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Abstract: Many developmental disorders are diagnosed based on symptoms, which may result in
lumping together multiple causes. This is thought to be a factor that complicates the research and
treatment of developmental disorders. The purpose of this study is to provide hypotheses on the
causes of brain functions in developmental dyslexia (DD) by constructing and analyzing a simple
computational model of visual information processing using a deep generative model. We then
analyze three symptoms observed in DD and investigate their functions and causes.

Keywords: developmental disabilities; developmental dyslexia; artificial intelligence; computa-
tional neuroscience

1. Introduction

Difficulties in reading and writing in the absence of intellectual or visual abnormalities
characterize developmental dyslexia (DD). Specific DD people cannot recognize written
characters correctly. For example, some DD people might see blurred characters [1], whereas
others might perceive mirror characters [2]. Studies have reported individual differences
in the visual perception of DD people. However, many have excellent non-verbal skills,
and some are active in fields requiring visuospatial cognition, such as art and architecture.
DD people display a well-known trade-off in reinforcement learning: strong exploration
and weak exploitation [3]. Conversely, people with autism spectrum disorder (ASD) are
described as having strong exploitation and weak exploration [3]. Over 80% of people with
hyperlexia, which has an opposite profile to DD, are also on ASD [4]. We believed that such
a trade-off could be explained by a computational model [5]. DD affects a large proportion
of the population, estimated between 5% and 20% [6,7].

DD is a broad disorder category that includes a variety of symptoms, and several
hypotheses have been proposed on their mechanisms [3,8], including the magnocellular
deficit hypothesis [1,9], the phonological deficit hypothesis, and the cerebellar dysfunction
hypothesis. However, no single hypothesis explains all DD cases [3,8], and explaining the
mechanisms of DD might require a multifactorial model [3].

Diagnosing developmental disorders is typically based on interviews with patients to
determine if they meet the diagnostic criteria when they describe their symptoms [10]. This
method is easy to understand; however, it can lead to ambiguous diagnoses and lumping
together different causes of DD, resulting in individual differences in treatment efficacy
and inconsistent results of studies on DD characteristics. As a result, it is necessary to
consider not only symptom-based but also cause-based diagnoses. However, previous
studies have shown that a bottom-up approach to identifying the causes of DD based
on clinical findings is challenging. Therefore, we attempted a top-down approach using
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a simple computational model to identify the causes of DD by modeling different DDs
characterized by unique visual perceptual characteristics.

Artificial intelligence (AI) has made significant strides by deep neural networks
(DNNs) [11] that originated from the neurosciences [12], as implied by the name “neural
networks”. Recent research has focused on the similarity of representations between DNN
models and the brain. For example, a recent study reported a one-to-one correspondence
between “latent variables” in β-variational autoencoder (β-VAE) [13], a type of DNN-based
generative model, and neurons in the IT cortex of macaques [14]. β-VAE is a derivative of a
deep generative model called variational autoencoder (VAE) [15,16], which has the objec-
tive of learning disentangling representations. Studies have suggested that disentangling is
a plausible learning objective for the visual brain [14]. We experimentally adopt β-VAE as a
model of human visual information processing based on previous research with primates,
the macaque monkey [14].

The VAE, which has an encoder/inference model and a decoder/generative model,
has been focused on as an unsupervised representation learning method [17]. The encoder
compresses inputs to obtain a low-dimensional representation called latent variables, and
the decoder reconstructs the original input from latent variables. When representations are
disentangled, single latent variables are sensitive to changes in single generative factors.
The trained decoder can be used as a generative model by providing arbitrary latent
variables. Figure 1 shows the images generated by manipulating the value of a single latent
variable arranged horizontally. As shown in Figure 1, each latent variable encodes skin
color, age/gender, and image saturation, among others, when β-VAE is trained on face
images [13]. VAE has been widely applied as a generative model and a representation
learning method because of these characteristics [18–20].
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According to the Bayesian brain hypothesis [21], the free energy principles [22], and the
world model [20], inference and generative models are essential for humans to recognize the
world. Marr indicated that the function of vision is to infer a three-dimensional structure
from a two-dimensional retinal image [23]. Therefore, innumerable inference solutions
(visual perceptions) are possible, and a generative model, as opposed to an inference
model, is needed to determine a single solution. This concept is critical in the free energy
principle [21], which is the focus of the unified brain theory. The objective function of the
free energy principle and VAE is derived from an identical framework and have similar
shapes. What we see is not the state of the world itself but the result of our inferences.
Moreover, phenomena such as visual illusions are the result of our inference.

This study aimed to develop a simple computational model of visual information
processing using VAE and propose hypotheses on the causes of DD. The study used
VAE to analyze the brain at the top two levels of Marr’s tri-level hypothesis [23], which
is required to understand any complex biological system, the goals of the system (the
computational level), and the representations and processes used by the system (the algo-
rithmic/representational level). Marr stated that the computational level is indispensable.
At this level, it is necessary to identify the system’s inputs and outputs and clarify the
purpose of the system’s computations. The results of this study, as well as previous stud-
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ies [14], suggest that disentangling is a plausible learning objective in DD people’s visual
information processing. We needed to clarify the representations of inputs and outputs and
the information processing algorithm at the algorithmic/representational level. Then, we
can analyze the representation of latent variables based on the one-to-one correspondence
between latent variables and IT cortex neurons reported in previous studies [14]. On the
other hand, our model did not deal with the implementation/physical level. Therefore,
this study does not attempt to explain visual information processing in the human brain
but proposes functions of visual information processing as one possible form. We proposed
four hypotheses on the causes of DD characterized by perceiving blurred characters and
also analyzed types of DD characterized by perceiving mirror characters and confused
characters by conducting three experiments using VAE as a visual information processing
model.

2. Materials and Methods

We applied VAE, β-VAE, and conditional VAE [23], widely utilized as deep generative
models, to visual information processing models. We have only described the essential
details for understanding the current study because we used standard VAE. For theoretical
details of VAE, we refer the reader to the original papers [13,15,16,24]. Our use of VAE and
the interpretation of the results are unique to this study. Figure 2 shows the correspondence
between VAE architecture and visual information processing proposed in this study. We
mapped the inputs to visual information, the latent variables to neurons in the IT cortex
and the outputs to visual perception. However, we did not design this study to map the
internal processing of DNNs to actual brain processing but to investigate brain functions
by interpreting DNN, i.e., changing objective function and visualizing representation of
latent variables and inputs and outputs.
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Figure 2. Correspondence between VAE and visual information processing.

We need to use written characters or language datasets to investigate the characteristics
of DD by examining their distinctive visual perceptions of written characters. We used
MNIST, a widely used dataset of handwritten digit images. The encoder and decoder of
VAE were DNNs. The MNIST image (28 × 28 = 784 pixels) was inputted into the encoder
and compressed into 10-dimensional latent variables. Then, using the 10-dimensional latent
variables, the decoder reconstructed 784-pixel images that closely resembled the inputted
image. The VAE architecture we used was a simplified version in previous studies [14]. The
encoder consisted of 2 convolutional layers (32 × 4 × 4 stride 2 and 64 × 4 × 4 stride 2),
followed by a 3136-dimensional fully connected layer and 10-dimensional latent variables.
The decoder’s architecture was the reverse of the encoder.

The objective function of β-VAE is expressed by the following equation [13]:

L(θ, φ; x) = Eqφ(z|x)[log pθ(x|z)]− βDKL
[
qφ(z|x)

∣∣∣∣p(z)] (1)

The first term (the reconstruction error term) brings inputs and outputs closer together,
and the second term (the regularization term) disentangles the representations. Here, β = 1
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is equal to VAE’s objective function. Usually, β� 1 is used for disentangling. The second
term can be decomposed as follows [25,26]:

Epdata(x)
[
DKL

[
qφ(z|x)

∣∣∣∣p(z)]] = I(x; z) + DKL
[
qφ(z)

∣∣∣∣p(z)] (2)

The first term is the mutual information between inputs and latent variables and is
the term that we want to maximize. On the other hand, the second term is related to
disentangling and is the term that we want to minimize. In other words, there is a trade-off
between disentangling and encoding quality.

Conditional VAE is a method of specifying data generated by VAE using labels or
other data. For example, as shown in Figure 3, we can specify a particular character to be
generated using labels. The characters generated by a single label such as 2, 3, and 4 with
continuously changing the two-dimensional latent variables are arranged.
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The brain is optimized for a specific objective function based on predictive coding [27]
and the free energy principle [22]. We developed the following hypothesis as a premise:
the brain attempts to optimize under a specific objective function, and differences in brain
functions are caused by differences in the initial state, the objective function, constraints,
and the learning algorithm, among others. This hypothesis implies that the trade-off noted
by Taylor et al. is caused by optimization. This study had a fixed initial state and algorithm.

When learning, we can impose constraints on the inputs, the model, and the outputs,
to optimize the model to display functions such as DD. However, we did not constrain the
inputs in this study because we were developing a model of learning disorders rather than
visual impairments. We optimized the model by constraining the model and/or its outputs,
such that constraining the outputs when learning indirectly constrained the model. One
possible method of accomplishing this was to transform the outputs based on the finding
related to DD’s visual perception in cognitive psychology. For example, we can train the
model so that its output is mirror characters and analyze its function based on the findings
that specific DD people perceive mirror characters. Alternatively, we can give the model
multiple labels and ask it to analyze their functions based on the findings that other DD
people cannot distinguish between characters. Changing the model’s objective function or
constraining learning based on neuroscientific findings on DD peoples’ brain structures
could directly constrain the model, for example, by changing the value of β in β-VAE.

We conducted the following experiments:

1. Changing β in β-VAE (similar to a previous study [14]).
2. Developing mirror character perception using β-VAE.
3. Developing character confusion using conditional VAE.

We used the following analytical methods in these experiments.

(a) Visualizing outputs decoded from random latent variables.
(b) Visualizing of inputs that maximized latent variables.
(c) Visualizing of latent variables’ distribution (latent space) encoded in test images.
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The correspondences between VAE and brain when VAE as a visual information
processing model we proposed in this study were as follows. The result of method (a) is
expected to indicate visual perception corresponding to neuron activity in the IT cortex; the
result of method (b) is the optimal stimulus for IT cortex neurons, and the result of method
(c) is the activity of a group of IT cortex neurons. In method (c), compressed 10-dimensional
latent variables into two dimensions using t-distributed stochastic neighbor embedding
(t-SNE) [28] for visualization.

In method (c), the concepts of between-class variance (Sb) and within-class variance
(Sw), which are used in Fisher’s discriminant analysis [29] and other methods, are intro-
duced as clustering evaluation indexes for the latent variable. In terms of clustering, Sb
should be larger and Sw should be smaller. Therefore, maximizing Sb/Sw is generally
considered to be the objective function. In this paper, it is formulated as follows:

Sw = ∑
c

∑
zc∈Dc

Nc

(
zc −

−
zc

)2
(3)

Sb = ∑
c

(−
zc −

−
z
)2

(4)

where z is the latent variable, c is the class to which the data belong, D is the data set, N is

the number of data, and
−
z is the mean vector. These indexes are interpreted as follows:

• If the between-class variance Sb is large, the latent variable strongly encodes differences
in character.

• If the within-class variance Sw is large, the latent variable strongly encodes differences
in handwriting.

Since we are considering a model of the brain, Sb does not need to be large, and Sw
does not need to be small.

3. Results
3.1. Experiment 1

In this experiment, we used three values of β: 0.05, 1, and 20, which we referred to as
low, medium, and high β values, respectively. The latent variables were 10-dimensional.
Figure 4 shows the combined results of Experiment 1.

3.1.1. Method (a)

The visual perception was blurred at high β, clear at medium β, and clear at low β
while some are not perceived.

The blurred visual perception at high β might match a characteristic of DD. The results
at low β suggested that the latent space was sparse, i.e., more representations were available
for encoding new visual information, and thus it was easier to learn, which matches a
characteristic of hyperlexia.

3.1.2. Method (b)

The optimal stimulus at high β was clear with comparatively little noise. We could
identify a number-like pattern.
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randomly sampled latent variables are arranged in 20 × 20, 400 images. (b) The optimal stimuli for
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3.1.3. Method (c)

The model with medium and low β could distinguish between different characters,
whereas the model with high β could not. Table 1 shows the clustering indexes. It can
be observed that Sb and Sb/Sw become smaller as β increases, i.e., as the disentangling
increases. Table 1 also suggests that the representation is sparse at low β.

Table 1. Clustering index in Experiment 1.

β Sb Sw Sb/Sw

0.05 98,544 64,022 1.539

1.0 35,889 53,145 0.675

20.0 10,606 78,613 0.134

3.1.4. Summary

It is suggested that by changing the value of β, characteristics between DD and
hyperlexia can be found. We could identify characteristics common to DD and hyperlexia
by changing the value of β. The trade-off caused by the nature of objective function in
β-VAE [25,26] led to the results of method (a). The higher β resulted in, the worse encoding
because of the trade-off in disentangling and mutual information between inputs and
latent variables. In generative models, this trade-off is a factor interrupting the high-quality
generation. Various improvements have been proposed to overcome this interruption.
Nevertheless, this trade-off might be an essential brain characteristic.

A medium-β model would be the highest quality model from the generative models’
perspective because of the relatively good balance between encoding and decoding quality.
However, both low and high β have merits for the brain, suggesting that we can observe
DD and hyperlexia characteristics because of optimization. Therefore, we might be able
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to explain the characteristics of DD and hyperlexia as a continuum based on different
objective optimization functions.

The results of method (b) indicated that the optimal stimulation of neurons was
independent in high β. According to McCulloch–Pitts’ classical model that formed the
basis of neural networks [30], we assumed that disentangling is related to inhibiting
the synchronous firing of neurons and proposed four hypotheses on the type of DD
causing blurred visual perceptions. We suggest that future research clinically validate
these hypotheses and examine the possibility that opposite hypotheses might be valid for
hyperlexia.

1. A small number of common inputs.
2. A low synaptic weight.
3. A high firing threshold.
4. Many inhibitory synaptic inputs and/or few excitatory synaptic inputs.

3.2. Experiment 2

We used an experimental procedure similar to Experiment 1 and trained the model
to horizontally flip the visual perception at a probability of 30%, which resulted in mirror
characters. To be precise, we calculated the reconstruction error for the mirror inputs.
Figure 5 shows the results of the experiment.
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Figure 5. Combined results of Experiment 1. (a) The visual perception. The results of decoding
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(c) The activity of an IT cortex neuron group. The latent variables are compressed to 2 dimensions by
t-SNE because they are 10-dimensional. The color coding is based on input image labels.

3.2.1. Method (a)

Figure 5 shows that specific outputs for medium and high β were flipped or over-
lapped. The effect of flipping at high β was comparatively less.

3.2.2. Method (b)

The optimal stimuli were clearer than in Experiment 1.
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3.2.3. Method (c)

No significant differences were observed between Experiments 2 and 1. Table 2 shows
the clustering index. The same tendency as Table 1 can be observed. Compared to Table 1,
it can be observed that Sw is larger and Sb/Sw is smaller.

Table 2. Clustering index in Experiment 2.

β Sb Sw Sb/Sw

0.05 151,736 108,474 1.398

1.0 33,426 57,530 0.581

20.0 5879 82,856 0.070

3.2.4. Summary

Method (b) results suggested that the perception of mirror characters might be effective
for disentangling. Conversely, the perception of mirror characters could be a characteristic
arising from the purpose of disentangling. The world consists of many symmetrical natural
objects, and DD people might intensively learn symmetry as prior knowledge (generative
model) about the natural world. The inputted images are sometimes flipped or rotated in
deep learning for data augmentation to improve the model’s generalization performance.

However, we forcibly flipped visual perceptions in this experiment and failed to
understand the causes of perceiving mirror characters. We suggest that future research
develop effective analysis methods for networks.

3.3. Experiment 3

We used a conditional VAE with 10-dimensional latent variables in Experiment 3.
The labels were specified by inputting one-hot representation labels into the encoder. In
a regular one-hot expression, the number of elements in a vector is equal to the number
of labels, and only the label to be specified is set to 1, with all other labels set to 0. In this
experiment, however, provided three extra elements and multiple labels. The size of the
one-hot vectors was 13. We only used method (a) in Experiment 3.

3.3.1. Providing Multiple Labels to a Trained Model

We first attributed multiple labels to be generated by setting several vector elements
to 1. Figure 6 shows an example of a vector with labels 3 and 8 and another with labels 5, 6,
and 9. The figure shows that visual perception mixes up the characters’ features.
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Labels correspond to numbers and language information. According to the model
we used, Experiment 3 corresponds to visually perceiving indistinguishable characters.
DD people experience difficulties in reading and writing new characters because some
characters, including “b”, “d”, “ξ”, and “ζ”, among others, are indistinguishable to them.
DD people’s visual perceptions might be similar to that shown in Figure 6. We suggest
examining the clinical validity of this possibility in future research.

The model in Experiment 3 was trained using labels in the MNIST dataset. However,
the labels were unknown, and it is necessary to learn a classifier for the labels from visual
information. We believe that semi-supervised learning using conditional VAE [24] is
similar to human learning of written characters. Semi-supervised learning uses only a
small number of labels given in the dataset. The classifier is trained simultaneously with
conditional VAE; if no label is provided, the model uses the label output by the classifier.
Therefore, both visual and linguistic information might be involved in character confusion.

3.3.2. Providing Multiple Labels during Model Training

Next, we considered providing multiple labels during the model’s training. Specifi-
cally, random values were given to the three extra labels during training. Figure 7 shows
the results of giving the three extra labels to the model. The three labels produced various
results, including some that looked like characters and others that did not, which is one
possible form of character confusion. Therefore, multiple labels might be given during
training, while the incomplete classifier may cause character confusion.
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4. Discussion

This study focused on disentangling as a plausible learning objective in the visual
brain [14,26]. We proposed a correspondence between VAE and visual information pro-
cessing and conducted three experiments to analyze visual information processing in DD
people. Experiment 1 suggested that differences in the value of β in the objective function
show characteristics of both hyperlexia and DD. Then, we proposed four hypotheses on the
causes of DD based on synchronous firing. In Experiment 2, we suggested that perceiving
mirror characters could facilitate disentangling. However, this notion did not explain the
cause of perceiving mirror characters. Experiment 3 suggested that the cause of character
confusion is related not only to visual information but also to numbers and language
information. Therefore, we concluded that this study had achieved its purpose.

This was an exploratory study. The advantage of computational models is they
allow top-down designs and analyses of information processing. This study designed the
objective functions and the architecture and analyzed the model from different perspectives.
Future work is needed to verify these hypotheses and develop improved models and
analytical methods. This study’s information processing flow analysis was insufficient.
We believe that time development and attention, one-shot and semi-supervised learning,
memory, multimodal learning, and embodiment must be included in the model to ensure
its biological plausibility.
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The hypothesis of a “few common inputs” proposed in Experiment 1 is consistent with
previous studies [31]. It is known that the minicolumn circuits of DD people have weak
local and strong global connectivity than controls or ASD people, which might be explained
by top-down approaches using a computational model. It has also been indicated that DD
is associated with hyperlexia, attention deficit hyperactivity disorder (ADHD), and ASD [3].
Therefore, we suggest comparing with known anatomical findings of these disorders.
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