
Citation: Wang, M.; Xie, Z.; Wen, X.;

Li, J.; Zhou, F. Ethereum Smart

Contract Vulnerability Detection

Model Based on Triplet Loss and

BiLSTM. Electronics 2023, 12, 2327.

https://doi.org/10.3390/

electronics12102327

Received: 10 April 2023

Revised: 6 May 2023

Accepted: 9 May 2023

Published: 22 May 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

electronics

Article

Ethereum Smart Contract Vulnerability Detection Model Based
on Triplet Loss and BiLSTM
Meiying Wang *, Zheyu Xie, Xuefan Wen, Jianmin Li and Kuanjiu Zhou

School of Software, Dalian University of Technology, Dalian 116620, China
* Correspondence: 22117023@mail.dlut.edu.cn

Abstract: The wide application of Ethereum smart contracts in the Internet of Things, finance, medical,
and other fields is associated with security challenges. Traditional detection methods detect vulner-
abilities by stacking hard rules, which are associated with the bottleneck of a high false-positive rate
and low detection efficiency. To make up for the shortcomings of traditional methods, existing deep
learning methods improve model performance by combining multiple models, resulting in complex
structures. From the perspective of optimizing the model feature space, this study proposes a vulnerabil-
ity detection scheme for Ethereum smart contracts based on metric learning and a bidirectional long
short-term memory (BiLSTM) network. First, the source code of the Ethereum contract is preprocessed,
and the word vector representation is used to extract features. Secondly, the representation is combined
with metric learning and the BiLSTM model to optimize the feature space and realize the cohesion of
similar contracts and the discreteness of heterogeneous contracts, improving the detection accuracy. In
addition, an attention mechanism is introduced to screen key vulnerability features to enhance detection
observability. The proposed method was evaluated on a large-scale dataset containing four types of
vulnerabilities: arithmetic vulnerabilities, re-entrancy vulnerabilities, unchecked calls, and inconsistent
access controls. The results show that the proposed scheme exhibits excellent detection performance.
The accuracy rates reached 88.31%, 93.25%, 91.85%, and 90.59%, respectively.

Keywords: smart contract; vulnerability detection; triplet loss; attention mechanism

1. Introduction

A smart contract is a transaction protocol that runs on the upper layer of the blockchain.
Relying on the unforgeable, tamper-proof, traceable, and decentralized features of the
blockchain, smart contracts provide complete transaction services for applications in differ-
ent fields [1]. The Ethereum platform is currently one of the most widely used blockchain
platforms for smart contracts. It has launched a Turing-complete smart contract program-
ming language, Solidity, which is widely used in financial services, power supply systems,
the Internet of Things, and the medical field [2]. In 2015, Fabian Vogelsteller proposed
the ERC-20 token standard to provide standardized specifications for the issuance and
exchange of tokens on the Ethereum blockchain [3]. In 2017, Abdullah Albeyatti and techni-
cal expert Mo Tayeb designed the distributed medical data platform Medicalchain, which
realized safe and efficient medical data management and drug traceability while protecting
patient privacy [4]. In the same year, PowerLedger and Grid+ were proposed for energy
trading and power market and grid management, providing consumers with transparent
and efficient power market services [5]. In 2022, Goudarzi et al. analyzed and discussed
the application of Internet of Things technology in smart grids, pointing out that in the
future, blockchain technology needs to be used to solve the challenges faced by smart grids
in terms of data privacy protection, energy transaction security, and energy consumption
management [6]. In the same year, Waseem et al. proposed a blockchain-based smart grid
architecture to achieve decentralized, credible, and secure energy management; however,
this architecture has limitations in terms of big data performance and supervision [7]. Aim-
ing at the IoT security issues under the high concurrent traffic of large-scale IoT devices,

Electronics 2023, 12, 2327. https://doi.org/10.3390/electronics12102327 https://www.mdpi.com/journal/electronics

https://doi.org/10.3390/electronics12102327
https://doi.org/10.3390/electronics12102327
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/electronics
https://www.mdpi.com
https://doi.org/10.3390/electronics12102327
https://www.mdpi.com/journal/electronics
https://www.mdpi.com/article/10.3390/electronics12102327?type=check_update&version=1


Electronics 2023, 12, 2327 2 of 20

in 2021, Kumar et al. proposed a distributed architecture of multiple fog node collaboration
to detect distributed denial-of-service attacks in smart contracts, blockchains, and IoT
systems; however, the proposed architecture requires considerable computing resources [8].
In 2022, Zhou et al. analyzed the security vulnerabilities of Ethereum smart contracts and
used a support vector machine (SVM) classifier to classify contracts [9]. In the same year,
Gupta et al. proposed a smart contract feature extraction method based on a convolutional
neural network (CNN) and a long short-term memory (LSTM) network combined with
the random forest algorithm to classify contracts to detect malicious smart contracts in the
Internet of Things environment [10]. Recent research has initially explored the combined
application of the blockchain and the Internet of Things, but challenges remain in terms of
performance and security that need to be further studied and developed.

Compared with traditional applications, blockchain-based smart contracts have sev-
eral significant differences. First of all, the contract code is relatively small in size and
simple in logic and can be implemented through simple if. . . else. . . statements. When the
conditions are met, the contract is executed automatically without human intervention.
Second, once the contract is deployed on the chain, the contract and the data it generates
cannot be modified again. Therefore, if a smart contract is deployed on the blockchain in
the presence of vulnerabilities, it may cause huge economic losses. For example, in 2016,
the DAO lost ETH 3.6 million due to a re-entrancy vulnerability, resulting in a loss of USD
70 million [11]. In 2018, the BEC campaign lost more than USD 900 million due to integer
overflow vulnerabilities [12].

To avoid the abovementioned security crises caused by smart contract vulnerabilities,
researchers have proposed various detection methods for smart contracts based on exist-
ing code vulnerability detection technologies, such as symbolic execution, fuzzy testing,
and formal verification, to detect known vulnerabilities [13–15]. With the rapid increase
in the number of smart contracts, traditional vulnerability detection techniques can no
longer meet the audit needs of a large number of smart contracts in a short period of time.
Therefore, deep learning technology has gradually become a more effective means of smart
contract vulnerability detection. Deep learning technology trains models by extracting
features from large-scale data, and its feature representation ability has an important impact
on the accuracy of vulnerability detection [16]. At present, most researchers use multimodel
parallel or serial feature extraction to capture the most representative key features, but no
scholars have optimized the feature learning ability of deep learning models from the per-
spective of vector space representation. In addition, existing deep learning schemes usually
use the bytecode of smart contracts as input data, which is not conducive to developers’
code writing and debugging. Therefore, it is necessary to develop more source-code-based
deep learning solutions to improve the efficiency and accuracy of vulnerability detection.

To address the abovementioned issues, we propose a vulnerability detection scheme
for Ethereum smart contracts based on metric learning triplet loss and bidirectional a long
short-term memory (BiLSTM) network model. Our main contributions are as follows:

(1) A novel vulnerability detection scheme is proposed from the perspective of feature
representation space optimization. In contrast to existing methods that improve the
feature learning ability by combining multiple models, we optimize and evaluate the
features extracted by the model based on metric learning, making smart contracts
of the same category more cohesive and smart contracts of different categories more
discrete, improving the accuracy of vulnerability detection.

(2) The proposed model enhances the interpretability of contract vulnerability detection.
Our approach involves using the source code of Ethereum smart contracts as input
data, which is then subjected to word vectorization and an attention mechanism. This
process allows us to identify the critical features associated with vulnerabilities, aiding
in pinpointing the root cause of the issue.

(3) We construct a large-scale dataset of smart contracts. We collected 165,000 verified
source codes of smart contracts and used a variety of vulnerability detection tools to
assign vulnerability labels to provide more comprehensive data support for detection.



Electronics 2023, 12, 2327 3 of 20

(4) The proposed model improves detection accuracy. Experiments prove that compared
with traditional methods and other deep learning models, the proposed scheme
can better extract vectorized features of smart contracts and effectively improve the
accuracy of vulnerability detection.

The rest of this paper is organized as follows. Section 2 introduces important and
common types of vulnerabilities in smart contracts and related research on existing smart
contract vulnerability detection techniques. Section 3 details the framework of our smart
contract vulnerability detection scheme based on triplet loss and the bidirectional long
short-term memory network model. Section 4 presents the experimental procedure of this
scheme and a performance comparison with other schemes. Section 5 summarizes the work
reported in this paper and elaborates on the direction of further research in the future.

2. Background

To accurately detect the vulnerabilities in smart contracts, we conducted an in-depth
study on the common vulnerabilities in current contracts and existing smart contract
vulnerability detection technologies.

2.1. Smart Contract Vulnerabilities

Once a smart contract is deployed on the chain, the operations generated when
an unsafe contract is attacked cannot be reversed. There are many possible reasons for
contract insecurity, including functional limitations caused by the inherent properties of the
blockchain platform, logic errors caused by developers’ negligence in the coding process,
and the order of contract business processes [17]. We modeled and analyzed the following
four typical vulnerability types based on the datasets we collected.

Arithmetic vulnerabilities: Arithmetic vulnerabilities in smart contracts mainly in-
volve integer overflow and underflow issues. These problems usually occur during integer
operations in contracts, which may lead to unexpected results and potential security is-
sues [18]. Integer overflow means that when an integer variable increases beyond its
maximum allowed value, it restarts calculations from the minimum value. For example,
in Solidity, the maximum value allowed for an integer of type uint256 is 2256 − 1. When
this integer variable is incremented by 1, it becomes 0, as shown in Figure 1. Correspond-
ingly, integer underflow means that when an integer variable decreases below its allowed
minimum value, it restarts calculations from the maximum value. For example, in Solidity,
the minimum value allowed for an integer of type uint256 is 0. When that integer variable
is decremented by 1, it becomes 2256 − 1, which is integer underflow. Arithmetic bugs can
lead to lost funds, incorrect transfers, and other security issues.

Figure 1. Example of arithmetic vulnerability.
In the contribute function in line 7 of the crowdfunding contract example presented in

Figure 1, both balances[msg.sender] and totalRaised may have integer overflow vul-
nerabilities.



Electronics 2023, 12, 2327 4 of 20

Re-entrancy Vulnerabilities: Re-entrancy vulnerabilities are caused by a contract
calling an external contract before completing a state update [19]. In this case, the called
external contract may call the original contract again, causing the state of the original
contract to be changed unexpectedly.

The withdraw() function in Figure 2 uses the low-level call function on line 12 to send
ETH back to the user before updating the balance on line 14. However, transferring funds
before updating user balances leaves room for re-entrancy attacks. An attacker can create a
malicious contract, as shown in Figure 3, which calls the withdraw() function again when
receiving ETH, resulting in repeated payments.

Figure 2. Example of re-entrancy vulnerability.

Figure 3. Example of a re-entrancy vulnerability attack contract.

In this malicious contract, the attack() function on line 10 first deposits to Vulnera-
bleBank, then calls the withdraw() function. When ETH is sent to the malicious contract,
its receive() function is triggered, and the withdraw() function is called again, causing
the original contract to pay multiple times.

Unchecked calls: Unchecked calls are mainly caused by contract developers not
correctly checking the call results when calling other contracts or sending ETH [20].
When the call fails, it may cause unexpected behavior or other security issues in the



Electronics 2023, 12, 2327 5 of 20

contract. In Ethereum’s Solidity smart contract, contracts can call each other through
low-level functions such as call, delegatecall, and send. However, these low-level functions
do not automatically throw exceptions but instead return a Boolean indicating whether
the call was successful or not. If the developer fails to check the return value when calling
these functions, it may lead to an unchecked call vulnerability.

In Figure 4, the transfer function sends ETH to the target address via the call.value
function. However, it does not check the result of the call, which could cause other problems
in the contract if the call fails.

Figure 4. Example of unchecked call vulnerability.

Inconsistent access control: Inconsistent access control is mainly due to the negligence or
inexperience of contract developers in designing and implementing access control strategies,
resulting in improper smart contract permission control, which may allow unauthorized users
to access or modify sensitive information and functions of the contract [21]. Access control
issues can lead to security risks such as loss of funds, contract tampering, data leakage, etc.

The withdrawAllFunds() function on line 20 in Figure 5 does not implement the
access control policy correctly, and anyone can withdraw all funds after the contract is
unlocked. This could allow unauthorized users to perform sensitive operations and result
in loss of funds. To fix this, we need to add a check on the msg.sender function to make
sure only the owner can do this.

Figure 5. Example of inconsistent access control vulnerability.



Electronics 2023, 12, 2327 6 of 20

2.2. Current Smart Contract Vulnerability Detection Methods

Existing smart contract vulnerability detection methods can be roughly divided into
two types: those based on traditional technologies, such as symbolic execution, fuzz testing,
and formal verification, and vulnerability detection schemes based on deep learning technology.

Researchers have proposed a variety of vulnerability detection tools based on tradi-
tional methods to date. For example, Manticore is based on symbolic execution and taint
analysis techniques, which accept contract source code or bytecode as input to detect integer
overflow vulnerabilities [22]. The Oyente tool is also based on symbolic execution tech-
nology. It can detect vulnerabilities such as transaction sequence dependency, timestamp
dependency, and re-entrancy. However, it has a high false-positive rate for integer over-
flow vulnerabilities [23]. Mythril, which is also based on symbolic execution technology,
performs grammatical analysis on the smart contract code to determine the code structure
and semantics, thereby building an abstract model. This model simulates the running state
of the contract and performs checks on the model to identify possible security issues [24].
ContractFuzzer is based on fuzz testing technology, which can quickly generate a large
amount of random data to test smart contracts to detect contract vulnerabilities quickly and
effectively [25]. Solhint is based on formal verification technology. By performing lexical
analysis and syntax analysis on the contract code and using predefined vulnerability rules
and checkpoints to match the code, it can help developers identify code problems in the
early stage of development [26]. Generally speaking, vulnerability detection technology
based on traditional methods has the following bottlenecks:

(1) The degree of automation is low. Traditional methods must rely on expert experience
to perform complex modeling of existing vulnerabilities and match them during
vulnerability detection. For unmodeled vulnerabilities, the detection accuracy of
traditional methods is unreliable. After a traditional method is tested, it is generally
necessary to perform a manual audit.

(2) The accuracy rate is not high. When performing vulnerability detection through the
superposition of hard rules, complex contracts may generate high false-positive rates,
resulting in a decrease in accuracy.

(3) The detection time is extended. Most traditional methods are based on symbolic
execution. When the code length is long, the number of execution paths increases
exponentially, and the corresponding detection time is also lengthened, making it
even more difficult to solve.

Some researchers introduced deep learning technology to propose new contract vulner-
ability detection schemes in response to the shortcomings of the abovementioned traditional
methods. The authors of [27] considered the contract bytecode as input and proposed ex-
traction of the connection between words based on the self-attention mechanism, extracting
code features through CNN, and binary classification detection based three types of vulnera-
bilities: re-entrancy vulnerability, arithmetic vulnerability, and timestamp dependency. This
method has a lower false-negative rate and average detection time than traditional methods.
The authors of [28] proposed modeling vulnerabilities from source code based on the BiL-
STM model. Although deep learning can automatically extract features from massive data
and reduce manual analysis, the quality of features is related to the effect of the entire model.
Therefore, some scholars have proposed different methods to enhance the feature extrac-
tion ability of the model. The authors of [29] proposed a novel AFS method from the
perspective of input data to integrate various forms of feature information of the code;
construct an abstract syntax tree by syntactically analyzing the contract; construct abstract
syntax tree features through depth-first traversal; and use program slicing technology to
program slicing, word segmentation vectorization, and syntax tree features that are spliced
to increase the amount of information contained in the input features. The authors of [30]
proposed a serial–parallel convolution bidirectional gated recursive network model from
the perspective of network structure and extracted the characteristics of multivariable
combinations through the serial–parallel convolution structure while retaining the call
relationship and position relationship between contracts. The model proposed in [31] also



Electronics 2023, 12, 2327 7 of 20

explores the best combination of different word embedding models and deep learning
models from the perspective of model structure to obtain excellent contract code vector
representations and improve classification accuracy. The authors of [32] proposed a method
based on the BiLSTM model and a self-attention mechanism to extract critical features in
the contract code. This method takes bytecode as input and does not analyze it from the
source code perspective, nor does it consider whether the code feature vector can normally
represent a certain category. At present, there is no way to optimize the model from the
perspective of vector space representation, so we introduce a metric learning triplet loss
function based on [32] so that contracts of the same category are aggregated in the vector
space and contracts of different categories are discrete in the vector space. Vulnerability
detection is carried out from the perspective of the source code, which is expected to help
developers better detect vulnerabilities during code development.

3. Method

The solution proposed in this paper mainly involves analyzing the vulnerabilities at
the source-code level and optimizing the feature representation ability of the BiLSTM model
based on the triplet loss function and cross-entropy loss function to clearly distinguish the
correct contract code from contracts with loopholes in the feature vector representation
space. The model proposed in this paper is divided into five parts, as shown in Figure 6.

Figure 6. The overall architecture of the model.

• Data preprocessing: Perform data cleaning on the contract code, including removing
irrelevant information, such as comments, versions, and variable names, to retain the
core part of the code and perform word segmentation on it.

• Word-embedding layer: The token list obtained after word segmentation is converted
into a word vector through the word-embedding model to represent the semantic
information of the contract.

• BiLSTM layer: The feature representation of the contract code is extracted through the
BiLSTM layer.

• Attention layer: To highlight the critical features in the contract code, we introduce
an attention mechanism, using different weights to allocate the degree of attention to
different features to improve the contract code classification performance.

• Vulnerability detection layer: Based on the binary classification loss function, a triplet
loss function is introduced to optimize the feature representation ability through back-
propagation. During the training process, by continuously updating the parameters,
the normal contract code and the contract code with vulnerabilities can be better
distinguished in the feature vector space, thereby improving the model’s classification
performance.



Electronics 2023, 12, 2327 8 of 20

3.1. Data Preprocessing

A lot of information not related to vulnerabilities, such as comments, is contained in the
source code of the smart contract we collected. The existence of such information adds noise to
the vectorized representation of smart contracts and affect the classification effect. Therefore,
we first clean the contract code according to the following steps (Figure 7).

1. Remove comments: Comments have nothing to do with code functions, so they can
be removed from the code through regular expressions.

2. Remove useless characters such as spaces, tabs, and new lines: spaces, tabs, and new
lines have no substantial impact on the semantics of the code, but they increase the
dimensionality of the vectorized representation.

3. Remove the code compiler version information. Contracts usually specify the compiler
version on the first line, which is not associated with a vulnerability.

4. Standardized code style: There may be different code styles in the smart contract
source code, such as indentation, naming conventions, etc. To ensure the consistency
of vectorized representation, we uniformly standardize the variable names or function
names customized by developers as VAR plus numbers or FUN plus numbers.

Figure 7. Source code processing.

3.2. Word-Embedding Layer

The input layer of the deep learning model usually requires the input to be a numerical
vector, so it cannot directly accept the contract code as input data. The contract code
needs to vectorize the text data first, divide the code into a list of words, then use the
word-embedding model to map each word into a fixed-length vector as the model input.
The specific processing flow is as follows:

1. Split code: We use regular expressions and spaces as separators to split the contract
source code (C) into a word list: T = [t1, t2, . . . , tn];

2. Construct vocabulary: Construct a vocabulary based on the obtained word list, in-
cluding all unique words that appear in the training data;

3. Word embedding: The word-embedding model can capture the semantic relationship
between words and convert each word (t) into a fixed-length vector representation:
D = [v1, v2, . . . , vn]. The Word2Vec model is currently one of the most widely used
word-embedding models, including two algorithms: Skip-Gram and Continuous Bag
of Words (CBOW). Skip-Gram takes a word as input and predicts the context within
a certain window. CBOW accepts the context within a certain window to predict
the central word. Since CBOW uses the average value of the context, it converges
faster than Skip-Gram. Considering that when the function of the contract is complex,
the size of the code text increases, making the features more complex, the model
proposed in this paper adopts the Word2Vec word-embedding model based on the
CBOW algorithm;

4. Combined input: The word vector (D) is combined to form a feature representation of
the contract code, usually using a convolutional or recurrent neural network structure
to capture local or global features.



Electronics 2023, 12, 2327 9 of 20

3.3. BiLSTM Layer

Based on the code vectorization representation obtained above, we use the BiLSTM
model to effectively extract the semantic correlation features between contract codes and
fully use the advantages of BiLSTM in capturing sequence relationships to better reveal the
interrelationships between contract codes.

The BiLSTM model consists of two LSTM submodels, which capture forward and
reverse semantic connections, respectively, as shown in Figure 8. The LSTM model intro-
duces input gates, output gates, forget gates, and memory units on the basis of traditional
recurrent neural network architectures to solve the gradient disappearance and gradient
explosion problems in recurrent neural networks [33]. A schematic diagram of the LSTM is
presented below (Figure 9).

Figure 8. Diagram of the BiLSTM architecture.

Figure 9. Schematic diagram of the LSTM network.



Electronics 2023, 12, 2327 10 of 20

The forget gate determines which information is forgotten from the memory unit
through the sigmoid function.

ft = σ(wf · [ht−1, xt] + bf) (1)

The input gate determines which information is added to the memory cell.

it = σ(wi · [ht−1, xt] + bi) (2)

New candidate memory information is generated based on the previous hidden state
(ht−1) and the current input (xt).

c̃t = tanh(wc · [ht−1, xt] + bc) (3)

The forget gate, previous memory cell, input gate, and candidate value are combined
to update the current memory cell.

ct = ft ∗ Ct−1 + it ∗ c̃t (4)

The output gate selects the input information from the current memory cell.

ot = σ(wo · [ht−1, xt] + bo) (5)

The hidden state is updated according to the states of the output gates and memory
cells.

ht = ot ∗ tanh(ct) (6)

BiLSTM stitches together the output of the hidden states through the forward and
backward LSTM networks as the feature vector extracted from the BiLSTM source code,
which effectively improves the detection accuracy of the model.

3.4. Attention Layer

BiLSTM has achieved significant improvements in solving the vanishing and explod-
ing gradient problems of RNNs when processing long sequences but is still limited in
capturing long-range dependencies. To solve this problem, we introduce the attention
mechanism. The attention mechanism can also assign weights to each element in the
sequence so that the model can adaptively focus on key parts during training, thereby
improving performance.

In the attention layer, we first use the output features of the BiLSTM layer as input.
Then, query, key, and value matrices are built for the input features. Next, the attention
weights are calculated using the softmax function. Finally, the attention weights are
multiplied by the value matrix to obtain an output vector that highlights key features.
The following is the calculation formula for the attention layer:

Q = X ∗wq (7)

K = X ∗ Wk (8)

V = X ∗ Wv (9)

attention weights = softmax
(
Q ∗ K∧T, dim = −1

)
(10)

attention output = attention weights ∗V (11)



Electronics 2023, 12, 2327 11 of 20

3.5. Vulnerability Detection Layer Optimized by Triplet Loss

The vulnerability detection layer consists of a fully connected layer and an output
layer. The output vector of the attention layer highlighting key features is used as input,
and the digital label is used as the result of contract vulnerability detection. In this paper,
we present binary classification model; 0 means that the contract has no loopholes, 1 means
that the contract has loopholes, and the loss function usually uses the binary cross-entropy
loss function.

lossc(y, p) = −[y ∗ log(p) + (1− y) ∗ log(1− p)] (12)

where y represents the true label of the sample, and p is the model-predicted label.
The model proposed in this paper adds a triplet loss function on the basis of the binary

cross-entropy loss function. When classifying contracts, it improves the representation
ability of the model, making the distance of the same class closer and the distance of
different classes farther.

Triplet loss is a loss function for metric learning. During the training process, a map
is constructed that can gather similar samples together in the feature space and separate
dissimilar samples from each other. This loss function has achieved success in tasks such as
computer vision and natural language processing, such as face recognition, recommender
systems, and text similarity calculations [34].

The core idea of triplet loss is to construct “triplets”. Each triplet contains an anchor
sample, a positive sample, and a negative sample. Anchor points and positive samples
belong to the same class, while anchor points and negative samples belong to different
classes. The goal is to ensure that the distance between the anchor point and the positive
sample is smaller than the distance between the anchor point and the negative sample, that
is, it is hoped that in the feature space, the distance between similar samples is smaller
than the distance between dissimilar samples. To achieve this goal, triplet loss defines an
edge parameter (α), which indicates the minimum distance between the two. Therefore,
the formula for triplet loss is:

losst(A, P, N) = max
(
‖ f (A)− f (P)‖2 − ‖ f (A)− f (N)‖2 + α, 0

)
(13)

where A, P, and N denote anchor points, positive samples, and negative samples, respec-
tively, and f (·) denotes a function that maps input samples to feature space. The loss
function requires that the distance from the anchor point to the positive piece plus the edge
(α) be less than the distance from the anchor point to the negative selection. If this condition
is not met, the value of the loss function is greater than 0. During the training process,
the model attempts minimize this loss value to learn a suitable feature representation.

As shown in Figure 10, based on the different cases of the distance between the anchor
point and the positive samples versus the distance between the anchor point and the
negative samples, different strategies can be adopted for the construction of triads. The first
strategy is to find the triplets that can be correctly classified in the training set, i.e., ‖ f (A)−
f (P)‖2 < ‖ f (A)− f (N)‖2, called easy triplets. This strategy can lead to a model that easily
learns a decision boundary, making the model overfit, reducing the generalization ability
of the model, and decreasing the classification ability on new datasets. The second type of
strategy involves finding triplets in the training set that are somewhat difficult but not too
difficult, i.e., ‖ f (A)− f (P)‖2 < ‖ f (A)− f (N)‖2 < ‖ f (A)− f (P)‖2 + α. Semihard triplet
mining can maintain better training stability while still focusing on the more difficult-to-
distinguish samples. The third strategy is to find triplets in the training set that are difficult
to classify correctly, i.e., ‖ f (A)− f (P)‖2 > ‖ f (A)− f (N)‖2, called hard triplet mining.
This construction strategy allows the model to focus on learning the harder-to-distinguish
samples and speeds up the convergence process but may also lead to training instability
because the selected triads may be too difficult to learn. Another approach is random
triplet mining, whereby triplets are randomly selected from the training set. This approach
has the advantage of being simple to implement and stable in training but may lead to



Electronics 2023, 12, 2327 12 of 20

slower convergence because the model spends more time learning samples that are easy
to distinguish.

Easy triplet

 Anchor

Positive

Negative

Semi-hard triplet

 Anchor

Positive

Negative

Hard triplet

 Anchor

Positive

Negative

α

Figure 10. Triplet construction strategies.

According to the timing of triplet construction, it can be divided into offline triplet
mining and online triplet mining. Offline triple mining refers to the construction triplets
by selecting samples from the entire training set before the training process. Online triplet
mining means that the model picks triplets during each iteration of training based on the
current parameter state. This approach enables efficient training by adaptively selecting
appropriate triplets according to the real-time performance of the model. In this study, we
employ a strategy combining online triplet mining and semi-hard triplet mining to pick
the best triplets during training. This approach enables the model to cluster similar data
together while efficiently separating dissimilar data.

This study combines the binary cross-entropy loss function and the triplet loss function
as the output layer’s design to optimize the model’s performance. The output layer takes
the weighted sum of the two as the sum of the loss function of the model; the formula is
as follows:

loss = γ1 lossc +γ2 losst (14)

4. Experiments

To verify the correctness and effectiveness of our proposed method, we conducted two
sets of experiments. Experiment 1 comprised ablation experiments on the proposed model
to verify the effect of the attention layer and triplet loss function. In Experiment 2, we
compared the performance of the model proposed in this study with that of other models
based on deep learning. The model proposed in this paper is based on the TensorFlow deep
learning framework. The experimental operating environment was Windows 10 operated
on an Intel Core i7-7700HQ CPU with 16GB RAM, and an NVIDIA GTX1050.

4.1. Dataset

We collected a large number of verified smart contracts from the Etherscan.io website,
including contract addresses, bytecodes, and source codes. To further verify the accuracy
of the contracts, we used the Slither, Smartcheck, and Oyente tools to classify the contracts
and excluded contracts with inconsistent detection results. Finally, we selected four types
of vulnerable contracts, including arithmetic vulnerabilities, re-entrancy vulnerabilities,
unchecked calls, and inconsistent access control, as well as the security contract construction
model dataset. The dataset contains 165,000 smart contracts, which we divided into a
training set and a test set in a ratio of 8:2. The number of contracts contained in each
vulnerability type is shown in Table 1.



Electronics 2023, 12, 2327 13 of 20

Table 1. Statistics on the quantity of each type of contract.

Arithmetic Re-Entrancy Unchecked
Calls

Inconsistent
Access Control

Security
Contract

Amount 20,044 39,098 42,573 28,171 35,130

4.2. Evaluation Indicators

We used the four metrics of accuracy, precision, recall, and F1 score to evaluate the
model’s performance.

The accuracy rate indicates the ratio of the number of samples that the model predicts
correctly to the total number of samples.

Accuracy =
TP + TN

TP + TN + FP + FN
(15)

Precision represents the proportion of samples predicted to be positive relative to the
actual proportion of positive samples. A high accuracy rate indicates that there are fewer
false-positive samples and that the classifier has a strong ability to classify positive samples.

Precision =
TP

TP + FP
(16)

Recall represents the proportion of samples predicted to be positive among the samples
that are actually positive. A high recall rate indicates that there are few false-negative
samples and that the classifier has a strong coverage ability for positive samples.

Recall =
TP

TP + FN
(17)

The F1 score is the harmonic mean of precision and recall and is used to measure
the performance of a model on an imbalanced dataset. A high F1 score indicates that the
classifier has a strong ability to classify both positive and negative samples.

F1 score = 2 · Precision · Recall
Precision+Recall

(18)

TP refers to the number of positive samples predicted as positive samples, TN refers
to the number of positive samples predicted as negative samples, FP refers to the number
of negative samples predicted as positive samples, and FN refers to the number of negative
samples predicated as positive samples.

4.3. Experimental Results
4.3.1. Ablation Experiment

Most of the vulnerabilities in smart contracts are gathered in one function, which is
relatively concentrated. A large part of the features of the contract has nothing to do with
the vulnerability, so the smart contract vulnerability detection scheme proposed in this
paper adds an attention layer on the basis of BiLSTM, extracting the entire contract features.
The attention layer assigns higher weights to vulnerability-related features to highlight
important features. To improve classification accuracy, we also introduce triplet loss,
which makes the model more concentrated in representing similar categories in the feature
space while making different categories more dispersed in the feature space. To prove
their role, we compared ANN, ANFIS, LSTM, BiLSTM, BiLSTM-ATT, and our scheme in
detecting re-entrancy and arithmetic vulnerabilities. The experimental results are shown in
Tables 2 and 3.



Electronics 2023, 12, 2327 14 of 20

Table 2. Experimental results of BiLSTM, BiLSTM-ATT, and our model in detecting arithmetic vul-
nerability.

Model Accuracy Precision Recall F1 Score

ANN 55.43% 51.84% 49.02% 50.39%
ANFIS 58.73% 53.06% 51.93% 52.49%
LSTM 70.46% 65.31% 69.42% 67.30%

BiLSTM 79.94% 78.50% 77.03% 77.47%
BiLSTM-ATT 81.40% 81.53% 78.64% 80.93%

Ours 88.31% 86.34% 84.60% 85.46%

Table 3. Experimental results of BiLSTM, BiLSTM-ATT, and our model in detecting re-entrancy vul-
nerability.

Model Accuracy Precision Recall F1 Score

ANN 54.82% 51.61% 51.93% 51.77%
ANFIS 61.91% 57.37% 51.94% 54.52%
LSTM 72.31% 71.58% 69.93% 70.75%

BiLSTM 81.07% 78.93% 80.06% 79.71%
BiLSTM-ATT 88.21% 86.49% 84.21% 86.20%

Ours 93.25% 96.20% 86.13% 90.89%

As shown in Tables 2 and 3, the performance of the ANN and ANFIS models is
relatively poor, with accuracy rates of only 55.43% and 58.73%, respectively, on the arith-
metic vulnerability dataset. By adding contextual features, the accuracy and precision of
the LSTM model are slightly improved. The BiLSTM model with the attention layer is
more accurate than the single BiLSTM model. On the re-entrancy vulnerability dataset,
the accuracy of the BiLSTM-ATT model is 7.16% higher than that of the single BiLSTM
model, the accuracy is 7.56% higher, and the F1 score is 6.49% higher. On the arithmetic
vulnerability dataset, although it is difficult to learn the characteristics of integer overflow
and integer underflow vulnerabilities from the data, after adding the attention mechanism,
the detection accuracy and precision of arithmetic vulnerabilities are improved.

Taking the re-entrancy vulnerability sample code as an example, the attention layer
of the BiLSTM-ATT model assigns different weights to the contract code in vulnerability
detection, and we generate a corresponding heat map based on the weights generated by it.
As shown in Figure 11, the safe row is lighter in color, indicating that this example is less
likely to have a vulnerability. The color of the re-entrancy line is darker, indicating that the
weight assigned by the attention layer is greater in detecting re-entrancy vulnerabilities
than in detecting arithmetic vulnerabilities, unchecked calls, and inconsistent access control
vulnerabilities. The model considers this example to be at higher risk of re-entrancy
vulnerabilities. In addition, the re-entrancy line gradually darkens from FUN2, which
means that the weight assigned by the attention layer from FUN2 gradually increases.
This shows that there is a greater possibility of re-entrancy vulnerabilities in this function,
while the possibility of re-entrancy vulnerabilities in other functions is less. In addition,
unchecked calls are similar to re-entrancy vulnerabilities and may be caused by low-
level call functions, so the color in the heat map is darker than the that of the other two
vulnerability categories. Therefore, the BiLSTM-ATT model introduces an attention layer
and assigns different weights in vulnerability detection, which improves the detection
accuracy and precision and enhances the visualization ability of the model.

Comparing our model with the single BiLSTM model, we can see that on the re-
entrancy vulnerability dataset, our model has 12.18% higher accuracy, 17.27% higher
precision, and a 12.13% higher F1 score than the single BiLSTM model. Compared with
the BiLSTM-ATT model, we achieved 5.04% higher accuracy, 9.71% higher precision,
and a 5.64% higher F1 score. Even on the arithmetic vulnerability dataset, our model



Electronics 2023, 12, 2327 15 of 20

outperforms the single model and the BiLSTM-ATT model, with 6.91% higher accuracy,
4.81% higher precision, and 4% higher F1 score than the BiLSTM-ATT model.

��
�#
!�
�#

��
��

�
��
��
��

��
�!
�"
"

$�
�#�

��

�$
��
��

��
��

�$
��
#��

�

	�
�
�

�$
��
��

��
'�
��
�

��
��

�
"�
�"�

��
�!

�
�"
�%
��
$�

�$
��
#��

�

	�
�
�

�$
��
��

$�
�#�

��

��
��

��
��

�
"�
�"�

��
�!

��
��

"$
��
�"
"

�
"�
�"�

��
��
��

%�
�$
�

��
��

!�
 $

�!�

"$
��
�"
"

%�
!�

��
��

�
"�
�"�

��
�!

�!�#���#��

����#!���'

��������������


����"�"#��#�����""����#!��

"���

�������!#��������&�!��"�����#�#�������#�����$!�%$���!�����#��"

0.2

0.4

0.6

0.8

"��!�

Figure 11. Feature weight heat map.

The above two figures show the visualization results of the BiLSTM-ATT model and
our proposed model in three-dimensional space after performing t-SNE dimensionality
reduction on the feature representation of contract codes containing arithmetic vulnerabili-
ties. Figure 12a shows the feature extraction results of the BiLSTM-ATT model. There is an
overlap between the contract code containing arithmetic vulnerabilities and the security
code, and the classification effect needs to be improved. Figure 12b shows the feature
extraction results of our proposed model after adding triplet loss. Compared with the
previous model, the spatial representation of the two categories is more separated, and the
classification effect is better. Therefore, triplet loss can make the features extracted by
the model more cohesive in the same category of data and more dispersed in different
categories of data, effectively improving the classification effect of the model.

(a) (b)

Figure 12. Feature vector visualization: (a) BiLSTM-ATT; (b) our model.

4.3.2. Comparative Experiment

To verify the detection performance of our proposed scheme in terms of smart contract
vulnerabilities, we first compared it with static analysis tools such as Mythril and Oyente
based on symbolic execution methods, which have been widely used.
Tables 4 and 5 show the experimental comparison results of Mythril, Oyente, and our
model on four kinds of vulnerabilities: arithmetic vulnerability, re-entrancy vulnerability,
unchecked call vulnerability, and inconsistent access control.



Electronics 2023, 12, 2327 16 of 20

Table 4. Comparison results between our model and traditional methods on arithmetic and re-
entrancy datasets.

Arithmetic Re-Entrancy

Model Accuracy Precision Recall F1-
Score Accuracy Precision Recall F1-

Score

Mythril 61.53% 59.65% 52.63% 55.92% 60.01% 49.58% 51.69% 50.61%
Oyente 64.02% 61.35% 54.07% 57.48% 67.01% 53.52% 57.43% 55.41%

Ours 88.31% 86.34% 84.60% 85.46% 93.25% 96.20% 86.13% 90.89%

Table 5. Comparison results between our model and traditional methods on unchecked calls and
inconsistent access control datasets.

Unchecked Calls Inconsistent Access Control

Model Accuracy Precision Recall F1-
Score Accuracy Precision Recall F1-

Score

Mythril 59.85% 52.04% 56.93% 54.38% 60.31% 54.91% 56.74% 55.81%
Oyente 68.01% 54.83% 61.04% 57.77% 63.92% 57.47% 57.06% 57.26%

Ours 91.85% 94.92% 90.06% 92.43% 90.59% 95.71% 86.13% 90.67%

As shown in Table 4, the model proposed in this paper has much higher accuracy and
precision than the method based on symbolic execution. Most of the contracts used in the
experiment have four to five functions. The contract code length is long, and the number is
large. When the symbolic execution-based vulnerability detection tool performs symbolic
analysis, the control flow path of the program increases dramatically. Therefore, in order
to balance the execution efficiency and accuracy of the tools, such tools generally perform
pruning to shorten the execution path, resulting in a considerably lower accuracy rate.
In addition, the proposed model maintains around 90% accuracy in detecting re-entrancy
vulnerabilities, unchecked calls, and inconsistent access controls and 88% accuracy in
detecting arithmetic vulnerabilities. Because arithmetic vulnerabilities are generally caused
by developers’ ignorance of data types and operations, their performance is consistent with
normal contracts, and it is difficult to distinguish them, so the correct rate is lower than
that for other vulnerabilities. However, re-entrancy vulnerabilities and unchecked calls
mostly occur when calling low-level functions such as calls, etc., which are easier-to-extract
features and have a slightly higher detection accuracy. In addition, in terms of detection
time, our model is much faster than tools based on symbolic execution. As shown in Table 6,
traditional detection tools have an average detection time of around 5 seconds per contract,
while our model maintains an average detection time per contract in the millisecond range,
significantly improving detection speed.

Table 6. Comparison of detection time between our model and traditional models.

Average Time Mythril Oyente Ours

Arithmetic 4.13 s 5.01 s 0.34 s
Re-entrancy 4.53 s 4.41 s 0.09 s

Unchecked calls 4.69 s 4.68 s 0.13 s
Inconsistent access control 4.57 s 5.01 s 0.12 s

In addition, we compared the performance of our model with that of other deep learn-
ing models, including TextCNN, RNN, LSTM-ATT, GRU, CodeBERT, and XLNet models.
The experimental results are shown in Figures 13–16. TextCNN performs slightly better
than the other four models on the four vulnerability datasets, followed by the LSTM-ATT
model, GRU model, LSTM model, and RNN model. Using arithmetic vulnerabilities as
an example, the accuracy and precision of the RNN model are both low, and the accu-
racy is the same as that of the Mythril tool based on symbolic execution (only 61.58%),



Electronics 2023, 12, 2327 17 of 20

and the precisionis only 61.03%. Because most of the contract datasets we collected are
long contract codes, the dataset comprises a large number of contracts. When the train-
ing contract code size is large, the RNN model gradient disappears or explodes, and the
accuracy is affected and greatly reduced. The LSTM model improves the accuracy rate
of arithmetic loopholes (70.46%) by introducing the memory unit mechanism and the
gating unit, the precision rate is 65.31%, the recall rate is 69.24%, and the F1-score is 67.30%.
The accuracy rate of the GRU model is 71.07%, the precision rate is 66.19%, the recall
rate is 70.75%, and the F1-score is 68.39%. However, when the code length is longer, al-
though the LSTM and GRU models are better than the RNN models, the accuracy and
F1 score still decrease when they learn longer dependencies. The LSTM-ATT model with
the attention mechanism can slightly improve the performance, with an accuracy rate
of 73.41%, a precision rate of 72.51%, a recall rate of 69.67%, and an F1 score of 71.06%.
Our model performs best on arithmetic loopholes, with an accuracy rate of 88.31%, a preci-
sion score of 86.34%, a recall rate of 84.60%, and an F1 score of 85.46%, effectively improving
the classification effect of positive and negative classes. Compared with the most advanced
code language models, the CodeBERT model and the XLNet model, the accuracy and
precision of our model are 9.64% and 12.19% higher on the arithmetic vulnerability dataset
and 6.83% and 7.13% higher on the re-entrancy vulnerability dataset, respectively.

Figure 13. The detection results of each model on the arithmetic vulnerability dataset.

Figure 14. The detection results of each model on the re-entrancy vulnerability dataset.



Electronics 2023, 12, 2327 18 of 20

Figure 15. The detection results of each model on the unchecked call vulnerability dataset.

Figure 16. The detection results of each model on the inconsistent access control vulnerability dataset.

5. Conclusions

In this paper, we propose a scheme for smart contract vulnerability detection based on
metric learning and the bidirectional long short-term memory network model.

(1) We propose a new vulnerability detection model from the perspective of feature
representation space optimization. In contrast to existing methods, we do not im-
prove the feature learning ability of the whole model by combining multiple models
but introduce the metric learning triplet loss function on the basis of the traditional
binary cross-entropy loss function to optimize the feature representation ability of
the model. By optimizing the feature space, contracts of the same category are closer
and contracts of different categories are further apart so as to improve the detection
accuracy of the model and make up for the limitation of the high false-positive rate of
the traditional method.

(2) The proposed scheme enhances the interpretability of vulnerability detection. We
use the source code of the smart contract as the input data, and through the word
vectorization and attention mechanism, we can screen out the key features of the
vulnerability and locate the cause of the smart contract vulnerability in the source code.

(3) We constructed a large-scale dataset for contract source code vulnerability detection.
We collected 165,000 verified contracts from the Etherscan website and used tools
such as Slither and Mythril to classify the contracts.



Electronics 2023, 12, 2327 19 of 20

(4) The scheme has excellent detection performance. To fairly evaluate the performance of
our model, we compared it with traditional methods based on symbolic analysis and
other deep-learning-based methods on four datasets of arithmetic vulnerabilities, re-
entrancy vulnerabilities, unchecked calls, and inconsistent access control. The results
show that our model achieves the best accuracy on these four datasets (88.31%, 93.25%,
91.85%, and 90.59%, respectively), while maintaining a high F1 score of 85.46%,
90.89%, 92.43%, and 90.67%, respectively. Compared with symbolic analysis methods,
our model has a faster detection speed. According to the experimental results, our
proposed model has better classification performance and detection speed.

However, our current model can only judge whether there is a vulnerability in the con-
tract and cannot determine the specific type of vulnerability. In the future, we will continue
to study how to simultaneously introduce metric learning and multilabel classification
models in smart contract vulnerability detection to identify specific vulnerability categories.

Author Contributions: Conceptualization, M.W. and K.Z.; methodology, M.W.; validation, M.W.,
X.W., and K.Z.; writing—original draft preparation, M.W.; writing—review and editing, M.W.;
visualization, M.W. and Z.X.; supervision, K.Z.; project administration, M.W. and J.L.; funding
acquisition, K.Z. All authors have read and agreed to the published version of the manuscript.

Funding: This research was funded by National key research and development plan based on “Internet
+” village community public service enhancement technology research (grant number 2019YFD1101104).

Data Availability Statement: The experimental code and data used in this study will be posted on
the dead simple repository (https://github.com/SunnyWang01/SmartContractDetect, (accessed on
10 January 2023)).

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Wang, S.; Ouyang, L.; Yuan, Y.; Ni, X.; Han, X.; Wang, F.Y. Blockchain-enabled smart contracts: Architecture, applications, and

future trends. IEEE Trans. Syst. Man Cybern. Syst. 2019, 49, 49–77. [CrossRef]
2. Capocasale, V.; Perboli, G. Standardizing smart contracts. IEEE Access 2022, 10, 91203–91212. [CrossRef]
3. Ivashchenko, N.P.; Shastitko, A.Y.; Shpakova, A.A. Smart contracts throught lens of the new institutional economics. J. Institutional

Stud. 2019, 11, 64–83. [CrossRef]
4. Sharma, A.; Tomar, R.; Chilamkurti, N.; Kim, B.G. Blockchain based smart contracts for internet of medical things in e-healthcare.

Electronics 2020, 9, 1609. [CrossRef]
5. Lu, J.; Wu, S.; Cheng, H.; Song, B.; Xiang, Z. Smart contract for electricity transactions and charge settlements using blockchain.

Appl. Stoch. Model. Bus. Ind. 2021, 37, 37–53. [CrossRef]
6. Goudarzi, A.; Ghayoor, F.; Waseem, M.; Fahad, S.; Traore, I. A Survey on IoT-Enabled Smart Grids: Emerging, Applications,

Challenges, and Outlook. Energies 2022, 15, 6984. [CrossRef]
7. Waseem, M.; Adnan Khan, M.; Goudarzi, A.; Fahad, S.; Sajjad, I.A.; Siano, P. Incorporation of Blockchain Technology for Different

Smart Grid Applications: Architecture, Prospects, and Challenges. Energies 2023, 16, 820. [CrossRef]
8. Kumar, P.; Kumar, R.; Gupta, G.P.; Tripathi, R. A Distributed framework for detecting DDoS attacks in smart contract-based

Blockchain-IoT Systems by leveraging Fog computing. Trans. Emerg. Telecommun. Technol. 2021, 32, e4112. [CrossRef]
9. Zhou, Q.; Zheng, K.; Zhang, K.; Hou, L.; Wang, X. Vulnerability Analysis of Smart Contract for Blockchain-Based IoT Applications:

A Machine Learning Approach. IEEE Internet Things J. 2022, 9, 24695–24707. [CrossRef]
10. Gupta, R.; Patel, M.M.; Shukla, A.; Tanwar, S. Deep learning-based malicious smart contract detection scheme for internet of

things environment. Comput. Electr. Eng. 2022, 97, 107583. [CrossRef]
11. Zheng, Z.; Xie, S.; Dai, H.N.; Chen, W.; Chen, X.; Weng, J.; Imran, M. An overview on smart contracts: Challenges, advances and

platforms. Future Gener. Comput. Syst. 2020, 105, 475–491. [CrossRef]
12. Ullah, F.;Al-Turjman, F. A conceptual framework for blockchain smart contract adoption to manage real estate deals in smart

cities. Neural Comput. Appl. 2021, 35, 1–22. [CrossRef]
13. Wang, W.; Song, J.; Xu, G.; Li, Y.; Wang, H.; Su, C. Contractward: Automated vulnerability detection models for ethereum smart

contracts. IEEE Trans. Netw. Sci. Eng. 2020, 8, 1133–1144. [CrossRef]
14. Wang, X.; Sun, J.; Hu, C.; Yu, P.; Zhang, B.; Hou, D. EtherFuzz: Mutation Fuzzing Smart Contracts for TOD Vulnerability Detection.

Wirel. Commun. Mob. Comput. 2022, 2022, 1565007. [CrossRef]
15. Sun, T.; Yu, W. A formal verification framework for security issues of blockchain smart contracts. Electronics 2020, 9, 255.

[CrossRef]

https://github.com/SunnyWang01/SmartContractDetect
http://doi.org/10.1109/TSMC.2019.2895123
http://dx.doi.org/10.1109/ACCESS.2022.3202550
http://dx.doi.org/10.17835/2076-6297.2019.11.3.064-083
http://dx.doi.org/10.3390/electronics9101609
http://dx.doi.org/10.1002/asmb.2570
http://dx.doi.org/10.3390/en15196984
http://dx.doi.org/10.3390/en16020820
http://dx.doi.org/10.1002/ett.4112
http://dx.doi.org/10.1109/JIOT.2022.3196269
http://dx.doi.org/10.1016/j.compeleceng.2021.107583
http://dx.doi.org/10.1016/j.future.2019.12.019
http://dx.doi.org/10.1007/s00521-021-05800-6
http://dx.doi.org/10.1109/TNSE.2020.2968505
http://dx.doi.org/10.1155/2022/1565007
http://dx.doi.org/10.3390/electronics9020255


Electronics 2023, 12, 2327 20 of 20

16. Shafay, M.; Ahmad, R.W.; Salah, K.; Yaqoob, I.; Jayaraman, R.;Omar, M. Blockchain for deep learning: Review and open challenges.
Clust. Comput. 2022, 14, 1–25.

17. Cai, J.; Li, B.; Zhang, J.; Sun, X.; Chen, B. Combine sliced joint graph with graph neural networks for smart contract vulnerability
detection. J. Syst. Softw. 2023, 195, 111550. [CrossRef]

18. Dai, M.; Yang, Z.; Guo, J. SuperDetector: A Framework for Performance Detection on Vulnerabilities of Smart Contracts. J. Phys.
Conf. Ser. 2022, 2289, 012010. [CrossRef]

19. Zhang, L.; Wang, J.; Wang, W.; Jin, Z.; Zhao, C.; Cai, Z.; Chen, H. A novel smart contract vulnerability detection method based on
information graph and ensemble learning. Sensors 2022, 22, 3581. [CrossRef]

20. Liu, Z.; Qian, P.; Wang, X.; Zhuang, Y.; Qiu, L.; Wang, X. Combining graph neural networks with expert knowledge for smart
contract vulnerability detection. IEEE Trans. Knowl. Data Eng. 2021, 35, 1296–1310. [CrossRef]

21. Ye, J.; Ma, M.; Lin, Y.; Ma, L.; Xue, Y.; Zhao, J. Vulpedia: Detecting vulnerable ethereum smart contracts via abstracted vulnerability
signatures. J. Syst. Softw. 2022, 192, 111410. [CrossRef]

22. Mossberg, M.; Manzano, F.; Hennenfent, E.; Groce, A.; Grieco, G.; Feist, J.; Brunson, T.; Dinaburg, A. Manticore: A user-friendly
symbolic execution framework for binaries and smart contracts. In Proceedings of the 2019 34th IEEE/ACM International
Conference on Automated Software Engineering (ASE), San Diego, CA, USA, 11–15 November 2019; pp. 1186–1189.

23. Perez, D.; Livshits, B. Smart contract vulnerabilities: Does anyone care? arXiv 2019, arXiv:1902.06710.
24. Mueller, B. Smashing ethereum smart contracts for fun and real profit. HITB SECCONF Amst. 2018, 9, 54.
25. Jiang, B.; Liu, Y.; Chan, W.K. Contractfuzzer: Fuzzing smart contracts for vulnerability detection. In Proceedings of the 33rd

ACM/IEEE International Conference on Automated Software Engineering, Leipzig, Germany, 3–7 September 2018; pp. 259–269.
26. Abdellatif, T.; Brousmiche, K.L. Formal verification of smart contracts based on users and blockchain behaviors models. In

Proceedings of the 2018 9th IFIP International Conference on New Technologies, Mobility and Security (NTMS), Lisbon, Portugal,
26–28 February 2018; pp. 1–5.

27. Sun, Y.; Gu, L. Attention-based machine learning model for smart contract vulnerability detection. J. Phys. Conf. Ser. 2021, 1820,
012004. [CrossRef]

28. Zhang, X.; Li, J.; Wang, X. Smart Contract Vulnerability Detection Method based on Bi-LSTM Neural Network. In Proceedings of
the 2022 IEEE International Conference on Advances in Electrical Engineering and Computer Applications (AEECA), Dalian,
China, 20 August 2022; pp. 38–41.

29. Wang, B.; Chu, H.; Zhang, P.; Dong, H. Smart Contract Vulnerability Detection Using Code Representation Fusion. In Proceedings
of the 2021 28th Asia-Pacific Software Engineering Conference (APSEC), Taiwan, China, 6 December 2021; pp. 564–565.

30. Zhang, L.; Li, Y.; Jin, T.; Wang, W.; Jin, Z.; Zhao, C.; Cai, Z.; Chen, H. SPCBIG-EC: A robust serial hybrid model for smart contract
vulnerability detection. Sensors 2022, 22, 4621. [CrossRef] [PubMed]

31. Zhang, L.; Chen, W.; Wang, W.; Jin, Z.; Zhao, C.; Cai, Z.; Chen, H. Cbgru: A detection method of smart contract vulnerability
based on a hybrid model. Sensors 2022, 22, 3577. [CrossRef]

32. Qian, S.; Ning, H.; He, Y.; Chen, M. Multi-Label Vulnerability Detection of Smart Contracts Based on Bi-LSTM and Attention
Mechanism. Electronics 2022, 11, 3260. [CrossRef]

33. Graves, A.; Graves, A. Long short-term memory. In Supervised Sequence Labelling with Recurrent Neural Networks; Springer:
Berlin/Heidelberg, Germany, 2012; pp. 37–45.

34. Hoffer, E.; Ailon, N. Deep metric learning using triplet network. In Similarity-Based Pattern Recognition: Third International Workshop,
SIMBAD 2015, Copenhagen, Denmark, 12–14 October 2015; Proceedings 3; Springer International Publishing: Berlin/Heidelberg,
Germany, 2015; pp. 84–92.

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

http://dx.doi.org/10.1016/j.jss.2022.111550
http://dx.doi.org/10.1088/1742-6596/2289/1/012010
http://dx.doi.org/10.3390/s22093581
http://dx.doi.org/10.1109/TKDE.2021.3095196
http://dx.doi.org/10.1016/j.jss.2022.111410
http://dx.doi.org/10.1088/1742-6596/1820/1/012004
http://dx.doi.org/10.3390/s22124621
http://www.ncbi.nlm.nih.gov/pubmed/35746403
http://dx.doi.org/10.3390/s22093577
http://dx.doi.org/10.3390/electronics11193260

	Introduction
	Background
	Smart Contract Vulnerabilities
	Current Smart Contract Vulnerability Detection Methods

	Method
	Data Preprocessing
	Word-Embedding Layer
	BiLSTM Layer
	Attention Layer
	Vulnerability Detection Layer Optimized by Triplet Loss

	Experiments
	Dataset
	Evaluation Indicators
	Experimental Results
	Ablation Experiment
	Comparative Experiment


	Conclusions
	References

