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Abstract: A planar maximum coverage location problem in a continuous formulation is considered.
The demand zone and service areas are presented as geometric items of given shapes and sizes.
Each service area is associated with a point (centroid), relative to which the corresponding geometric
item forms. The task is to find the position of the centroids to provide an optimal service for the
demand zone according to a given criterion. The mathematical model is constructed as a nonlinear
optimization problem, in which the variables are the coordinates of the centroids, and the objective
function is defined as the area of the demand zone covered by the services. For the formalization and
calculation of the objective function, both analytical expressions and computer geometry software are
used. The methodology we propose is applicable to the arbitrary shapes of both the demand zone and
the service areas. Moreover, this technique does not depend on the complexity of the corresponding
items, since it uses the Shapely library, which operates with the same Polygon class. An approach to
solving the problem based on the consistent application of local and global optimization methods is
proposed. An auxiliary problem is posed that allows one to significantly reduce the run time at the
stage of local optimization. The implementation of the approach is illustrated by examples of the
maximum coverage location problem when the demand zone is a polygon and the service areas have
the shape of a circle and an ellipse. The innovation of this paper lies in the fact that the maximum
service coverage problem in business site selection is studied in such a way that both the demand
zone and the service areas have an arbitrary shape.

Keywords: service coverage; demand zone; service areas; maximum coverage location problem;
geometric item; optimization; computer geometry software

1. Introduction

The issue of service coverage when choosing a business site for a facility is an important
component of business strategy, especially for businesses that operate in the real, physical
world. Whether it is a retail outlet, manufacturing plant, or distribution center, companies
need to carefully consider where they locate their facilities in order to best serve potential
demand. Conceptually, this problem has been widely studied in papers [1–5]. At the same
time, one of the key tasks in site location analysis is to determine the optimal site location
for maximum service coverage. The Maximum Coverage Location Problem (MCLP) is a
widely used optimization problem that aims to determine the best location for a feature in
order to maximize its service coverage. By taking into account factors such as population
density, transportation networks, and demand patterns, the MCLP can help businesses
determine the optimal location for their facilities.

In the business industry, facilities such as retail stores are very interested in optimizing
location decisions [6]. By locating their stores in areas with high traffic and purchasing
power, retailers can capture market share and optimize revenue. The MCLP can help
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retailers determine the best location for their stores based on factors such as surrounding
demographics, proximity to competing retailers, and site accessibility. For manufacturers,
the optimal site location can be determined by factors such as availability of raw mate-
rials and proximity to transport networks [7]. By identifying the best location for their
facilities, manufacturers can reduce the costs associated with acquiring raw materials and
transporting goods, improving overall profitability.

The application of the MCLP is not limited to the private sector. Public sector or-
ganizations such as healthcare providers and emergency services can also benefit from
streamlining their facility placement decisions [8]. By optimizing facility placement deci-
sions, these organizations can increase access to healthcare, improve response times, and
save lives. For healthcare providers, the MCLP can help to identify the optimal locations
for hospitals, clinics, and other healthcare facilities. By analyzing factors such as population
density, demographic data, and disease prevalence, healthcare providers can identify areas
with high demand for healthcare services and determine the optimal locations for their
facilities. This can help to increase access to healthcare services, reduce wait times, and
improve overall health outcomes for the community. Therefore, site location is a major
issue for businesses and organizations in a wide variety of sectors. By applying the MCLP
to location decisions, businesses can optimize service coverage, reduce operating costs, and
gain a competitive advantage in the marketplace.

The standard MCLP considers a finite set of possible locations for items, and a set of
discrete points represents demand. This problem was proposed by R.L. Church and C. ReV-
elle [9]. As a result, the MCLP can be formulated as an integer linear programming problem.
A variety of task statements arise due to the use of different methods for determining the
coverage area of a potential item or assigning weights to sites.

Later, with the development of mathematical modeling tools and computer technolo-
gies, the formulation of the MCLP was significantly generalized and expanded, taking into
account applications to various subject areas, such as the location of police stations [10],
the allocation of emergency response centers [11], the placement of drones facilities to
provide various services [12], positioning antennas [13], the placement of charging stations
for electric vehicles [14], and many others. The construction of adequate mathematical
models of the listed tasks is necessary to take into account the geometric properties of the
demand zone and service areas.

The assumption that demand can only be represented as point data without mea-
surement is a significant limitation in location modeling. Demand is often continuously
distributed over a unit area of a particular geometric shape, and such distribution must be
considered when modeling a location. To address this limitation, some studies have used
regional representations of demand. These area-based representations take the size and
shape of the area into account when estimating demand, resulting in a more accurate and
realistic representation of demand.

In [15], it is proposed to continuously place both service areas and its centroids
on the plane. Such a problem is called the planar MCLP and is NP-hard [16]. In [17],
a planar MCLP with partial coverage and rectangular demand and service zones are
studied. The problem is how to position a given number of rectangular service zones
on the two-dimensional plane to partially cover a set of existing (possibly overlapping)
rectangular demand zones such that the total covered demand is maximized. Based on
the properties of the model, the possibility of a significant reduction in the search space is
theoretically substantiated.

In [17,18], a computational geometry-based approach was proposed to study partial
coverage by rectangular and circular service areas. In [19], a mixed integer nonlinear
programming model was formulated to determine the position of rectangular items of
unequal area when the demand area is a continuum. A continuous approach is proposed
using an annealing simulation algorithm for solving large-scale problems. For the initial
solution, a heuristic algorithm based on the geometric features of the problem is used.
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In [20], the MCLP is analyzed, in which continuity conditions are imposed on the
location of items; however, the discrete structure of the demand area is preserved, taking
into account the graph of relations between the centroids of the service areas. The problem
of mixed-integer nonlinear programming is formulated. At the same time, considering
the geometric properties, its equivalent reformulation in the form of an integer linear
programming problem is proposed.

Let us also point out approaches that use the decomposition of the demand area into
several smaller regions, taking into account the ratio between fully covered and uncovered
areas [15,21–23]. It is assumed that the object covers the demand of the region if it serves
the entire region. Since obtaining even a partial maximum coverage is not a trivial problem,
an auxiliary problem of partial coverage by only one item is considered.

Particular interest is given to continuous problems of optimal set partitioning. Such
problems include infinite-dimensional problems of enterprise location with simultaneous
partitioning of a given region, continuously filled with consumers, into consumer areas,
each of which is served by one enterprise, in order to minimize transportation and produc-
tion costs. The relevance of infinite-dimensional location problems arises when there are a
large number of consumers. In this case, the consideration of a discrete mathematical model
becomes inexpedient due to the difficulties associated with solving problems of excessively
large dimensions. In addition, there are problems that can be reduced to problems of opti-
mal partitioning, in which the set partitioned into subsets is already initially continual in its
structure. In [24–27], the foundations of the mathematical theory of continuous problems
of optimal partitioning of the Euclidean space sets into subsets, which are nonclassical
problems of infinite-dimensional mathematical programming with Boolean variables, are
laid. Within the framework of this theory, a number of directions have been investigated,
determined both by various areas of its applications and by types of mathematical formula-
tions of partitioning problems. These are single-stage deterministic linear and nonlinear,
single-product and multi-product problems of optimal set partitioning under constraints,
with both a given location of the subset centers and with finding the optimal variant of
their location; two-stage continuous–discrete optimal location-allocation problems; optimal
set partitioning problems under uncertainty; dynamic problems of optimal set partitioning;
and others.

Summarizing the above, we state that the study of complex spatial representations
of the demand zone and service areas provides more accurate and meaningful informa-
tion for decision-making processes in various applications. In turn, this requires a deep
understanding of the spatial characteristics of demand and service areas, such as their size,
shape, and relative position, and the inclusion of this information in location modeling. In
addition, the increased use of geographic information systems and digital spatial informa-
tion increases the importance of exploring alternative representations of the spatial shapes
of both demand and service areas when modeling their location.

The purpose of this article is to study the maximum coverage of services when choos-
ing business sites in the MCLP formulation, taking into account the given shapes of the
demand zone and service areas, the development of mathematical models and approaches
to solving the planar MCLP using modern computer technologies. The main emphasis is
on the arbitrary shapes and sizes of both the demand zone and the service areas, as well
as on the possibility of using the Shapely library of the Python algorithmic language. The
rationale for choosing this particular library is given.

2. Materials and Methods

Notation
Nn = {1, 2, . . . , n}

N0
n = Nn ∪ {0} = {0, 1, . . . , n}
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Ω = {S0, S1, . . . , Sn}

2.1. Problem Statement

There is a demand zone (region) S0 and a family of service areas S1, . . . , Sn. Each
service area Si, i ∈ Nn is associated with a point ci, which we will call a centroid. The
areas will be defined relatively to that point. The problem is how to find such a position
of service area centroids ci, i ∈ Nn in order to provide the optimal service of the demand
zone S0 according to a given criterion. It is assumed that the shape and geometric sizes
of the demand zone and service areas are specified. Restrictions can be imposed on the
position of centroids ci, i ∈ Nn, which determine their allowable location. As optimality
criteria, we will consider the maximum coverage area of the demand zone.

Let us pose this task in terms of the Maximum Coverage Location Problem, considering
the demand zone and the service areas as planar geometric items.

2.2. Auxiliary Concepts

In d-dimension Euclidean space Rd, an item S is a geometric set of points P ∈ Rd that
satisfy an inequality f(P) ≥ 0. The equation f(P) = 0 defines the boundary of the item S and
its shape. In the general case, the boundary equation contains constants m = (m1, . . . , mα),
which are called metric parameters, which determines linear sizes of S, i.e., f(P, m) = 0. We
assume that the function f(P, m) is defined and continuous in P for any m ∈ D, where D is
the set of admissible values of metric parameters m.

In what follows, we restrict ourselves to a plane problem, so d = 2, P = (x, y).
Consider a fixed Cartesian coordinate system Oxy. Let us choose a point c ∈ S and

associate with the item S its own (moving) Cartesian coordinate system Ox′y′, with the
origin at the point c. The location of the item S in the coordinate system Oxy will be
determined by the so-called placement parameters p = (v, θ), where v = (x, y) are the
coordinates of the point c in the fixed coordinate system, and θ is the angle of rotation
Ox′y′ relative to Oxy.

The location of an item S relative to a fixed coordinate system is given by the equation
of its general position:

F(P, m, v, θ) = f(A(P-v), m) = 0, (1)

where the operator A has the form

A =

(
cos θ sin θ
− sin θ cos θ

)
.

Note that the number of placement parameters can be reduced, particularly for cen-
trally symmetrical geometric items. In addition, some placement parameters can be fixed
in accordance with the problem statement.

To consider geometric items that have a given shape, but variable metric m and
placement p parameters, in [28,29] the concept of a configuration space of geometric items
Ξ(S) is introduced, with generalized variables g = (m, p). Any point g = (m, p), m ∈ D in
this space corresponds to a parametrized geometric item S(g) such that

F(P, m, p) = 0, if P ∈ fr S(g);
F(P, m, p) > 0, if P ∈ int S(g);
F(P, m, p) < 0, if P /∈ cl S(g),

where fr, int, and cl are the operations of the topological boundary, interior, and closure, respectively.

2.3. Math Modeling

Let S0 be a geometric item corresponding to the demand zone and Si, i ∈ Nn be a
family of geometric items corresponding to the service areas. Analogous with the above
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definitions, we set the metric and placement parameters mi = (mi
1, . . . , mi

αi
), pi = (vi, θi)

for Si, i ∈ N0
n. Here vi = (xi, yi) are the coordinates of the centroids ci, i ∈ N0

n in the fixed
coordinate system Oxy.

Let us form the configuration spaces Ξ(Si), i ∈ N0
n of items Si with generalized variables

gi = (mi, pi). Then, we construct the configuration space Ξ(Ω) with generalized variables
g = (g0, g1, . . . , gn) as a Cartesian product of configuration spaces Ξ(Si), i ∈ N0

n, i.e.,

Ξ(Ω) = Ξ(S0)× Ξ(S1)× . . .× Ξ(Sn)

Note that depending on the problem statement, some generalized variables may be
given. To indicate this, we will use a cap over the corresponding variable.

The solution of the problem posed involves the construction of appropriate mathe-
matical models which are primarily associated with the formalizing of the optimization
criterions and constraints, followed by the choice of effective methods for local and
global optimization.

In this article, the maximum service coverage of the demand zone is considered as an
optimality criterion.

To determine the dependence of the specified optimality criterion on placement pa-
rameters pi, i ∈ Nn of service areas, an approach based on the concept of a ω-function [30]
for a complex geometric item is proposed.

Let Ω =
{

Si, i ∈ N0
n

}
be the initial set of geometric items. By the logical operators

(union, intersection, difference), we will define a mapping as

ϕ : Ω→ Sϕ (2)

that forms a so-called complex item Sϕ = ϕ(S0, S1, . . . , Sn). We will assume that the
mapping ϕ determines the structure of a complex item Sϕ.

In the configuration space Ξ(Ω), a complex item Sϕ = ϕ(S0, S1, . . . , Sn) corresponds
to a parameterized geometric item

Sϕ(g) = Sϕ(g0, g1, . . . , gn) = ϕ
(

S1(g0), S1(g1), . . . , Sn(gn)
)

Let the sets Si(ĝi) ⊂ R2, i ∈ N0
n be measured by Lebesgue for any ĝi ∈ Ξ(Si). We

define a function as

ωϕ(g) = ωϕ(g0, g1, . . . , gn) = µ
(

Sϕ(g0, g1, . . . , gn)
)

where µ(·) is the Lebesgue measure.
The function

ωϕ : Ξ(Ω)→ R1

defined in this way is calledω-function [30].
In its essence, for the planar complex parameterized geometric item Sϕ(g), the ω-

function determines the dependence of its area on the generalized variables of the con-
stituent items Si(gi), i ∈ N0

n.
To define theω-function, we introduce the characteristic function

λϕ(P, g) =
{

1, if P ∈ Sϕ(g);
0, if P /∈ Sϕ(g).

For planar item we have

ωϕ(g) =
x
λϕ(P, g)dP. (3)
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To construct the correspondingω-functions, it is necessary to form the configuration
spaces of geometric items Si, i ∈ N0

n, and write down the equations of their boundaries
fi(P, mi) = 0 and general positions Fi(P, mi, pi, θi) = fi

(
A(P-vi), mi) = 0.

In applied problems, geometric items that have the shape of a circle, ellipse, and
polygon are most often considered.

For circular items, generalized variables are its radius ri (metric parameter) and the
coordinates of the center (xi, yi) in a fixed coordinate system (placement parameters), i.e.,
gi = (mi, pi) = (ri, xi, yi). The general position equation has the form

Fi(P, mi, pi) = r2
i − (x− xi)

2 + (y− yi)
2 = 0.

For an ellipse Si, the generalized variables are semi-major ai and semi-minor bi axes,
the coordinates (xi, yi) of the center of symmetry in a fixed coordinate system, and the
angle θi of rotation of its own coordinate system, i.e., gi = (mi, pi) = (ai, bi, xi, yi, θi). The
general position equation can be written as

Fi(P, mi, pi) = 1− ((x− xi) cos θi + (y− yi) sin θi)
2

a2
i

+
((x− xi) sin θi − (y− yi) cos θi)

2

b2
i

= 0.

For a polygon Si with ki vertices, metric parameters can be set, for example, by ordering
the coordinates of its vertices in its own coordinate system mi = (x̂i

1, ŷi
1, x̂i

2, ŷi
2, . . . , x̂i

ki
, ŷi

ki
).

The placement parameters will be the coordinates of the system origin (xi, yi) and the
angle θi of its rotation, i.e., gi = (mi, pi) = (x̂i

1, ŷi
1, x̂i

2, ŷi
2, . . . , x̂i

ki
, ŷi

ki
, xi, yi, θi). The general

position equation Fi(P, mi, pi) = 0 is easy to write using the equations of lines passing
through adjacent vertices of the polygon.

To use the approach described above to solve the problem posed in this article, we
consider the formation of complex items based on mapping (2). Let us put the family of
mappings as

ψ : Ω→ Sψ (4)

ψij : Ω→ Sψij , i, j ∈ N0
n, j > i, (5)

where
Sψ = ψ(S0, S1, . . . , Sn) = S0 ∩

n
∪

i=1
Si (6)

Sψij = ψij(S0, S1, . . . , Sn) = Si ∩ Sj, i, j ∈ N0
n, j > i.

We fix the location of the demand zone by setting p̂0 = (0, 0, 0) and setting the metric
parameters m̂i, i ∈ N0

n of the demand zone and service areas. Then,

g0 = (m̂0, p0), gi = (m̂i, pi), i ∈ Nn.

Considering that both metric parameters m̂i, i ∈ N0
n and the placement parameters

p̂0 are given, our goal is to find the placement parameters pi, i ∈ Nn of service areas
that provide the maximum service coverage. Note that with the given metric parameters
m̂i, i ∈ N0

n of geometric objects, their Lebesgue measure (area) does not depend on
placement parameters, i.e., µi = µ(Si).

The dependence of the coverage area of the demand zone S0 on placement parameters
pi = (xi, yi, θi) of service areas Si, i ∈ Nn can be represented as

W(p1, . . . , pn) = ωψ(g) = ωψ(m̂0, p̂0, m̂1, p1, . . . , m̂n, pn),

where the mapping ψ has the form (4).
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As a result, we have a nonlinear optimization problem

W(p1, . . . , pn)→ max (7)

subject to
(p1, . . . , pn) ∈ D,

where D is a feasible region, which is given by restrictions on the location of centroids

ci, i ∈ Nn.

An example of such restrictions can be the conditions for the minimum dmin
ij and

maximum dmax
ij distances between centroids ci and cj, i, j ∈ Nn, j > i which have the form

dmin
ij ≤

√
(xi − xj)

2 + (yi − yj)
2 ≤ dmax

ij .

2.4. Decision Optimization Using Computer Geometry Software

The optimization problem (7) is high-dimensional and multi-extremal. The ways to
solve it are determined by the properties of the function W(p1, . . . , pn). Unfortunately, it is
impossible to obtain an analytical expression for W(p1, . . . , pn) in the form of a dependence
on variables pi = (xi, yi, θi), i ∈ Nn. Indeed, for this it is necessary to carry out integration
according to formula (3), which is an impossible task for regions of a complex shape. We
propose to calculate the function W(p1, . . . , pn) using modern computational geometry
packages. The features of the implementation of such packages when solving placement
and coverage problems usingω-functions are described in [31–33].

Currently, you can find a wide list of libraries that allow you to operate with complex
geometric shapes, in particular, SymPy, Shapely, CGAL, SpaceFuncs, and many others.
Based on the analysis of these libraries, taking into account the necessary functionality
for calculating the function W(p1, . . . , pn), we chose the Shapely library [34] of the Python
algorithmic language.

Shapely is created for the theoretical analysis of point sets and the manipulation of
planar objects using the functions of the GEOS library through the ctypes Python module.
GEOS as a port of the Java Topology Suite package is the geometry attribute of the spatial
extension of PostGIS. At the same time, Shapely adheres mainly to uniform standard classes
and operations.

The Shapely library makes it possible to perform operations on geometric shapes using
logical operators (union, intersection, difference, and complement) and to build complex
shapes on the plane from a set of basic shapes (polygon, circle, and ellipse). To model basic
shapes, the geometry module is used, which includes the Point and Polygon classes. We
import the Point and Polygon classes for geometry items from Shapely as follows:

from shapely.geometry.point import Point
from shapely.geometry import Polygon
A point is given by its coordinates and a polygon by an array of vertex coordinates.

When using the Shapely library, the complexity of the shape does not matter and only affects
the calculation time. At the same time, geometric items are created typically for Python
through the instance factory. If necessary, factories can be checked for topological simplicity
or validity using the predicate: attr:is_valid.

Since there is no special data type for circle and ellipse in the Shapely library, the affinity
module is used to construct them. A set of affine transformation functions is contained
in the shapely.affinity module, which returns geometric shapes by directly providing
coefficients to the affine transformation matrix or by using a custom named transformation
(rotate, scale, etc.).

To build a circle, you need a standard set of its generalized parameters—the coordi-
nates of the center (x, y) and the radius r:

circle_center = Point(x, y)



Electronics 2023, 12, 2329 8 of 19

circle = circle_center.buffer(r)
For an ellipse, the major semi-axis a and the minor semi-axis b are used:
ellipse_center = Point(x, y).buffer(1)
ellipse = affinity.scale(ellipse_center, a, b),
where the affinity.scale function scales the item according to the values of the semi-axes.
The function affinity.rotate (item, θ) is used to rotate the item by an angle θ. Here ‘item’

specifies the shape (polygon, ellipse, or complex shape). However, in any case, as a result
of the affine transformation, an item belonging to the Polygon class is built. This is the main
reason for the simplicity of operations between the complex items, since, in fact, these are
operations on polygons. Logical operations difference, intersection, union, symmetric_difference
are used for any two items in the geometry module.

From the point of view of using the Shapely library, the ability to calculate the area of a
complex geometric item is fundamental. There is an area field for this. When forming any
item, its area is calculated automatically.

The ability to calculate the function W(p̂1, . . . , p̂n) for any fixed placement parameters
(p̂1, . . . , p̂n) allows the use of modern methods of local and global optimization to solve
problem (7). However, this requires too much computation of this function. Therefore,
there is a question around the development of effective approaches that reduce their
computational complexity.

Based on the specifics of the problem statement, we offer the following approach. Let us
consider the auxiliary optimization problem, which consists in minimizing the total area of
paired overlaps of service areas and their overlap with the complement of the demand zone.

The auxiliary problem is formulated as

G(p1, . . . , pn)→ min, (8)

where

G(p1, . . . , pn) =
n−1

∑
i=1

n

∑
j=i+1

ωψij(g
i, gj)−

n

∑
j=1
ωψ0j(ĝ

0, gj) +
n

∑
j=1
µj; (9)

the family of mappings ψij, i, j ∈ N0
n, j > i have the form (4);

µj, j ∈ Nn are constants equal to the item areas Si, i ∈ Nn.
To clarify the geometric meaning of the functions W(p̂1, . . . , p̂n) and G(p̂1, . . . , p̂n) for

the fixed placement parameters of items, we present Figure 1. In Figure 1a, the service
coverage is shown. In Figure 1b, the overlapping of service areas between themselves and
with the demand zone complement are also colored.
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Obviously, it is expected that the solution to problem (8) will be a good approximation
for problem (7). This assumption is confirmed by the test tasks presented in the next section.

The main advantage of problem (8) is that in order to calculate functionsωψ0j(ĝ
0, gj),

ωψij(g
i, gj), i, j ∈ Nn, j > i, using the Shapely library, there is no need to form a complex

item (6), but it is enough to consider only the operations of the intersection of two items.
Moreover, for geometric items of a simple shape (circles, ellipses, and polygons), formulas are
known for the dependence of the intersection area of items on their placement parameters.

Based on the above reasoning, we propose the following approach to solving prob-
lem (7), highlighting the stages of local and global optimization. At the stage of local
optimization for the starting point (p̂1, . . . , p̂n), we find the local minimum (p̃1, . . . , p̃n)
of the function G(p1, . . . , pn). To solve this problem, the Nelder–Mead method or an effi-
cient gradient method can be used. If analytical expressions for the functionsωψ0j(ĝ

0, gj),
ωψij(g

i, gj), i, j ∈ Nn, j > i are known, then the calculation of their gradients does not cause
difficulties. In general, first order differences can be used. Then the value of the function
W(p̃1, . . . , p̃n) is found, and the point (p̃1, . . . , p̃n) is considered as an approximation to the
local solution of the problem (7). Note that for the functionωψ(m̂0, p̂0, m̂1, p1, . . . , m̂n, pn),
the calculation of the first order differences has features that are studied in [33].

At the stage of the global optimization, a multi-start method was used, when at
each iteration, initial points (p̂1, . . . , p̂n) were randomly generated, approximations to
the local minimum (p̃1, . . . , p̃n) of the function were found G(p1, . . . , pn), and values
W(p̃1, . . . , p̃n) were calculated. After all iterations, the best point (p̃1, . . . , p̃n) was chosen
as the starting point for local optimization of the function W(p1, . . . , pn). The resulting
solution is considered as a solution to problem (7).

3. Results

We implemented the approach described above to solve the following problem. Let
the demand zone S0 be a polygon, and the service areas Si, i ∈ Nn have a circular shape
with generalized variables gi = (m̂i, pi) = (ri, xi, yi), where ri is the given radius; (xi, yi)
are the coordinates of the circle center in the fixed coordinate system Oxy (Figure 2).
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The following formulas were used to calculate the functionsωψij(g
i, gj), i, j ∈ Nn, j > i

and their gradients:

ωψij(g
i, gj) = r2

i cos−1 r2
i −r2

j +(xi−xj)
2+(yi−yj)

2

2 ri

√
(xi − xj)

2 + (yi − yj)
2
−

−
r2

i − r2
j + (xi − xj)

2 + (yi − yj)
2

2
√
(xi − xj)

2 + (yi − yj)
2

√√√√√r2
i −

(r2
i −r2

j +(xi−xj)
2+(yi−yj)

2)
2

4
(
(xi − xj)

2 + (yi − yj)
2
)+

+r2
j cos−1 r2

j −r2
i +(xi−xj)

2+(yi−yj)
2

2 rj

√
(xi − xj)

2 + (yi − yj)
2
−

−
r2

j − r2
i + (xi − xj)

2 + (yi − yj)
2

2
√
(xi − xj)

2 + (yi − yj)
2

√√√√√r2
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(r2
j −r2

i +(xi−xj)
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2

4
(
(xi − xj)

2 + (yi − yj)
2
) (10)

The functions ωψ0j(ĝ
0, ĝj), j ∈ Nn were calculated algorithmically using the Shapely

library. Polygon S0 generalized variables ĝ0 = (m̂0, p0) were specified by a list of vertex
coordinates (vert_coords) and p0 = (0, 0, 0). The Python code instance is as follows:

from shapely.geometry.point import Point
from shapely.geometry import Polygon
region = Polygon(region_vert_coord)
circle = [Point(center_coord[i]).buffer(r[i]) for i in range(n)]
result_functionG = 0
for i in range(n):

result_functionG += region.intersection(circle[i]).area
To find the local minimum of the function G(p1, . . . , pn) given by formula (9), we

used the Broyden–Fletcher–Goldfarb–Shanno (BFGS) method [35]. The gradients of the
functions ωψij(g

i, gj), i, j ∈ Nn, j > i were calculated analytically based on formula (10),

and for the functionsωψ0j(ĝ
0, ĝj), j ∈ Nn, first order differences were used.

To find the local maximum of the function W(p1, . . . , pn), we also used the BFGS method
with first-order differences. In this case, the function ωψ(m̂0, p̂0, m̂1, p1, . . . , m̂n, pn) was
calculated algorithmically using the Shapely library according to the Python code instance

circle_loc = [Point(center_coord_loc[i]).buffer(r[i]) for i in range(n)]
result_areaW = region.intersection(unary_union(circle_loc)).area
For the numerical implementation of the approach, we chose the polygon S0 cor-

responding to the Kharkiv region (Ukraine) as the demand zone. Figure 3 shows this
region, and Table 1 lists the coordinates of the vertices of S0. As service areas, the 30 circles
Si, i ∈ N30 are considered and the radii ri, i ∈ N30, both of which are presented in Table 2.
The polygon S0 area is 65,837 units, the total area of the 30 circles is 67,343.5 units.

We used a computer with the following configuration: Intel Core i7-5557U processor,
CPU Speed 3.1 GHz, 2 cores, 4 threads; RAM 16 GB DDR3 1866 MHz; Graphics processor
Intel Iris Graphics 6100 with 1.5 GB of video memory; SSD 512 GB; Operating system Mac
OS X11.0 Big Sur.

For the global optimization of the function G(p1, . . . , pn), a multi-start was used with
a random generation of 1000 starting points and the calculation of the corresponding local
extrema of G(p1, . . . , pn). In Figure 4, one of the typical options for the random location of
the 30 circles is given. The placement parameters (xi, yi), i ∈ N30 corresponding to the best
result in the multi-start series are presented in Table 3. The area of the region S0 covered by
the services is equal to 60,798.8 units.
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Table 1. Coordinates of the polygon vertices of the demand zone.

i xi yi i xi yi i xi yi i xi yi i xi yi

1 −174 −163 25 −125 36 49 9 47 73 96 53 97 158 −184
2 −161 −144 26 −119 42 50 9 57 74 88 40 98 167 −200
3 −172 −139 27 −107 41 51 12 58 75 108 26 99 157 −206
4 −177 −118 28 −103 35 52 13 66 76 102 16 100 154 −200
5 −181 −119 29 −97 39 53 20 68 77 99 16 101 141 −207
6 −183 −92 30 −109 54 54 17 76 78 105 8 102 138 −205
7 −176 −92 31 −115 57 55 27 79 79 103 5 103 147 −185
8 −176 −80 32 −127 53 56 37 63 80 113 −3 104 109 −168
9 −158 −82 33 −136 86 57 38 55 81 89 −25 105 106 −171

10 −164 −49 34 −131 88 58 47 57 82 100 −32 106 96 −164
11 −146 −52 35 −116 67 59 55 62 83 90 −40 107 101 −156
12 −142 −42 36 −119 62 60 60 60 84 102 −51 108 62 −144
13 −136 −42 37 −110 62 61 42 49 85 109 −47 109 −8 −158
14 −133 −32 38 −93 78 62 46 43 86 120 −66 110 −34 −192
15 −128 −29 39 −84 93 63 58 49 87 123 −80 111 −59 −195
16 −131 −26 40 −70 106 64 70 48 88 105 −84 112 −65 −202
17 −130 −20 41 −45 116 65 75 62 89 109 −101 113 −74 −202
18 −117 −19 42 −34 127 66 79 62 90 160 −129 114 −83 −183
19 −124 −10 43 −26 130 67 79 53 91 156 −144 115 −94 −171
20 −126 11 44 −15 128 68 88 61 92 190 −165 116 −110 −169
21 −140 20 45 −11 121 69 91 59 93 194 −173 117 −116 −141
22 −133 25 46 −19 100 70 79 46 94 189 −184 118 −140 −148
23 −142 38 47 −3 41 71 85 43 95 178 −183 119 −144 −164
24 −135 35 48 5 43 72 93 54 96 173 −177 120 −164 −171
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Table 2. Radii of circular service areas.

i ri i ri i ri i ri i ri

1 16.4 7 20.4 13 24.4 19 28.4 25 32.4
2 17.1 8 21.1 14 25.1 20 29.1 26 33.1
3 17.8 9 21.8 15 25.8 21 29.8 27 33.8
4 18.4 10 22.4 16 26.4 22 30.4 28 34.4
5 19.1 11 23.1 17 27.1 23 31.1 29 35.1
6 19.8 12 23.8 18 27.8 24 31.8 30 35.8
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Table 3. Placement parameters of circular service areas.

i xi yi i xi yi i xi yi

1 111.69 −155.55 11 57.71 −75.68 21 −14.28 −12.97
2 27.18 55.03 12 −106.88 −28.94 22 −40.14 96.13
3 22.49 −77.35 13 −60.6 −37.4 23 86.23 −119.34
4 31.88 −5.47 14 −112.58 17.29 24 73.33 −25.82
5 −54.44 −110.27 15 −55.89 −180.46 25 −91.38 −79.68
6 132.77 −128.88 16 −26.74 −141.24 26 −86.17 −141.45
7 17.88 24.89 17 −67.59 4.98 27 26.08 −122.24
8 99.35 −69.99 18 66.21 25.06 28 157.33 −171.10
9 −139.85 −60.41 19 −78.87 57.79 29 −146.76 −113.69

10 24.35 −44.11 20 −27.74 40.84 30 −23.27 −76.61

Further improvement by maximizing the function W(p1, . . . , pn) made it possible to
obtain the solution depicted in Figure 5. Improved circle placement parameters are listed
in Table 4. The corresponding area of the region S0 covered by the services is equal to
60,806.5 units.
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Table 4. Improved placement parameters of circular service areas.

i xi yi i xi yi i xi yi

1 111.65 −155.55 11 57.54 −75.53 21 −14.17 −12.92
2 27.02 55.06 12 −107.28 −29.20 22 −40.11 95.90
3 23.28 −77.48 13 −61.16 −36.86 23 85.92 −119.26
4 32.30 −5.38 14 −112.24 16.92 24 73.34 −26.23
5 −53.77 −110.50 15 −55.92 −180.31 25 −91.19 −79.70
6 132.31 −128.83 16 −26.76 −141.58 26 −86.19 −141.42
7 18.14 24.85 17 −67.24 5.51 27 25.74 −122.17
8 99.41 −70.13 18 67.17 24.65 28 157.27 −170.88
9 −139.74 −61.05 19 −78.98 58.03 29 −146.69 −113.76

10 24.68 −44.06 20 −27.50 40.83 30 −23.47 −76.35

In the process of implementing the approach, the following run time parameters were
obtained. For the 30 circles, each local extremum of the function G(p1, . . . , pn) was searched
for an average of 1.7 s with the random generation of the starting point (p̂1, . . . , p̂n). The
multi-start run time of 1000 starting points with subsequent local optimization required 1942 s.
The local optimum of the function W(p1, . . . , pn) is found to be 1.3 s. In this case, the best
solution resulting from the multi-start was taken as the starting point. The fact that the local
extremum of a more complex function W(p1, . . . , pn) is found to be faster than for G(p1, . . . , pn)
is explained using a good starting point. As experiments have shown, the average time to
obtain a local solution to the function W(p1, . . . , pn) in the case of the random generation of the
starting point (p̂1, . . . , p̂n) was about 4.9 s. Analysis of the results substantiates the expediency
of using an auxiliary problem at the stage of global optimization.

When the items Si, i ∈ Nn have the shape of an ellipse, then gi = (m̂i, pi) = (ai, bi, xi, yi,θi);
where (ai, bi) are given semi-major and semi-minor axes, (xi, yi,θi) are the coordinates of the
center in the coordinate system Oxy. To obtain dependencies ωψij(g

i, gj), one can use the
formulas for the area of the intersection of the two ellipses. Due to the cumbersome nature of
these formulas, we do not present them here. Moreover, as shown by numerical experiments,
the time for calculating functionsωψ0j(ĝ

0, ĝj) andωψij(g
i, gj), i, j ∈ Nn, j > i from analytical

formulas is commensurate with the use of computer geometry software.
In this case, the Python code instance for calculating function G(p1, . . . , pn) is as follows:
from shapely.geometry.point import Point
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from shapely.geometry import Polygon
from shapely import affinity
region = Polygon(region_vert_coord)
ellipses = []
for i in range(n):

circle = Point(center[i]).buffer(1)
ellipses.append(affinity.rotate(affinity.scale(circle), a[i], b[i]), angle[i]))

functionG = 0
for i in range(n − 1):

for j in range(i + 1, n):
functionG += ellipses[i].intersection(ellipses[j]).area

sum_ellipse_area = 0
for i in range(n):

functionG -= region.intersection(ellipses[i]).area
sum_ellipse_area += ellipses[i].area

functionG += sum_ellipse_area

The Python code instance for calculating the function W(p1, . . . , pn) looks like this:

region = Polygon(region_vert_coord)
ellipses_loc = []
for i in range(n):

circle = Point(center[i]).buffer(1)
ellipses_loc.append(affinity.rotate(affinity.scale(circle), a[i], b[i]), angle[i]))

result_functionW = region.intersection(unary_union(ellipses_loc)).area

Let us consider a test problem similar to the one above but with an ellipse-shaped
service area Si, i ∈ N30. Semi-major and semi-minor axes (ai, bi), i ∈ N30 are presented in
Table 5. The total area of the 30 ellipses is 66,212.2 units.

Table 5. Semi-axes of elliptical service areas.

i ai bi i ai bi i ai bi i ai bi i ai bi

1 20 35 7 25 33 13 35 20 19 27 34 25 19 34
2 20 27 8 23 37 14 18 20 20 22 36 26 35 21
3 18 22 9 21 30 15 37 16 21 16 35 27 25 26
4 37 18 10 29 32 16 31 18 22 37 18 28 36 26
5 33 30 11 30 24 17 28 34 23 24 37 29 17 36
6 25 31 12 29 20 18 29 22 24 24 17 30 24 36

For the global optimization of the function G(p1, . . . , pn), a multi-start was used
with a random generation of 100 starting points (p̂1, . . . , p̂n) and the calculation of the
corresponding local extrema of G(p̂1, . . . , p̂n). In Figure 6, one of the typical options for the
random location of the 30 ellipses is given. The placement parameters (xi, yi, θi), i ∈ N30
corresponding to the best result in the multi-start series are presented in Table 6. The area
of the region S0 covered by services is equal to 60,946.5 units.

Further improvement by maximizing the function W(p1, . . . , pn) allowed us to obtain
the location of the service areas shown in Figure 7. Improved ellipses placement parameters
are presented in Table 7. The corresponding area of the region S0 covered by the services is
equal to 60,957.0 units.

For the 30 ellipses, the local extremum of the function G(p1, . . . , pn) was searched for
an average of 14.5 s with the random generation of the starting point. The multi-start run
time of 100 starting points with subsequent local optimization required 1542 s. The local
optimum of the function W(p1, . . . , pn), when the best solution resulting from the multi-
start is chosen as the starting point, was found to be 8.3 s. The average time for finding the
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local maximum of the function W(p1, . . . , pn) in the case of the random generation of the
initial starting point is about 25 s.
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For the 30 ellipses, the local extremum of the function 1 n, ...,G( )p p  was searched 
for an average of 14.5 sec with the random generation of the starting point. The multi-start 

Figure 6. Random location of 30 ellipses.

Table 6. Placement parameters of elliptical service areas.

i xi yi θi i xi yi θi i xi yi θi

1 −34.95 104.68 −4.28 11 −61.40 −171.99 −10.40 21 −59.61 −39.35 −16.59
2 −1.87 −95.03 −5.96 12 −33.31 59.20 41.42 22 31.21 34.27 −7.16
3 −21.11 −147.97 24.78 13 −146.40 −138.11 5.34 23 127.19 −143.53 31.23
4 84.21 −116.46 −10.68 14 99.68 −68.73 10.12 24 −128.23 −60.46 −7.58
5 41.26 −73.69 −11.65 15 −105.27 −101.31 16.64 25 −50.31 −84.73 −8.35
6 −77.48 67.57 −3.84 16 −106.56 24.08 0.23 26 −159.36 −94.27 −11.08
7 79.23 18.52 −13.68 17 −10.29 15.93 −18.56 27 24.47 −22.86 17.74
8 −91.84 −60.45 −1.86 18 −99.77 −143.01 −6.89 28 −15.99 −46.15 −5.19
9 69.01 −31.92 20.14 19 27.73 −125.83 −5.18 29 −54.85 12.48 −15.51

10 −34.95 104.68 −4.28 20 −99.72 −14.36 −5.12 30 160.04 −177.04 −5.87

Table 7. Improved placement parameters of elliptical service areas.

i xi yi θi i xi yi θi i xi yi θi

1 −50.81 −121.74 −6.26 11 −61.04 −172.34 −10.51 21 −59.84 −38.8 −16.55
2 −34.98 104.77 −4.28 12 −33.55 59.24 41.37 22 30.68 34.31 −7.24
3 −1.92 −94.24 −6.02 13 −146.03 −138.16 5.22 23 126.63 −142.71 30.82
4 −20.81 −147.09 24.83 14 99.23 −68.43 9.89 24 −128.32 −60.66 −7.56
5 83.36 −116.13 −10.99 15 −104.88 −101.52 16.59 25 −50.47 −84.23 −8.21
6 42.22 −72.88 −11.00 16 −106.63 24.07 0.29 26 −159.29 −94.66 −11.03
7 −77.98 67.56 −3.99 17 −10.44 15.73 −18.26 27 24.68 −22.99 17.99
8 78.78 19.37 −13.46 18 −99.29 −143.28 −6.92 28 −15.91 −45.89 −4.93
9 −91.79 −60.69 −1.84 19 27.48 −125.26 −4.49 29 −55.11 12.73 −15.47

10 69.27 −30.11 20.45 20 −99.88 −14.38 −5.04 30 158.81 −177.09 −6.84
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Thus, the use of an auxiliary problem for the global optimization of the function
W(p1, . . . , pn) significantly reduces the solution time, and the results are close. The time
saved can be used to increase the number of starting points in the multi-start scheme, and
therefore to obtain a better solution to the problem as a whole.

4. Discussion

A feature of this article is the study of the maximum service coverage in the business
site selection problem in the continuous formulation of the MCLP, taking into account the
arbitrary spatial shape of the demand zone and service areas. Traditionally, the demand
zone was represented as a set of points due to the limited possibilities of processing
the spatial and geometric data of the demand area. The assumption that space can be
represented as a discrete set of points potentially leads to an inadequate model. However,
demand tends to be distributed continuously, which must be taken into account when
modeling business site selection. Accounting for the size and shape of the service area
when estimating service coverage results in a more accurate and realistic representation.
In this sense, the maximum service coverage problems in terms of the MCLP with items
of arbitrary geometric shape is of particular interest. Continuous MCLPs require the
construction of special mathematical models and optimization methods that take into
account their specifics.

The studies conducted allowed us to approach the analysis of the mathematical model
of the problem from a general position, considering geometric features (taking into account
the size and shape of the demand zone and service areas). On the one hand, it is possible
to set the demand zone and service areas by constructing equations for the boundaries of
the corresponding geometric items. On the other hand, you can use computer geometry
software to analyze the relative location of these items and calculate service coverage criteria
depending on the location of the service areas. An important result that was obtained
is the formalization of such criteria and the formulation of the corresponding nonlinear
optimization problem. At the same time, the difficulties associated with the analytical
specification of the optimality criterion are overcome by using computer geometry packages
that work perfectly with geometric items of a complex spatial shape.

The optimization problem under consideration is essentially multidimensional and
multiextremal. The authors managed to propose an approach to a fast run time approach
for estimating local solutions by introducing an auxiliary problem. As a result, it takes
seconds to calculate the objective function and search for its local extremum, which is
confirmed by the experiments. For the considered test problems, the multi-start was used



Electronics 2023, 12, 2329 17 of 19

to enumerate local solutions. Even in this case, quite good results are obtained. It should
be expected that the use of metaheuristic, in particular, evolutionary, methods of global
optimization will improve the efficiency of the proposed approach.

The task of determining the location of the service areas that provide the maximum
coverage of the demand zone in the general case is the basis for the Maximum Service
Coverage in Business Site Selection. In a more general setting, additional problems arise
for the optimal location of service centers belonging to the indicated areas. At the same
time, it is important not only to fulfill the restrictions on the allowable location of centroids
within the service areas but also the mutual location of centroids. Partially, such restrictions
are formalized by taking into account the minimum and maximum allowable distances
between centroids. Moreover, in the future, routing problems and others related to servicing
the centers themselves arise. Thus, in the general case, we have a multi-level and multi-
criteria problem, the solution of which is inextricably linked to the quality and time of
solving the problem of determining the location of service areas that provide maximum
coverage. These tasks, using the approach proposed in the article, are supposed to be
studied in the future.

5. Conclusions

As a result of the study, the following innovations were obtained:

• the service coverage model in business site selection was presented as a continuous
maximum coverage location problem;

• in this model, the demand zone is also continuous (continuum), in contrast to the
known continuous MCLP, where only service area placement parameters (centroid
coordinates) are continuous;

• both the demand zone and the service area have an arbitrary shape and different sizes,
which is also an extension of the known results;

• our generalized continuous MCLP is formulated as a nonlinear optimization problem,
in which the variables are the placement parameters of the service area;

• analytical and algorithmic approaches to the calculation of the objective function are
proposed depending on the shape of the demand zone and the service area;

• to solve the problem, an approach is proposed that comprehensively combines the
stages of local and global optimization;

• at the stage of local optimization, an auxiliary problem was used based on the decomposi-
tion of the objective function, which significantly reduced the computation time;

• numerical experiments confirmed the adequacy of the model and the effectiveness of
the proposed approach.
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