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Abstract: In Hierarchical Federated Learning (HFL), opportunistic communication provides opportu-
nities for node cooperation. In this work, we optimize the node cooperation strategy using oppor-
tunistic communization with the objective to minimize energy cost under the delay constraint. We
design an online node cooperation strategy (OSRN) based on the optimal stopping theory. Through
theoretical analysis, we prove the NP-hardness of the problem investigated and the competition
ratio that can be achieved by OSRN. We conduct thorough simulation experiments and find that the
proposed algorithm outperforms the random selection algorithm SNNR with 22.04% reduction in
energy cost. It is also observed that the energy cost can be reduced by 20.20% and 13.54%, respectively,
compared with the existing methods CFL and THF.

Keywords: Hierarchical Federated Learning (HFL); opportunistic communication; node cooperation

1. Introduction

With the popularization of the Internet of Things (IoT) and mobile computing, billions
of mobile and IoT devices are connected to the Internet, generating trillions of gigabytes of
data at the network edge [1]. According to IDC’s report, 59 zettabytes of data were created
in 2020, and the global data volume will reach 175 zettabytes in 2025 [2]. The data provides
opportunities for the popularization of intelligent applications. In traditional machine
learning, mobile devices must upload local data to cloud servers for centralized model
training [3]. The uploading process of these data causes a lot of energy cost and latency.
At the same time, privacy-sensitive mobile devices face the risk of privacy data leakage.
Given this threat, many mobile device users are reluctant to upload private data to cloud
servers [4].

For this problem, Federated Learning (FL) was proposed in 2016 [5], a distributed
machine learning approach for training. The traditional federated learning model is based
on the Client-Cloud star topology [6]. After obtaining the initial global model from the
cloud server, each participating device uses the local dataset for local model training and
uploads the model parameters to the cloud server. The cloud server performs a global
model update based on the local model parameters of each device. It effectively resolves
the conflict between data privacy protection and data sharing requirements of privacy-
sensitive devices. However, many communication loops are required between the cloud
server and the participating devices to exchange model parameters. In particular, traditional
federated learning is not applicable when training and managing data-intensive, latency-
sensitive machine learning tasks on large-scale networks. However, edge computing has
become a key technology to solve a series of problems caused by the increasing number
of interconnected devices and large-scale data transmission [7,8]. Therefore, researchers
have combined federated learning with edge computing in the last two years to address
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this problem and proposed Hierarchical Federation Learning (HFL) based on Client-Edge-
Cloud architecture [9–11].

The HFL framework uses edge servers as mediators for communication between
terminal devices and cloud servers. After each terminal device obtains the initial global
model from the cloud and edge servers, it repeats the following three processes. First,
each terminal device generates local model parameters based on gradient descent and
then uploads them to the edge server. Second, each edge server aggregates local model
parameters and then uploads edge models to the cloud server. Third, the cloud server
performs a weighted average of edge models from each edge server and synchronizes the
updated global models to the edge servers and terminal devices. In HFL, the uploading of
parameters to edge servers from mobile devices may cause high energy cost, as shown in
Figure 1.
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Figure 1. Without cooperation. Nodes upload parameters directly to the edge server.

For this reason, we consider that nodes cooperate to complete the uploading of
parameters, as shown in Figure 2. Some nodes need more energy for parameter uploading,
while some nodes need less energy for parameter uploading because they may move
close to the edge server in some time slot. In this paper, we consider mobile device
cooperation through this type of opportunistic communication in HFL. When they meet
each other, an online node cooperation algorithm can be used to reduce energy cost for
uploading parameters under the latency constraint. For a node and a neighboring node
that it meets with, a decision can be made on whether to transmit local model parameters
to this neighboring node or not. Once the relay node is selected as a relay, it will be used
for cooperative transmission.
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The main contributions of this paper can be summarized as follows.

(1) We propose node cooperation for energy cost minimization with the delay constraint
in HFL. We formulate the optimization problem and prove its decision problem is
NP-hard.

(2) We design an online optimized node cooperation strategy, in which each node training
local model can select optimal relay node dynamically. Relay nodes can help transmit
the model parameters while minimizing energy cost.

(3) We conduct thorough experiments to evaluate the performance of our proposed
strategy. It is found that energy cost can be reduced by 24.49% and 22.04% compared
with HierFAVG and SNNR, respectively. Compared with existing CFL and THF, it is
also observed that the energy cost is reduced by 20.20% and 13.54%, individually.

The rest of the paper is organized as follows. Section 2 briefly reviews the related work.
We introduce the HFL system model and define the energy cost minimization problem with
the delay constraint in Section 3. We introduce the design of the online node cooperation
strategy in Section 4. We analyze and evaluate the performance of our proposed strategy in
Section 5. Finally, we conclude in Section 6.

2. Related Work

With the general concern about data privacy and security, federated learning has
become a prominent research topic. The work in [12] shows that cloud-based FL can
access millions of mobile devices but causes high communication cost and inefficient
model training. Edge-based FL can effectively reduce the communication and computation
cost [13], which attracts research interest of both academia and industry.

In the literature on HFL, some studies proposed to increase the local computation
of nodes as much as possible to reduce the communication rounds required for model
training [14,15]. Reisizadeh et al. [16] considered mobile devices to perform multiple local
iterations before uploading parameters. Wang et al. [17] sampled the devices contribut-
ing to model training, reducing the communication rounds. Existing work in [18–20]
adopted methods such as sparsity to compress model updates of the client, reducing the
amount of data uploaded to the edge server in a single communication round. Zhang
et al. [21] proposed a distributed stochastic gradient edge learning method based on SDM-
DSGD. The model converged with a slight gradient sparsity transmission probability in this
method. Zheng et al. [22] proposed a distributed hierarchical depth computation model to
compresses model parameters in a high-dimensional space into a set of low-dimensional
subspaces. Liu et al. [23] proposed a communication efficient model training algorithm
(Local-QSGD) by taking full advantage of cloud and edge servers. This algorithm quanti-
fied the weight of model updates in the upload process, which reduced the amount of data.
Ren et al. [24] proposed a new data-driven method, namely, cloud-edge based lightweight
temporal convolutional networks to reduce the computational time. The research targets of
the above works are either to reduce communication rounds for parameter uploading or to
reduce the amount of data transmitted in a single communication round by model com-
pression. However, our research focuses on reducing energy cost for uploading parameters
under a delay constraint.

There are also studies in HFL for reducing energy cost. Lou et al. [25] proposed a novel
hierarchical federated edge learning (HFEL) framework to reduce the energy overhead and
training time through edge model aggregation. Wang et al. [26] proposed an efficient edge
computing and optimization model, which used a tensor-based multi-attribute matching
method to reduce economic cost and energy cost. Yi et al. [27] proposed a novel control
strategy for information diffusion, which combined graph neural networks with ordinary
differential equation systems to achieve low latency and high energy efficiency. Some
studies [28,29] proposed a hierarchical federated learning framework to support Client-
Edge-Cloud. It allowed multiple edge servers to reduce energy cost by partial model
aggregation. Liu et al. [30] proposed a node cooperation scheme for data exchange based
on Device-to-Device (D2D) communication. Jin et al. [31] proposed an iterative optimization
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algorithm based on fractional matrix programming and then confirmed the advantages of
the proposed D2D cooperation scheme in reducing communication costs. Mustafa et al. [32]
used the shortest distance selection criterion in D2D communication. In addition, Wang
et al. [28] divided edge nodes into different clusters. All nodes in each cluster only uploaded
their parameters to the randomly selected cluster headers. Asad et al. [33] made an efficient
3-way hierarchical framework (THF) to promote communication efficiency. Only the cluster
head communicated with the edge server, which reduced the energy cost of parameter
uploading due to the short distance from source to destination. However, the above-related
work to reduce energy cost rarely studies node selection and node cooperative transmission
or considers the type of cooperation between nodes as D2D communication. They do not
consider the opportunistic communication between nodes.

Existing work [34,35] optimized the data caching and sharing policies, reducing the
cost of memory access in terms of energy cost and delay by assigning data to different
storage bodies. Zhao et al. [36] proposed a caching algorithm based on multi-layer federated
reinforcement learning (CoCaRL) in vehicular networks, which solved the nuisance of
transmission delay and energy overhead. Cheng et al. [37,38] proposed a privacy-preserved
caching scheme by a double-layer blockchain architecture, which showed the gain of
communication delay and energy cost. Qiao et al. [39] proposed a distributed resources-
efficient caching policy to improve the content caching efficiency and reduce the energy
cost. This caching policy adopted an adaptive content caching algorithm combined deep
reinforcement learning. Khanal et al. [40] investigated in detail the role of proactive caching
methods in self-driving cars for improving the caching cost. This method used a self-
attention technique with an LSTM-based prediction mechanism. Liu et al. [41] designed a
dynamic caching replacement mechanism to enhance the personalized utilization of the
cache resources and reduce the system cost. This mechanism addressed the challenges in
extending the centralized deep deterministic policy gradient to the distributed manner. The
above works are related to reducing energy costs but it is achieved by optimizing the cache
management strategy, which is different from our approach to solve energy cost problem.
We analyze and compare the existing work, as shown in Table 1.

Table 1. Comparison of the related work.

Literature Optimization
Target

Enhance
Local

Iteration

Compression
Model

Multiple
Edge

Aggregation

Node
Cooperation

Cache
Management
Optimization

Features

[14–17]
Reduce

communication
rounds

√ Nodes communicate
directly with edge

servers

[18–24]

Reduce the amount
of data in the

communication
round

√ Nodes communicate
directly with edge

servers

[25–29]
Reduce the energy

cost of model
uploading

√ Nodes communicate
directly with edge

servers

[30–33]
Reduce the energy

cost of model
uploading

√ Only consider
communication between

nodes as D2D

[34–41]
Reduce the energy

cost of model
uploading

√ Only optimize caching
strategy to reduce

energy cost

This paper
Reduce the energy

cost of model
uploading

√
Use opportunistic

communication and
optimize the process of

uploading model to
reduce energy cost

“
√

” indicates the optimization method used in related literature.
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In this paper, we propose to select relay nodes with low energy cost to cooperate in
parameter uploading based on the opportunistic communication for HFL. When nodes meet
each other, they decide whether to select the relay node to upload parameters cooperatively
or not.

3. System Model and Problem Definition

In this section, we introduce the system model and formulate the problem.

3.1. System Model of HFL

In HFL framework, there is a set of edge servers K = {k : k = 1, . . . , K}, a set of edge
nodesM = {m : m = 1, . . . , M} and a cloud server S , as shown in Figure 3. There is a
set of neighboring nodes N = {Nm : Nm = N1, . . . , NM}, where Nm is a set of neighboring
nodes of node m, consisting of other nodes in the edge network with which it can meet. A
set of edge nodes C = {Ck : Ck = C1, . . . , CK}, where Ck is a set of nodes associated with
edge server k. We denote N0

m = Nm ∪ k as the set consisting of neighboring nodes of node

m and the edge server to which it belongs. We denote Dm =
{
(xj, yj)

}|Dm |
j=1 as the training

dataset, and |Dm| as the total number of training samples, where xj is the j-th input sample
and yj is the corresponding labeled output of xj in the federated learning task of node m.
wm denotes parameters related to the training model of xj and yj.
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3.2. Opportunistic Communication between Nodes

We consider that the communication mode between nodes is opportunistic commu-
nication. It is not necessary to have a complete end-to-end communication link between
nodes. When two nodes enter each other’s wireless communication range and establish
a communication connection, we define this moment as the node encounter time. The
communication connection is broken when the distance between two nodes exceeds the
communication radius. After that, it takes some time for them to meet again. Therefore, we
define the encounter interval between nodes as the time interval between this encounter
and the subsequent one [42].

The chance of encounter between nodes is generated by node movement. In this
study, we assume the encounter interval between nodes T ∼ E(λ). The probability density
function of the exponential distribution is:

f (t) =
{

λe−λt, t > 0,
0, t ≤ 0,
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where λ = 1
E(T) and E(T) is the mathematical expectation of random variable T.

Given node m and neighbor node n, the encounter interval between them is denoted
by ICTm,n, where E(ICTm,n) = E(T) = 1

λm,n
.

3.3. Computation and Communication Model of HFL

We introduce the computation and communication models in different phrases of
HFL.

(1) Edge aggregation. This phase includes local model computation, local model
transmission, and edge model aggregation.

Step 1. Local model computation: node m performs local model training on the local
dataset Dm. cm denotes the number of CPU cycles required for m to process a data sample.
We assume that each data point has the same size, and the number of CPU cycles for node
m to perform one local iteration is cm|Dm|. fm denotes the CPU frequency assigned by
node m to model training, where fm ∈ [0, f max

m ]. m performs local model training to achieve
local model accuracy α ∈ (0, 1), which requires L(α) = log 1

α local iterations [43]. Therefore,
the computation delay for node m is:

tcmp
m = L(α)

cm|Dm|
fm

, (1)

and the energy cost is expressed as follows,

ecmp
m = L(α)

αm

2
f 2
mcm

∣∣∣Dm

∣∣∣ (2)

where αm
2 is the effective capacitance factor of the calculated chipset of node m.

Step 2. Local model transmission: Imn ∈ {0, 1} is used as a binary variable to indicate
whether node m and n perform cooperative transmission. When Imn = 1, node m selects
neighboring node n to participate in the cooperative transmission. When Imn = 0, the
reverse is true. In the process of node cooperative transmission, we only consider nodes
to select at most one relay node. Z denotes the size of traffic caused by model parameters
updating. We assume that each model parameter has the same size Z and transmit power
is ps. N0 denotes the channel noise power at each node. d1

mn denotes the distance between
two nodes. d2

nk denotes the minimum distance between neighboring node n and edge
server k within the remaining delay constraint. λ∗ is obtained from the ratio of wave speed
and frequency. The estimated minimum transmission delay and energy cost of node m
directly transmitting the local model are respectively expressed as

tcom
mk =

Z

B log2(1 +
pr

k
N0

)
, (3)

ecom
mk =

Zps

B log2(1 +
pr

k
N0

)
, (4)

where the received power pr
k is related to the distance from the node to the edge server and

pr
k = ps( λ∗

4πd1
mk
)

2
.

The estimated minimum transmission delay and energy cost of node m cooperating
with the neighboring node n to transmit the local model are respectively denoted as

tcom
mn =

1
λmn

+
Z

B log2(1 +
pr

n
N0

)
, (5)

ecom
mn =

Zps

B log2(1 +
pr

n
N0

)
, (6)
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where pr
n is the received power of node n and pr

n = ps( λ∗

4πd1
mn
)

2
.

tcom
nk =

Z

B log2(1 +
pr

k
N0

)
, (7)

ecom
nk =

Zps

B log2(1 +
pr

k
N0

)
, (8)

where pr
k is the received power of edge server k and pr

k = ps( λ∗

4πd2
nk
)

2
.

Therefore, the estimated minimum transmission delay and energy cost of node m and
n uploading parameters cooperatively are expressed as

Tcom
mk = tcom

mn + tcom
nk , (9)

Ecom
mk = ecom

mn + ecom
nk , (10)

Therefore, the estimated minimum transmission delay and energy cost of node m
uploading parameters are denoted as

Ttran
mk =

{
tcom
mk , Imn = 0,

Tcom
mk , Imn = 1,

, (11)

Etran
mk =

{
ecom

mk , Imn = 0,
Ecom

mk , Imn = 1,
, (12)

Step 3. Edge model aggregation: we denote Tk and Ek as the total delay and total
energy cost for edge server k to complete a round of edge model aggregation, which can be
expressed as

Tk = max
m∈Ck

{
tcmp
m + Ttran

mk

}
, (13)

Ek = ∑
m∈Ck

(ecmp
m + Etran

mk ). (14)

(2) Cloud aggregation. After all edge servers complete edge model aggregation,
they upload edge model to the cloud server in a synchronous manner for global model
aggregation. The delay of completing edge aggregation and uploading edge model is
different for different edge servers. We assume that tkc and ekc denote delay and energy
cost of edge server k uploading the edge model to the cloud server. Therefore, for the cloud
server, the delay Tc of completing a round of global iteration is determined by the edge
server with the largest edge aggregation delay Tk and model upload delay tkc. In addition,
the energy cost Ec for completing a round of global iteration is the sum of the energy cost
Ek for completing the edge aggregation and the energy cost ekc for uploading the edge
model among all edge servers. Thus, the system-wide delay and energy cost under one
round of global iteration are respectively expressed as

Tc = max
k∈K
{Tk + tkc}, (15)

Ec = ∑
k∈K

(Ek + ekc). (16)



Electronics 2023, 12, 2362 8 of 21

3.4. Problem Definition

According to the above system model, if we want to minimize total energy cost for
model training in a round of global iteration, the sum of energy cost of all nodes uploading
local model parameters to the edge server should be minimized. We formulate the ECM
(Energy Cost Minimization) problem for cooperation in HFL as follows.

min ∑
k∈K

∑
m∈Ck

Etran
mk , (17)

s.t. ∑
n∈N0

m

Imn = 1, ∀m ∈ Ck, (18)

K

∑
k=1

Ck = M, ∀k ∈ K, (19)

Ttran
mk ≤ Tmax, ∀m ∈ Ck, (20)

Imn ∈ {0, 1}, ∀m ∈ Ck, ∀n ∈ N0
m. (21)

where constraint (18) indicates that node m selects at most one neighboring node to co-
operate in uploading parameters. Constraint (19) describes the association between the
mobile node and the edge server, that is, there can be multiple mobile nodes under each
edge server, but each node belongs to only one edge server. Constraint (20) denotes that the
transmission delay of each node m to upload parameters to the edge server cannot exceed
the maximum tolerance time. Constraint (21) describes whether node m cooperates with
node n to upload parameters or not.

For the hardness of the ECM problem, we have the following results as shown in
Theorem 1, i.e., its corresponding decision problem can be proved NP-hard.

Theorem 1. The decision problem of ECM in this paper is NP-hard.

Proof of Theorem 1. The decision problem of ECM is defined as follows. In polynomial
time, if each node can find a neighboring node with low energy cost to upload parameters
cooperatively, the delay of completing parameters uploading cannot exceed the maximum
transmission delay and each node can select at most one neighbor node to cooperate.

The decision problem of the Quadratic Multiple Knapsack Problem (QMKP) has been
proven to be NP-hard [44]. An instance of the decision problem for the QMKP is as follows.
A set of items is given as M = {1, 2, . . . , m, . . . , M}, and a set of knapsacks is given as
N = {1, 2, . . . , i, . . . , N}. Each item m has a price pm and a weight wm. When any two
items m and n are loaded into the same knapsack, a joint price pmn is generated. For each
knapsack i, it has the capacity ci. The purpose of QMKP is to minimize the total weight of
the selected items.

For each instance of the decision problem of QMKP, we can reduce it to an instance of
the decision problem of ECM in polynomial time as follows. We assume a set of M nodes
and a set of N cooperative combinations. The energy cost for node m to upload parameters
is pm. The delay is wm. Any two nodes m and n form a cooperative combination to cooperate
in uploading parameters, and the energy cost is pmn. Each cooperative combination i has
its delay upper limit Ci.

In this way, each instance of the decision problem of QMKP can be reduced to an
instance of the decision problem of ECM in polynomial time. That is, the problem of mini-
mizing the total weight of the selected items can be reduced to the problem of minimizing
the energy cost when uploading the model parameters. Therefore, the decision problem of
ECM is NP-hard. �
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4. Design of Online Node Cooperation Strategy

We convert the ECM problem into the optimal relay node selection problem for node
cooperation and propose an online node cooperation algorithm. Each node with local
model updating continuously detects the energy cost and delay of neighboring nodes,
selecting proper ones for the help of uploading parameters and achieving the optimization
target of energy cost minimization with delay constraint.

4.1. Optimal Relay Node Selection for Node Cooperation

Each neighboring node calculates the delay and energy cost for uploading parameters
cooperatively to determine the optimal value of the combined cost and desired payoff.
Each node needs to determine the appropriate time slot to upload the parameters to the
optimal relay node based on the expected payoff.

Given the delay constraint T of system model training in one round of global iteration,
the delay constraint of nodes cooperating to upload parameters in one round of global
iteration can be expressed as

Tmax = T −max
k∈K

tkc − max
m∈M

tcmp
m . (22)

The optimal relay node selection must minimize energy cost Etran
mk under the con-

straint of delay Tmax. Therefore, we define the comprehensive cost Γmk of node m directly
uploading parameters as

Γcom
mk = σecom

mk + βtcom
mk , (23)

where σ ≥ 0 and β ≥ 0 is the weight coefficient of energy cost and delay.
After completing local training, each node performs the selection of the optimal relay

node and stopping time slot. The duration for node m to wait for relay node n is Cτ, where
C is the number of waiting time slots and Cτ < Tmax. Because the delay for each node to
complete parameters uploading cannot exceed the maximum transmission delay. When
node m and node n cooperate for uploading parameters, the optimization value Xc of relay
node n for comprehensive cost is expressed as

Xc = Γcom
mk − (Γcom

mn + Γcom
nk )

= σecom
mk + βtcom

mk − (σEcom
mk + βTcom

mk ) .
= σ(ecom

mk − ecom
mn − ecom

nk ) + β(tcom
mk − tcom

mn − tcom
nk )

(24)

Node m detects at least a one-time slot. We define the set of time slots for node m to
stop detecting as L = {C : C ≥ 1}, where C denotes the time when node m stops detecting.
Node m selects the relay node with the optimized value XC to upload parameters at the
stopping time slot C. The obtained desired payoff YC is denoted as

YC = XC − Cτ. (25)

We select the optimal relay node to maximize the desired payoff YC, as follows,

max E[YC] = max E[σ(ecom
mk − ecom

mn − ecom
nk ) + β(tcom

mk − tcom
mn − tcom

nk )− Cτ]. (26)

Therefore, the goal of maximizing the desired payoff is to find the stopping time C∗

and the corresponding optimal relay node n that minimizes energy cost while satisfying
transmission delay constraint. Since the positions of nodes change dynamically and the
neighboring nodes cannot be determined in advance, the optimal stopping theory can be
used to solve the problem. Based on this theory, we can seek superiority after the first 37%
of neighboring nodes and find the optimal decision [45].

To maximize the desired payoff (i.e., Equation (26)), we prove the existence of the
optimal stopping rule and the optimal solution in Theorem 2 and Theorem 3, respectively.
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Theorem 2. The problem of maximizing desired payoff has an optimal stopping rule.

Proof of Theorem 2. First, we introduce the optimal stopping rule, which is defined as
follows.

For a sequence of random variables X1, X2 . . ., assume that the return function of the
sequence is: y0, y1(x1), y2(x1, x2), . . . , y∞(x1, x2, . . .). After observing that X1 = x1, X2 =
x2, . . . , Xc = xc, we can choose to stop the observation and obtain gain yc(x1, x2, . . . , xc) or
continue to observe xc+1. The stopping rule is to choose a stopping time C∗ such that the
expected return E[YC∗ ] is maximized.

According to the literature [46], if it satisfies:

(1) E[supc Yc] < ∞,
(2) lim supc→∞Yc ≤ Y∞.

then the optimal stopping rule exists.
For mobile node m, the expected payoff Yc obtained by stopping the detection at time

slot c is
Yc = σ(ecom

mk − ecom
mn − ecom

nk ) + β(tcom
mk − tcom

mn − tcom
nk )− cτ

When node m directly uploads parameters, tcom
mk < ∞, ecom

mk < ∞. When node m co-
operates to upload parameters through the neighboring node n, tcom

mn < ∞, ecom
mn < ∞,

tcom
nk < ∞,ecom

nk < ∞. Therefore, Yc < ∞. Therefore, E[supc Yc] < ∞ and then condition
(1) is satisfied. When c→ ∞ , there exists −cτ → −∞ . Therefore, Yc → −∞ . Obviously,
Y∞ = −∞. Therefore, lim supc→∞Yc ≤ −∞ = Y∞ and then condition (2) is satisfied.
Therefore, the problem of maximizing desired payoff has an optimal stop rule. �

Theorem 3. The problem of maximizing desired payoff has an optimal solution.

Proof of Theorem 3. When the node obtains the optimal expected reward
V∗ = supC∈L E[YC], the stop time C is the optimal solution of the problem of maximizing
desired payoff. Therefore, the optimal stop time slot C∗ is expressed as

C∗ = min {C ≥ 1 : YC ≥ V∗}

�

In the HFL framework, each node selects the optimal relay node at the optimal
stopping time to cooperate in completing parameter upload. Thus, the energy cost of
uploading parameters from the node to the edge server under the delay constraint is
minimized.

In the HFL framework, if nodes upload model parameters directly, they face a high
energy cost problem. However, each node can reduce energy cost by cooperatively upload-
ing parameters with the help of relay nodes. We propose an energy-efficient online node
cooperation algorithm (OSRN), as shown in Algorithm 1. The purpose of this algorithm is
that after each node completes local model training, we choose the optimal stopping time
slot and the optimal relay node for nodes to cooperate for uploading parameters. Therefore,
the energy cost of all nodes for uploading parameters is reduced.

In Algorithm 1, the online node cooperation strategy comprises two parts: the obser-
vation phase and the decision phase. The encounter relationship between nodes is obtained
based on the distribution followed by the encounter interval between nodes. Moreover,
historical movement trajectories and typical deep learning methods are used to predict the
shortest distance between the meeting nodes and edge server within the remaining delay
constraint. In the observation phase, nodes determine the optimal expected payoff among
the expected payoffs of all neighboring nodes. The optimal expected reward is then used
as a threshold for accepting or rejecting neighboring nodes in the detection phase.

In the observation phase (Algorithm 1, lines 9–12), we obtain the expected payoff Yc
when the first C∗m relay nodes of each node m cooperate in uploading model parameters,
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respectively. The value with the largest expected payoff is chosen as the optimal expected
payoff V∗m. In the decision phase (Algorithm 1, lines 13–21), we observe the expected
payoffs obtained by the relay nodes cooperating on uploading parameters under delay
constraints. If the expected payoff obtained by this relay node is greater than the optimal
desired payoff V∗m

Algorithm 1 Online node cooperation algorithm (OSRN)

Input: maximum delay constraint Tmax, number of nodes M number of edge
servers K, initial optimal expected payoff

{
V∗m∈M = 0

}
of all nodes

Output: the optimal relay node n and optimal stopping time slot c chosen by each
node m, the energy cost etotal of all nodes to upload parameters successfully
1 : Compute C∗m using equation C∗m = Nm

e ;
2 : for each time slot c = 1, . . . , Tmax do
3 : for each m = 1, . . . , M do
4 : calculate the probability pn of its encounter with neighboring node n;
5 : if pn ≥ rand(0, 1) for neighboring n then
6 : node m meets node n in the current time slot t;
7 : use Equation (5) to calculate the delay tcom

mn and use the deep learning
method to obtain the minimum distance d2

nk under remaining delay constraint;
8 : calculate the maximum value Xc of all encounter nodes of each node m
using Equation (24). Record the node n∗ with the largest optimization value;
9 : if the number of relay nodes currently encountered by node m is smaller
or equal to C∗m then
10 : use Equation (25) to calculate the expected payoff Yc obtained by n∗;
11 : set V∗m = Yc and reject the node n∗ when Yc > V∗m;
12 : else
13 : use Equation (9) to calculate total delay Tcom

mk for node m to upload
parameters through n∗;
14 : if Tcom

mk < Tmax then
15 : calculate expected payoff Yc obtained by relay using Equation (25);
16 : m selects n∗ as optimal relay node, and return n∗ and current
time slot c when Yc > V∗m, Otherwise, node m waits for the next time slot;
17 : else
18 : use Equations (3), (4), (9), (10), (23) to obtain combined cos t Γmk of
uploading parameters directly and combined cos t Γ′mk of uploading parameters
through n∗ in current time slot c;
19 : m selects n∗ as optimal relay node, and return n∗ and current
time slot c when Γmk > Γ′mk. Otherwise, m upload parameters directly, and return m
and current time slot c;
20 : end if
21 : end if
22 : end for
23 : end for
24 : compute energy cos t etotal of all nodes uploading parameters;
25 : return etotal

In addition, we consider that each node encounters at most one neighboring node at
the current time slot. If a node encounters more than one neighbor node simultaneously,
we observe the node with the optimized value of the maximum integrated cost. In the
actual implementation, the minimum distance of each encounter node to the edge server
within the remaining time constraint can be predicted based on the historical movement
trajectory of the node.
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4.2. Cooperative Hierarchical Federated Learning Algorithm

After each node completes local model training, we consider cooperation among
nodes for parameter uploading. We provide a round of global aggregation processes for
cooperative hierarchical federation learning in Algorithm 2.

All nodes use gradient descent iteration for local model updates. The loss function of
node m for local model training on the dataset Dm is expressed as

Fm(w) =
1
|Dm|

|Dm |

∑
j=1

fm(xj, yj, w), (27)

Thus, the local model of node m at the e-th local iteration is expressed as

we
m = we−1

m − η5 Fm(we−1
m ), (28)

until satisfies ‖ 5 Fm(we
m)‖ 6 α‖ 5 Fm(we−1

m )‖, where η is the learning rate.
After m completes local model training, it transmits parameters to the selected optimal

relay node n. Node n is derived from the later online node cooperation algorithm (i.e.,
Algorithm 1). Node n uploads parameters of node m to the edge server. Edge server k
performs a weighted average of the received parameters to obtain the edge model,

wk =

∑
m∈Ck

|Dm|wm

∑
m∈Ck

|Dm|
, (29)

|D| denotes the total data, where |D| = |Dm|Mm=1. The global aggregation is as follows,

w =

∑
k∈K
|Dm||Ck |

m=1wk

|D| . (30)

Algorithm 2 Cooperative hierarchical federated learning

Input: number of nodes M, number of edge servers K, local accuracy α, initial model
parameters

{
w0

m∈M
}

of all nodes
Output: the global model w
1 : Edge aggregation:
2 : for e = 1, 2, . . . , L(α) do
3 : for each m = 1, . . . , M in parallel do
4 : m obtains local model we

m using Equation (28);
5 : end for
6 : if e%L(α) = 0 then
7 : use Algorithm 1 to obtain the optimal relay node n for every node m;
8 : for each m = 1, . . . , M do
9 : node m sends parameters to optimal relay node n and then n uploads
parameters to the edge server;
10 : end for
11 : for each edge server k = 1, . . . , K do
12 : k receives local model

{
wm∈Ck

}
and obtains edge model wk using

Equation (29);
13 : end for
14 : end if
15 : end for
16 : Cloud aggregation:
17 : The cloud server receives edge model {wk∈K} and uses Equation (30) to obtain the global
model w;
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5. Performance Evaluation

In this section, we perform the theoretical analysis of OSRN algorithm, proving its
time complexity and competition ratio. We also evaluate and analyze the performance of
OSRN through extensive experiments.

5.1. Theoretical Analysis

Theorem 4. The time complexity of the OSRN algorithm is O(Tmax ×M).

Proof of Theorem 4. In OSRN, the process of selecting the optimal stopping time slot
and optimal relay node for each node is constrained by the maximum delay. Nested loops
achieve this process. The outer loop is looped at most Tmax times and the inner loop is
looped at most M times. Therefore, the time complexity of OSRN is O(Tmax ×M). �

Theorem 5. For relay node selection, the competition ratio of OSRN is 1
Tmax−C∗m

.

Proof of Theorem 5. We denote the optimal solution as OPT and the solution obtained
through OSRN as ALG. For node m, the worst case occurs when the optimal relay node with
optimal expected payoff appears before the index C∗m. In this case, m continuously examines
the encounter nodes within the remaining time slot C∗m + 1 to Tmax. The probability of a
relay node being selected within this index is [1/(Tmax − C∗m)]. Therefore, the competition
ratio of the OSRN algorithm is Comr =

ALG
OPT = 1

Tmax−C∗m
. �

Theorem 6. For the energy cost minimization problem, the competitive ratio of OSRN is
∑

k∈K
∑

m∈Ck
[(ecom

mn∗+ecom
n∗k)

1
Tmax−C∗m

]

∑
k∈K

∑
m∈Ck

(ecom
mn +ecom

nk )
.

Proof of Theorem 6. In the worst case, the optimal relay node n of each node m is
located in the first C∗m neighboring nodes. When the nodes use the optimal algorithm,
the sum of the energy cost to complete parameter upload through the optimal relay node
n is ∑

k∈K
∑

m∈Ck

(ecom
mn + ecom

nk ). From Theorem 5, the probability of node m choosing a relay

node n∗ in the worst case is [1/(Tmax − C∗m)]. Then, the sum of energy cost to complete
parameter uploading through n∗ is ∑

k∈K
∑

m∈Ck

[(ecom
mn∗ + ecom

n∗k )
1

Tmax−C∗m
] when OSRN is used.

Therefore, for the optimization problem, the competitive ratio of OSRN is Comr =
ALG
OPT =

∑
k∈K

∑
m∈Ck

[(ecom
mn∗+ecom

n∗k)
1

Tmax−C∗m
]

∑
k∈K

∑
m∈Ck

(ecom
mn +ecom

nk )
. �

Theorem 7. For the energy cost minimization problem, when the best solution achieves the best

trade-off between energy cost and delay, the ratio between OSRN and the best solution is
∑

m∈M
E f in

m

∑
m∈M

E∗m
.

Proof of Theorem 7. In the worst case, node m has not found the optimal relay node within
the maximum delay constraint. Then, node m either directly uploads parameters in the last
slot, or uploads parameters through neighboring node n. We assume that E1

m and E2
m are the

energy costs of node m to upload parameters under these two conditions. When E1
m < E2

m,
the final energy cost E f in

m for uploading parameters is E1
m; otherwise, E f in

m = E2
m. In the

best solution where the energy cost and delay are optimally balanced, the first neighboring
node that node m encounters after completing the detection phase is the optimal relay node.
We assume that the energy cost of node m to upload parameters through optimal relay
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node n∗ is E∗m. Therefore, E∗m < E1
m, E∗m < E2

m, E∗m < E f in
m . Therefore, for the optimization

problem, the ratio between OSRN and the best solution is
∑

k∈K
∑

m∈Ck
E f in

m

∑
k∈K

∑
m∈Ck

E∗m
=

∑
m∈M

E f in
m

∑
m∈M

E∗m
. �

5.2. Simulation Results and Analysis

We evaluate the performance of OSRN through simulations. For comparison, we also
implement the existing algorithms CFL [34] and THF [35] in HFL, as well as uploading
parameters using HierFAVG and uploading parameters using SNNR.

5.2.1. Simulation Environment

We implement the simulations based on Python. We consider a scenario with 50 nodes
and 5 edge servers deployed. They are distributed randomly in a 100 m × 100 m area.
The channel bandwidth B = 10 MHz, and the noise power N0 = 10−10 W. The transmit
power ps = 0.1 W, frequency is set as 2.4 GHz, data size Z = 5 MB, and opportunistic
communication is used for data transmission between nodes. The key parameter settings
for communication in the simulation experiment are shown in Table 2.

Table 2. Key parameter settings for communication.

Parameter Description Values

K The number of edge servers 5
ps Transmit power 0.1 W
N0 Noise power 10−10 W
B Channel bandwidth 10 MHz
Z Model parameters size 5 MB
f Frequency size 2.4 GHz
G Network range 100 m× 100 m
r Communication radius 40 m

In addition, nodes are moved using a random movement model. In the random walk
model, the mobile node moves in the simulation area of 100 m × 100 m. The mobile node
randomly selects a direction and speed to move from the current position to a new position.
The new forward direction, forward distance, and speed are selected from the predefined
ranges [–1, 1], [0, 3], and [0, 0.3], respectively. Each move of the mobile node will be carried
out at the selected forward distance, and after completion, the new forward direction,
forward distance, and speed will be calculated. If the mobile node of this model reaches
the simulation boundary, it will bounce back from the simulation boundary.

5.2.2. Experimental Results Analysis

In the experiments, average energy cost was used as an indicator to measure the
performance of our proposed online node cooperation strategy. Average energy cost refers
to the average amount of the total energy consumed by all nodes when completing the
model parameters upload. Moreover, it can be calculated based on the ratio of the total
energy cost etotal obtained from algorithm 1 (i.e., OSRN algorithm) on page 12 to the total
number of nodes.

In OSRN, the values of energy cost weight coefficient σ and delay weight coefficient
β have an impact on the energy cost of uploading parameters. When the delay weight
coefficient β is 1, the impact of energy cost weight coefficient σ on average energy cost is
shown in Figure 4. When the value of σ is small, the average energy cost is high, and when
the value of σ is large, the average energy cost is low. This is because, in the comprehensive
cost caused by the node for uploading parameters, the quantity level of energy cost value is
far less than the quantity level of delay value. The greater the value of energy cost weight
coefficient σ, the greater the proportion of energy cost in comprehensive cost. That is, it is
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more important to reduce the energy cost of nodes uploading parameters to edge servers.
Therefore, the appropriate value of σ is 104.
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We compare the performance of OSRN with HierFAVG, as well as SNNR. We consider
different deployment strategies for edge servers, e.g., in four corners and the center, only in
the center and randomly deployed. In HierFAVG, all nodes upload local model parameters
directly to the edge server. It is found in Figure 5a that with the change of rounds, the
energy cost of OSRN is lower than that of HierFAVG and is reduced by 19.03% on average.
It is observed in Figure 5b that the energy cost of OSRN is lower than that of HierFAVG
and is reduced by 28.28% on average. It is shown in Figure 5c that the energy cost of OSRN
is lower than that of HierFAVG and is reduced by 24.49% on average. This is because
after waiting for some time, nodes will encounter a relay node with lower transmission
energy cost than its own. It is shown in Figure 5a,b that the average energy cost of OSRN
is reduced more, and the value is smaller when edge servers are deployed in the center.
This is because, in this scenario, some nodes are closer to edge servers than in the scenario
where the edge servers are located at four corners and the random position. It is also found
in Figure 5b,c that the average energy cost of OSRN is reduced more. Thus, OSRN can
perform better when edge servers are deployed in the center.

Electronics 2023, 12, 2362 17 of 23 
 

 

 
Figure 4. Impact of σ  on average energy cost. 

We compare the performance of OSRN with HierFAVG, as well as SNNR. We con-
sider different deployment strategies for edge servers, e.g., in four corners and the center, 
only in the center and randomly deployed. In HierFAVG, all nodes upload local model 
parameters directly to the edge server. It is found in Figure 5a that with the change of 
rounds, the energy cost of OSRN is lower than that of HierFAVG and is reduced by 19.03% 
on average. It is observed in Figure 5b that the energy cost of OSRN is lower than that of 
HierFAVG and is reduced by 28.28% on average. It is shown in Figure 5c that the energy 
cost of OSRN is lower than that of HierFAVG and is reduced by 24.49% on average. This 
is because after waiting for some time, nodes will encounter a relay node with lower trans-
mission energy cost than its own. It is shown in Figure 5a,b that the average energy cost 
of OSRN is reduced more, and the value is smaller when edge servers are deployed in the 
center. This is because, in this scenario, some nodes are closer to edge servers than in the 
scenario where the edge servers are located at four corners and the random position. It is 
also found in Figure 5b,c that the average energy cost of OSRN is reduced more. Thus, 
OSRN can perform better when edge servers are deployed in the center. 

(a) (b) (c) 

Figure 5. Energy cost comparison with HierFAVG under different deployment locations of edge 
servers. (a) Four Corners and the Center; (b) Center; (c) Random Deployment. 

We compare the performance of OSRN with SNNR. In SNNR, all nodes randomly 
select a node from the neighboring nodes as a relay node and collaboratively upload pa-
rameters to the edge server with the help of this relay node. It is found in Figure 6a that 
the energy cost of OSRN is lower than that of SNNR, with an average reduction of 16.79%. 
It is shown in Figure 6b that the average energy cost of OSRN is lower than that of SNNR, 
and it is reduced by 24.34% on average. It is observed in Figure 6c that the energy cost of 
OSRN is lower than that of SNNR, with an average reduction of 22.04%. This is because 
randomly selected neighboring nodes in SNNR may be far away from the edge server. 

Figure 5. Energy cost comparison with HierFAVG under different deployment locations of edge
servers. (a) Four Corners and the Center; (b) Center; (c) Random Deployment.

We compare the performance of OSRN with SNNR. In SNNR, all nodes randomly
select a node from the neighboring nodes as a relay node and collaboratively upload
parameters to the edge server with the help of this relay node. It is found in Figure 6a
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that the energy cost of OSRN is lower than that of SNNR, with an average reduction of
16.79%. It is shown in Figure 6b that the average energy cost of OSRN is lower than that
of SNNR, and it is reduced by 24.34% on average. It is observed in Figure 6c that the
energy cost of OSRN is lower than that of SNNR, with an average reduction of 22.04%.
This is because randomly selected neighboring nodes in SNNR may be far away from the
edge server. Moreover, the OSRN continuously detects all neighboring nodes within the
maximum delay. In subsequent time slots, nodes encounter optimal relay nodes with low
transmission energy cost. Moreover, it is also found in Figure 6a–c that OSRN can perform
better when the edge servers’ locations are deployed in the center.
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We also implement the existing method CFL and THF. As shown in Figure 7a–c, the
average energy cost of OSRN is lower than that of CFL, with an average reduction of
15.59%, 26.52%, and 20.20%, respectively. The core idea of CFL is to optimize the process
of uploading model parameters through clustering, and the cluster head serves as an
intermediary for cooperative communication between nodes and edge servers. In CFL, all
nodes are divided into clusters by balanced clustering, and one node is randomly selected
as the head node of each cluster. For each cluster, each node first transmits local model
parameters to the cluster head, which then uploads the received parameters to its associated
edge server. Therefore, each node uploads parameters to the edge server through the head
node. However, this randomly selected head node may be far from the edge server, thus
resulting in a large amount of transmission energy cost. In contrast, in OSRN proposed in
this paper, we consider the shortest distance that all neighboring nodes of each node can
reach the edge server in the remaining time, which reduces the energy cost of uploading
parameter. Therefore, the energy cost of OSRN is significantly lower than that of CFL.
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As shown in Figure 8a–c, the average energy cost of OSRN is lower than that of THF,
with an average reduction of 8.74%, 22.54%, and 13.54%, respectively. The core idea of
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THF is also to optimize the process of uploading model parameters through clustering,
and nodes upload parameters to edge servers through cluster heads. However, cluster
heads are not randomly selected. In THF, all nodes in the network are divided into different
clusters by agglomerative clustering. The head node of each cluster is selected based
on the bandwidth of each node and distance to the edge server. The nodes in the same
cluster upload their parameters to the edge server through the same head node. That is,
in each cluster, there is only one relay node in the process of uploading parameters to
the cloud server. However, in the OSRN, we continuously detect the shortest distance of
all neighboring nodes of each node within the remaining delay to ensure that each node
can select the optimal relay node with the minimum energy cost to complete parameter
uploading. Moreover, the neighboring nodes of each node can be fully utilized. Therefore,
the performance of OSRN is better than THF.
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Figure 9 illustrates the average energy cost while directly uploading parameters using
HierFAVG, randomly selecting relay nodes using SNNR, as well as using CFL and THF,
when the total number of nodes varies. It can be observed that with the increase of the
total number of nodes, the fluctuation of average energy cost with using HierFAVG, SNNR,
CFL, and THF is not obvious and fluctuates up and down. It is also found that the average
energy cost using OSRN is always no higher than the above four comparison algorithm,
which demonstrates the better performance of OSRN. When the total number of nodes is in
the range of [50, 150], with more cooperative nodes, each node has more neighboring nodes
to choose from in the relay node selection process and may choose a more appropriate relay
to upload parameters cooperatively. Therefore, the average energy cost of OSRN decreases
gradually within this range.

Figure 10 illustrates the impact of maximum delay constraint on average energy
cost. It can be observed that with the increase of the maximum delay constraint, the
average energy cost of using HierFAVG, SNNR, CFL, and THF fluctuates up and down,
and the fluctuation is not obvious. When the maximum delay constraint is in the range
of [30,70], the average energy cost using OSRN is always no higher than the above four
comparison algorithms and decreases gradually within this range. This is because when
the maximum delay constraint becomes larger, nodes have sufficient remaining time to
select a better neighboring node as a relay for uploading parameters cooperatively. In
addition, each mobile node may move closer to the edge server within the remaining delay
constraints. Therefore, the energy cost of OSRN decreases with the increase of maximum
delay constraint.
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6. Conclusions

In HFL, high energy cost is incurred by nodes uploading parameters to the edge server.
To reduce the energy cost, we investigate the optimization problem for energy with the
constraint of maximum transmission delay, which is proven NP-hard. To solve this problem,
we convert it into an optimal relay node selection problem for node cooperation and
propose an online algorithm OSRN. Opportunistic communication is used for cooperation
among nodes. In OSRN, nodes continuously detect neighboring nodes and observe the
optimal value of their combined cost, as well as the expected payoff obtained by their
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cooperation. Based on this, nodes decide whether to select neighboring nodes as relays.
Through theoretical analysis, we prove the existence of the optimal stopping rule and
optimal solution for the optimal relay node selection problem used for node cooperation.
We also prove the NP-hardness of the problem investigated and the competition ratio
that can be achieved by OSRN. Through thorough simulation experiments, it is found
that the energy cost in OSRN is reduced by 24.49% and 22.04% compared to that with
HierFAVG and SNNR, respectively. Moreover, it is also observed that OSRN can reduce
the energy cost by 20.20% and 13.54%, compared with the existing CFL and THF. In
addition, in our experimental design, we also examine the impact of the total number
of nodes and the maximum delay constraint on the performance of the proposed online
node cooperation scheme and derive meaningful experimental results and findings. OSRN
performs better when the total number of nodes and the maximum delay constraint become
progressively larger.

In future work, mobile nodes will not only cooperate but also compete with each
other during model training, and lower energy cost can be achieved through an effective
incentive mechanism. Moreover, in the typical three-layer hierarchical federation learning
we consider, only one layer of edge servers is introduced as a transmission intermediary,
and multi-layer edge model aggregation can be performed by introducing multi-layer
edge servers to reduce communication overhead. Therefore, under multi-layer model
aggregation, which edge service layers the nodes upload parameters to and which edge
layers participate in model aggregation is an issue worthy of further study.
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