loss function only has 16.7% underestimated predictions, whereas the neural network
using the MSE has a 53.4% rate of underestimated predictions.

Electronics 2023, 12, x FOR PEER REVIEW 10 of 13

3.4. Neural Network with Custom Loss Function
The model accuracy of neural network models with different loss functions is com-

parable, which is insufficient for selecting the optimal model. In order to further evaluate
neural network models with different loss functions, the prediction results of neural net-
work models are examined. The prediction results are shown in Figure 6, where the black
line represents the optimal fit between the predictions and target results. It can be seen
that the model with custom MSE shifts the forecasts upward, reducing the quantity of
underestimated computing resources. Consequently, the model using the custom MSE as
the loss function only has 16.7% underestimated predictions, whereas the neural network
using the MSE has a 53.4% rate of underestimated predictions.

(a) Standard neural network model (b) Custom neural network model

Figure 6. Optimal resources versus prediction on the test dataset.

In conclusion, the neural network utilizing the custom MSE yielded nearly identical
MSE and correlation, as well as fewer underestimated samples, compared to the model
with standard MSE. Considering the need to complete the simulation as quickly as possi-
ble, the neural network with the customized MSE is the optimal model.

3.5. Error Distribution
In addition to accuracy, another essential metric for evaluating models is stability,

which is typically defined by the distribution of prediction errors. The distribution of pre-
diction errors corresponds to the difference between the predicted and the optimal value.
The prediction error is negative when it is underestimated and positive when it is overes-
timated. As depicted in Figure 7, the error variances of commercial forecasts are substan-
tial and distributed across positive intervals. In contrast, the error distribution of our
method is close to zero and has a smaller variance. This demonstrates that our model is
more stable than commercial tools.

Figure 6. Optimal resources versus prediction on the test dataset.

In conclusion, the neural network utilizing the custom MSE yielded nearly identical
MSE and correlation, as well as fewer underestimated samples, compared to the model
with standard MSE. Considering the need to complete the simulation as quickly as possible,
the neural network with the customized MSE is the optimal model.

3.5. Error Distribution

In addition to accuracy, another essential metric for evaluating models is stability,
which is typically defined by the distribution of prediction errors. The distribution of
prediction errors corresponds to the difference between the predicted and the optimal
value. The prediction error is negative when it is underestimated and positive when it is

Electronics 2023, 12, 95 10 of 12

overestimated. As depicted in Figure 7, the error variances of commercial forecasts are
substantial and distributed across positive intervals. In contrast, the error distribution of
our method is close to zero and has a smaller variance. This demonstrates that our model
is more stable than commercial tools.

Electronics 2023, 12, x FOR PEER REVIEW 11 of 13

Figure 7. Error distribution in the test dataset.

3.6. Application Effect
The goal of prediction is to reduce redundant computing resources without compro-

mising simulation speed. To verify the ability of the proposed model to accomplish this
purpose, three computing environments with varying performance levels were estab-
lished. Intel Xeon® Gold 6250 processors are utilized in the high-performance computing
cluster; Intel Xeon® Gold 6154 processors are utilized in the medium-performance com-
puting cluster; Intel Xeon® Gold 5660 processors are utilized in the low-performance com-
puting cluster. Moreover, the core, each cluster contains 128 GB of memory, a 1 TB SSD, a
10 Gbps NIC, and runs CentOS 7.9.

As shown in Figure 8, the nearly identical simulation elapsed time demonstrates that
the proposed model has almost the same effect on the simulation speed as the commercial
tools. Meanwhile, compared to the commercial tools, the simulation using the resources
predicted by our model consumes no more than 70% of core hours. In summary, com-
pared to the commercial tools, our method can reduce core hours by at least 30% without
affecting simulation time.

(a) Elapsed time (h) (b) Core-hour

Figure 8. Resource consumption of the test dataset in various environments.

4. Conclusions and Future Works
To the best of our knowledge, this paper is the first systematic study of the perfor-

mance of machine learning algorithms in predicting the computing resources required for
circuit simulation. In the selection of model features, simulator options are selected by
analyzing the simulation process, and the distribution of components is determined using
a hierarchical tree-based method. In addition, a custom loss function is used to improve
the performance of the model. Experiments demonstrate that our model outperforms

Figure 7. Error distribution in the test dataset.

3.6. Application Effect

The goal of prediction is to reduce redundant computing resources without compro-
mising simulation speed. To verify the ability of the proposed model to accomplish this
purpose, three computing environments with varying performance levels were established.
Intel Xeon® Gold 6250 processors are utilized in the high-performance computing cluster;
Intel Xeon® Gold 6154 processors are utilized in the medium-performance computing
cluster; Intel Xeon® Gold 5660 processors are utilized in the low-performance computing
cluster. Moreover, the core, each cluster contains 128 GB of memory, a 1 TB SSD, a 10 Gbps
NIC, and runs CentOS 7.9.

As shown in Figure 8, the nearly identical simulation elapsed time demonstrates that
the proposed model has almost the same effect on the simulation speed as the commercial
tools. Meanwhile, compared to the commercial tools, the simulation using the resources
predicted by our model consumes no more than 70% of core hours. In summary, compared
to the commercial tools, our method can reduce core hours by at least 30% without affecting
simulation time.

Electronics 2023, 12, x FOR PEER REVIEW 11 of 13

Figure 7. Error distribution in the test dataset.

3.6. Application Effect
The goal of prediction is to reduce redundant computing resources without compro-

mising simulation speed. To verify the ability of the proposed model to accomplish this
purpose, three computing environments with varying performance levels were estab-
lished. Intel Xeon® Gold 6250 processors are utilized in the high-performance computing
cluster; Intel Xeon® Gold 6154 processors are utilized in the medium-performance com-
puting cluster; Intel Xeon® Gold 5660 processors are utilized in the low-performance com-
puting cluster. Moreover, the core, each cluster contains 128 GB of memory, a 1 TB SSD, a
10 Gbps NIC, and runs CentOS 7.9.

As shown in Figure 8, the nearly identical simulation elapsed time demonstrates that
the proposed model has almost the same effect on the simulation speed as the commercial
tools. Meanwhile, compared to the commercial tools, the simulation using the resources
predicted by our model consumes no more than 70% of core hours. In summary, com-
pared to the commercial tools, our method can reduce core hours by at least 30% without
affecting simulation time.

(a) Elapsed time (h) (b) Core-hour

Figure 8. Resource consumption of the test dataset in various environments.

4. Conclusions and Future Works
To the best of our knowledge, this paper is the first systematic study of the perfor-

mance of machine learning algorithms in predicting the computing resources required for
circuit simulation. In the selection of model features, simulator options are selected by
analyzing the simulation process, and the distribution of components is determined using
a hierarchical tree-based method. In addition, a custom loss function is used to improve
the performance of the model. Experiments demonstrate that our model outperforms

Figure 8. Resource consumption of the test dataset in various environments.

Electronics 2023, 12, 95 11 of 12

4. Conclusions and Future Works

To the best of our knowledge, this paper is the first systematic study of the performance
of machine learning algorithms in predicting the computing resources required for circuit
simulation. In the selection of model features, simulator options are selected by analyzing
the simulation process, and the distribution of components is determined using a hierarchical
tree-based method. In addition, a custom loss function is used to improve the performance
of the model. Experiments demonstrate that our model outperforms commercial tools in
terms of stability and precision. Meanwhile, the application experiments conducted in various
computing environments demonstrate that our model can reduce core hours by at least 30%
compared to the commercial tools without affecting simulation time.

Due to the variety and complexity of circuits, there is no universal approach for
acquiring circuit structure metadata. In future work, we intend to extract the metadata of
the circuit structure and utilize it as a model feature to further enhance the accuracy of the
model prediction.

Author Contributions: Y.W.: Formal analysis, Investigation. H.C.: Model building, Coding, Writing—
original draft. M.Z.: Writing—original draft, Formal analysis. F.Y.: Data collection. All authors have
read and agreed to the published version of the manuscript.

Funding: This research received no external funding.

Data Availability Statement: The data presented in this study are available on request from the
corresponding author.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Amdahl, G.M. Validity of the Single Processor Approach to Achieving Large Scale Computing Capabilities. In Proceedings of the

Spring Joint Computer Conference on—AFIPS ’67 (Spring), Atlantic City, NJ, USA, 18–20 April 1967; ACM Press: New York, NY,
USA, 1967; p. 483.

2. Albers, R.; Suijs, E.; de With, P.H.N. Triple-C: Resource-Usage Prediction for Semi-Automatic Parallelization of Groups of Dynamic
Image-Processing Tasks. In Proceedings of the 2009 IEEE International Symposium on Parallel Distributed Processing, Rome,
Italy, 23–29 May 2009; pp. 1–8.

3. Spectre X Simulator. Available online: https://www.cadence.com/en_US/home/tools/custom-ic-analog-rf-design/circuit-simu
lation/spectre-x-simulator.html (accessed on 9 December 2022).

4. Spectre Accelerated Parallel Simulator. Available online: https://www.cadence.com/en_US/home/tools/custom-ic-analog-rf-d
esign/library-characterization/spectre-accelerated-parallel-simulator.html (accessed on 9 December 2022).

5. Cadence Virtuoso Platform Provides 10x Improvement in Verification Time for VIS. Available online: https://www.cadence.com/en
_US/home/company/newsroom/press-releases/pr/2006/cadencevirtuosoplatformprovides10ximprovementinverificationtime
forvis.html (accessed on 9 December 2022).

6. Matsunaga, A.; Fortes, J.A.B. On the Use of Machine Learning to Predict the Time and Resources Consumed by Applications. In
Proceedings of the 2010 10th IEEE/ACM International Conference on Cluster, Cloud and Grid Computing, Melbourne, VIC,
Australia, 17–20 May 2010; pp. 495–504.

7. Kholidy, H.A. An Intelligent Swarm Based Prediction Approach For Predicting Cloud Computing User Resource Needs. Comput.
Commun. 2020, 151, 133–144. [CrossRef]

8. Rezaei, M.; Salnikov, A. Machine Learning Techniques to Perform Predictive Analytics of Task Queues Guided by Slurm. In
Proceedings of the 2018 Global Smart Industry Conference (GloSIC), Chelyabinsk, Russia, 13–15 November 2018; pp. 1–6.

9. Balaji, M.; Aswani Kumar, C.; Rao, G.S.V.R.K. Predictive Cloud Resource Management Framework for Enterprise Workloads.
J. King Saud Univ.-Comput. Inf. Sci. 2018, 30, 404–415. [CrossRef]

10. Nikravesh, A.Y.; Ajila, S.A.; Lung, C.-H. Towards an Autonomic Auto-Scaling Prediction System for Cloud Resource Provisioning.
In Proceedings of the 2015 IEEE/ACM 10th International Symposium on Software Engineering for Adaptive and Self-Managing
Systems, Florence, Italy, 18–19 May 2015; pp. 35–45.

11. Belgacem, A.; Beghdad Bey, K.; Nacer, H. Dynamic Resource Allocation Method Based on Symbiotic Organism Search Algorithm
in Cloud Computing. IEEE Trans. Cloud Comput. 2020, 10, 1714–1725. [CrossRef]

12. Ramasamy, V.; Pillai, S. An Effective HPSO-MGA Optimization Algorithm for Dynamic Resource Allocation in Cloud Environ-
ment. Clust. Comput. 2020, 23, 1711–1724. [CrossRef]

13. Chaitra, T.; Agrawal, S.; Jijo, J.; Arya, A. Multi-Objective Optimization for Dynamic Resource Provisioning in a Multi-Cloud Envi-
ronment Using Lion Optimization Algorithm. In Proceedings of the 2020 IEEE 20th International Symposium on Computational
Intelligence and Informatics (CINTI), Budapest, Hungary, 5–7 November 2020; pp. 83–90. [CrossRef]

https://www.cadence.com/en_US/home/tools/custom-ic-analog-rf-design/circuit-simulation/spectre-x-simulator.html
https://www.cadence.com/en_US/home/tools/custom-ic-analog-rf-design/circuit-simulation/spectre-x-simulator.html
https://www.cadence.com/en_US/home/tools/custom-ic-analog-rf-design/library-characterization/spectre-accelerated-parallel-simulator.html
https://www.cadence.com/en_US/home/tools/custom-ic-analog-rf-design/library-characterization/spectre-accelerated-parallel-simulator.html
https://www.cadence.com/en_US/home/company/newsroom/press-releases/pr/2006/cadencevirtuosoplatformprovides10ximprovementinverificationtimeforvis.html
https://www.cadence.com/en_US/home/company/newsroom/press-releases/pr/2006/cadencevirtuosoplatformprovides10ximprovementinverificationtimeforvis.html
https://www.cadence.com/en_US/home/company/newsroom/press-releases/pr/2006/cadencevirtuosoplatformprovides10ximprovementinverificationtimeforvis.html
http://doi.org/10.1016/j.comcom.2019.12.028
http://doi.org/10.1016/j.jksuci.2016.10.005
http://doi.org/10.1109/TCC.2020.3002205
http://doi.org/10.1007/s10586-020-03118-x
http://doi.org/10.1109/CINTI51262.2020.9305822

Electronics 2023, 12, 95 12 of 12

14. Belgacem, A.; Beghdad-Bey, K.; Nacer, H.; Bouznad, S. Efficient Dynamic Resource Allocation Method for Cloud Computing
Environment. Cluster Comput. 2020, 23, 2871–2889. [CrossRef]

15. Barboza, E.C.; Shukla, N.; Chen, Y.; Hu, J. Machine Learning-Based Pre-Routing Timing Prediction with Reduced Pessimism. In
Proceedings of the 56th Annual Design Automation Conference 2019 ACM, Las Vegas, NV, USA, 2–6 June 2019; pp. 1–6.

16. Pedregosa, F.; Varoquaux, G.; Gramfort, A.; Michel, V.; Thirion, B.; Grisel, O.; Blondel, M.; Prettenhofer, P.; Weiss, R.; Dubourg, V.;
et al. Scikit-Learn: Machine Learning in Python. J. Mach. Learn. Res. 2011, 12, 2825–2830.

17. Razavi, B.; Behzad, R. RF Microelectronics; Prentice Hall: New York, NY, USA, 2012; Volume 2.
18. Razavi, B. Design of Analog CMOS Integrated Circuits, 2nd ed.; McGraw-Hill Education: New York, NY, USA, 2017; ISBN

978-0-07-252493-2.
19. Wu, J.; Zhang, K.; Chen, H.; Wang, Z.; Yu, F. A Sigma-Delta Modulator with Residual Offset Suppression. IEICE Electron. Express

2021, 18, 20210157. [CrossRef]
20. Wang, T.; Zhou, M.; Liu, J.; Wang, Z.; Mo, J.; Chen, H.; Yu, F. A Highly Linear 10 Gb/s MOS Current Mode Logic Driver with

Large Output Voltage Swing Based on an Active Inductor. IEICE Electron. Express 2020, 17, 20200160. [CrossRef]
21. Wang, G.; Liu, J.; Xu, S.; Mo, J.; Wang, Z.; Yu, F. The Design of Broadband LNA with Active Biasing Based on Negative Technique.

Inf. Midem-J. Microelectron. Electron. Compon. Mater. 2018, 48, 115–120.
22. Wang, F.; Wang, Z.; Liu, J.; Yu, F. A 14-Bit 3-GS/s DAC Achieving SFDR >63dB Up to 1.4GHz with Random Differential-Quad

Switching Technique. IEEE Trans. Circuits Syst. II-Express Briefs 2022, 69, 879–883. [CrossRef]
23. Chen, M.; Wu, K.; Shen, Y.; Wang, Z.; Chen, H.; Liu, J.; Yu, F. A 14 bit 500 MS/s 85.62 dBc SFDR 66.29 dB SNDR SHA-Less

Pipelined ADC with a Stable and High-Linearity Input Buffer and Aperture-Error Calibration in 40 nm CMOS. IEICE Electron.
Express 2021, 18, 20210171. [CrossRef]

24. Chen, J.; Li, H.; Wang, T.; Wang, Z.; Chen, H.; Liu, J.; Yu, F. A 92 Fs(Rms) Jitter Frequency Synthesizer Based on a Multicore
Class-C Voltage-Controlled Oscillator with Digital Automatic Amplitude Control. IEICE Electron. Express 2021, 18, 20210136.
[CrossRef]

25. Kingma, D.P.; Ba, J. Adam: A Method for Stochastic Optimization 2017. arXiv 2014, arXiv:1412.6980.

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

http://doi.org/10.1007/s10586-020-03053-x
http://doi.org/10.1587/elex.18.20210157
http://doi.org/10.1587/elex.17.20200160
http://doi.org/10.1109/TCSII.2021.3123251
http://doi.org/10.1587/elex.18.20210171
http://doi.org/10.1587/elex.18.20210136

	Introduction
	Proposed Approach
	Model Feature
	Component Distribution
	Simulation Options

	Model Engine
	Support Vector Regression
	Neural Network
	Random Forest

	Experiments and Discussion
	Establishing Dataset
	Model Training
	Prediction Results
	Neural Network with Custom Loss Function
	Error Distribution
	Application Effect

	Conclusions and Future Works
	References

