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Abstract: The visual navigation system is an important module in intelligent unmanned aerial
vehicle (UAV) systems as it helps to guide them autonomously by tracking visual targets. In recent
years, tracking algorithms based on Siamese networks have demonstrated outstanding performance.
However, their application to UAV systems has been challenging due to the limited resources
available in such systems.This paper proposes a simple and efficient tracking network called the
Siamese Pruned ResNet Attention (SiamPRA) network and applied to embedded platforms that can
be deployed on UAVs. SiamPRA is base on the SiamFC network and incorporates ResNet-24 as its
backbone. It also utilizes the spatial-channel attention mechanism, thereby achieving higher accuracy
while reducing the number of computations. Further, sparse training and pruning are used to reduce
the size of the model while maintaining high precision. Experimental results on the challenging
benchmarks VOT2018, UAV123 and OTB100 show that SiamPRA has a higher accuracy and lower
complexity than other tracking networks.

Keywords: object tracking; attention mechanism; network compression; embedded vision system

1. Introduction

Visual object tracking is attracting significant attention in the field of computer vi-
sion [1–3], involving a broad extent of applications based on UAV such as industrial inspec-
tion, power line inspection [4], and intelligent transportation. For example, in high-voltage
transmission line inspection, the use of UAV not only reduces the threat of electrocution of
personnel, but also reduces maintenance costs and improves efficiency. The navigation task
refers to the process of the control system guiding the UAV to fly to the designated target
location. In this process, the visual navigation system uses the video sequence collected
by an airborne optical sensor to continuously lock the target position according to the
set target. Because the system is not easily affected by external interference signals and
has a high degree of autonomy, visual navigation plays an important role as an effective
navigation method in achieving long-endurance and high-precision navigation of UAVs
in the case of GPS failure. However, the high flight speed of the UAV itself, complex
backgrounds, and large changes in the tracking target scale have increased the difficulty
of autonomous visual navigation, resulting in the need for more accurate real-time target
tracking algorithms.

Early visual object tracking algorithms used traditional manual feature analysis tech-
niques such as particle filter tracking [5] and correlation filter (CF). Owing to the develop-
ment and expansion of different industrial application scenarios, the generalization ability
of traditional algorithms can no longer meet the requirements of these systems. They
have difficulty dealing with scenarios involving complex backgrounds, partial occlusions,
and small targets.

With the development of deep learning technology, tracking methods based on the
Siamese architecture [6–11] have gradually become the standard for visual tracking. Related

Electronics 2023, 12, 2374. https://doi.org/10.3390/electronics12112374 https://www.mdpi.com/journal/electronics

https://doi.org/10.3390/electronics12112374
https://doi.org/10.3390/electronics12112374
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/electronics
https://www.mdpi.com
https://orcid.org/0000-0001-6976-7275
https://doi.org/10.3390/electronics12112374
https://www.mdpi.com/journal/electronics
https://www.mdpi.com/article/10.3390/electronics12112374?type=check_update&version=1


Electronics 2023, 12, 2374 2 of 18

methods have proven effective in deep feature extraction for targets. However, most deep
learning-based tracking algorithms are at the theoretical stage. Furthermore, optimizing
the network complexity of the overall system to reduce the amount of calculations is
not considered. This paper proposes an efficient target tracking network that employs
a lightweight convolutional neural network combined with an attention mechanism to
extract the deep semantic features of the target and background. This study reduces the
complexity of the algorithm through optimization strategies, making it suitable for practical
application in various embedded computing platform.

The location of the target has significant spatial characteristics and the target’s various
characteristics in different channels of the feature map have corresponding relationships.
The attention mechanism can select global features and improve the recognition accuracy
by suppressing information that is weakly related to the target. Yang et al. [12] proposed
a novel visual tracking method that utilizes spatial selective attention to discriminatively
learn from historical data; it dynamically identifies discriminative attentional regions.
Woo et al. [13] proposed a convolutional block attention module (CBAM) that infers the
attention map from the channel and space dimensions in turn to enable the model to
focus on the target. Fu et al. [14] successfully applied the attention mechanism to image
segmentation, greatly improving the objective effect of the segmentation. Wu et al. [15]
proposed a cross-spatial attention mechanism module (CCLA), which makes the algorithm
focus on global and local context information, and improves the accuracy of object state
estimation. In the current study, we developed a visual tracking feature extraction network
based on spatial and channel attention to focus attention on the location and feature
correlation of the tracking target in the video sequence, thereby obtaining more robust and
accurate tracking of target depth features.

As stated above, deep networks can extract the deep semantic features of the target
in visual object tracking with better generalization that traditional approaches. However,
most deep learning algorithms are computation-intensive and are not designed for em-
bedded vision systems, such as those used in UAV visual navigation system. In recent
years, lightweight networks have proved to be effective solutions to the above problems.
Howard et al. [16] proposed a lightweight network that uses depth-wise separable convolu-
tion to fully reduce the amount of computation involved in ordinary convolution. Further,
Liu et al. [17] directly pruned the network through several early pruning methods and
used retraining to achieve performance equivalent to the original network. Inspired by
these previous studies, this study optimizes the efficiency of the system by designing a
pruning algorithm. The network parameters and calculations are reduced by removing
unimportant calculations and retaining the most effective network components.

Based on the above analysis, this paper proposes a novel network architecture and
system optimization method. The main contributions of this study are as follows:

(1) A lightweight visual tracking network, SiamRA (Siamese ResNet Attention), is
proposed for embedded vision systems. A spatial-channel attention module is introduced
to strengthen the attention to the spatial area of the target in the image and the correlation
of similar features between different channels, achieving excellent tracking results with
low-cost computing.

(2) A pruning algorithm is designed for SiamRA. Sparse training and pruning min-
imize the network’s calculations, creating a high-performance and lightweight target
tracking network, SiamPRA (Siamese Pruned ResNet Attention).

The remainder of this paper is organized as follows. In Section 2, previous studies
related to the SiamPRA tracking algorithm are discussed. In Sections 3 and 4, the proposed
architecture and optimization algorithm is presented in detail. Section 5 presents the results
of ablation experiments and their performance analysis. Finally, the conclusions of this
study are presented in Section 6.
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2. Related Work

Visual tracking algorithms can be broadly divided into two categories based on the
feature extraction methods employed: traditional visual tracking algorithms and deep
learning-based visual tracking algorithms.

Traditional visual tracking algorithms primarily use manual features. For example,
Vojir et al. [18] proposed an algorithm based on the mean-shift theory using the weighted
color histogram generated by the image for tracking. Henriques et al. [19] successfully
integrated CF into target tracking tasks in 2014, maintaining high accuracy at 172 FPS.
Subsequently, the research on target tracking algorithms began to focus on the improvement
of CF algorithms. For example, Lukezic et al. [20] proposed a CSR-DCF method that
introduced the concept of channel reliability and spatial reliability into DCF tracking and
also proposed a learning algorithm to enable DCF tracking to be efficiently and seamlessly
integrated in the process of filter update and tracking; Bertinetto [21] fused the HOG feature
and COLOR feature with the CF algorithm, achieving simple and efficient tracking at 80 FPS.
Although the processing speed of traditional algorithms is relatively high, the tracking
accuracy is not satisfactory because of the small scale of the tracking target and the variable
angle of view. This is because these methods have limited ability to extract the features of
the target and background.

In recent years, deep learning technology has been successfully applied to visual
tracking through deep semantic feature matching to obtain the location of the target. Some
early algorithms combined correlation filtering with deep convolution features to achieve
higher accuracy. These convolutional neural network models had strong convolution fea-
tures and good generalization capabilities, but their speed was low; for example, ECO [22].
The SiamFC algorithm [6] effectively applied the Siamese network to the visual tracking
task for the first time, quickly replacing the CF algorithm to become the main research
direction of current visual tracking algorithms. Li et al. [7] proposed SiamRPN, adding
a region proposal network based on SiamFC and strengthening the accuracy of target
detection through regression of the target frame and score. It can reach 160 FPS but is
memory and storage space-consuming. Zhu et al. [8] added negative samples of different
targets of the same kind to the training dataset to enhance the discrimination ability of
the model. Zhang et al. [23] used no-padding-residual units to design a deeper and wider
Siamese tracker, avoiding the padding operation affecting the translation invariance of the
network. Nousi et al. [24] improved the robustness of the tracker by extracting the target
corresponding histogram to deal with the change of target appearance during the tracking
process. Li et al. [9] used image pair translation to avoid positional deviation, solving
translation invariance and strengthening the learning ability of the network through feature
fusion. Xu et al. [10] applied the anchor-free concept in the detection algorithm to replace
the anchor-base in SiamRPN, obtaining a more accurate bounding-box to enhance the
accuracy of the tracking. Tan et al. [25] learned feature weights through two non-local
blocks, refined target features to suppress noise interference, and correlated multiple re-
sponse maps to improve model robustness. Tang et al. [26] rank the importance of training
samples, give more weight to important samples, then rank the proposals generated by the
lightweight network prediction RPN, and finally combine the classification to decide the
tracking results. Yao et al. [27] studied template candidate matching for Siamese trackers
from the perspective of image alignment, which enhanced the scene adaptability of the
algorithm. Yang et al. [28] introduced a modified corner pooling layer to convert the target
bounding box estimation into diagonal prediction, and introduced a layered feature fusion
strategy to enable the corner pooling module to predict multiple corners of the tracked
target in the deep network. Zhou et al. [29] designed a localization branch to directly locate
the object center to help the regression branch to generate accurate results in a variety
of challenging scenarios and improve the robustness of the algorithm. Zhao et al. [30]
proposed a target template update method based on deep reinforcement learning, which
enables the tracker to learn the update strategy of the template pool, so that the algorithm
continuously adapts to the appearance changes of the target. Chan et al. [31] implicitly



Electronics 2023, 12, 2374 4 of 18

encode the shape and scale information of the target into an anchor-free method, and then
utilize the combined module of the channel attention mechanism and the non-local at-
tention mechanism to improve the perception of key features of the template and avoid
the interference of background clutter, thereby improving the Robustness of the model.
The visual tracking algorithm based on deep learning improves the feature extraction ability
by deepening the network and improves the tracking accuracy to a large extent. How-
ever, the deeper network architecture requires significant amounts of storage space and
computing power, which is incongruent with the real-time processing needs of embedded
computing platform.

3. Proposed SiamRA Scheme

In this section, the visual tracking algorithm SiamRA is introduced in detail. Figure 1
shows the overall architecture, which consists of scale adjustment pre-processing, the deep
feature extraction backbone ResNet-24, the attention extraction module, and a target
positioning module.

Figure 1. Overall Network Architecture.

3.1. Scale Adjustment Pre-Processing

The coordinate position of the tracking target in the video sequence collected by the
visual navigation system usually moves in a relatively small range between two adjacent
image frames without any drastic changes. Appropriate cropping of the input image
greatly reduces the computation for the target location search. Therefore, our proposed
method searches within a range that is twice the length and width of the bounding-box of
the pre-set target. In this study, the target image is resized to 127 × 127 for extracting deep
features, and the background image is resized to 255 × 255 for searching. These images are
inputted into two pre-trained shared parameter ResNet-24 twin network branches, namely,
input_z and input_x in Figure 1, to extract deep visual features. Because the padding
operation in ResNet24 destroys the translational invariance of the network, leading to poor
tracking results, we removed the effect of padding by cropping the feature maps after
each padding operation. In the tracking process, the tracking result is not used as a new
template image, and the initial image provided by the first frame continues to be used; this
is because the image in the first frame is usually selected as the image when the target is
completely acquired, which is more accurate. Although the continuous updating of the
template image can help to determine the characteristics of the target in the current state,
it is often affected by factors such as occlusion, blur, and background similarity during
the tracking process. In this case, updating the tracking results to the template image
would affect the tracking accuracy. Meanwhile, because the template branching remains
unchanged, its output also does not change. This output is stored in the memory after the
first frame is calculated, and it is not updated in subsequent tracking, which also reduces
the number of calculations.
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3.2. Feature Extraction

The ResNet-24 network architecture has a unique residual block module that deep-
ens the network while avoiding the vanishing gradient problem. At the same time, its
MACs and Params are only 9.5% and 6.2% of ResNet-50, making it more compatible
with the constrained resources of embedded computing platforms. However, compared
with ResNet-50, its relatively latent network depth inevitably results in a lack of feature
extraction capabilities.

To address this problem, this study proposes an attention module in the system to
further mine deep features. As shown in Figure 1, the features extracted by ResNet-24
are input into a spatial-channel attention module that aggregates features from different
locations and channels of the target by giving higher weights to the region of interest.
As shown in Figure 2, this attention module helps the system to suppress feature redun-
dancy in the spatial and channel dimensions and better categorize the features of the target
and background.

Figure 2. Attention mechanism visualization. Left to right: tracking results, no attention, and spatial-
channel attention. Top to bottom: frisbee, bird, and obscured motorcycle.

The architecture of the attention module used in this study is shown in Figure 3. It
is composed of spatial and channel attention modules without shared parameters. Af-
ter Feature_map_A in Figure 1 is reshaped by this spatial-channel attention module, the fi-
nal Feature_map_X is obtained for the target positioning module. The network structure of
the spatial attention module is shown in Figure 4. The extraction process of spatial attention
features can be divided into the following three steps.

Figure 3. Structure of the Attention Module.
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Figure 4. Overall Architecture of the Spatial Attention Module in Figure 3.

Step 1: After obtaining Feature_map_A ∈ RC×H×W , input it into a convolutional
layer to generate two new feature maps, Feature_map_B and Feature_map_C, where
{B, C} ∈ RC×H×W . Then, reshape the two features into a size of RC×N , where N = H ×W
is the number of pixels, and further transpose Feature_map_B. Finally, perform matrix
multiplication in the N domain between the transposition of B and C, obtaining the original
spatial attention matrix Ms ∈ RN×N . Equation (1) uses Softmax to calculate the weight sji
by row as the updated attention matrix Ms [14].

sji =
exp

(
Bi ∗ Cj

)
∑N

i=1 exp
(

Bi ∗ Cj
) , (1)

where Bi is the ith C-dimensional row vector in Feature_map_B, Cj is the jth C-dimensional
column vector in Feature_map_C, sji is a scalar that denotes the influence of the ith position
on the jth position and plays the role of spatial attention. The more similar the feature
representations of two locations are, the stronger is the correlation between them.

Step 2: Input Feature_map_A into the convolution layer, generate a new Feature_map_D,
D ∈ RC×H×W , and reshape it into RC×N . Perform matrix multiplication between the trans-
position of Feature_map_D and the spatial attention matrix Ms, reshaping the result into
RC×H×W . The result denotes the local feature of the spatial attention.

Step 3: Multiply the spatial attention local feature by a scale parameter α, and further
merge it with Feature_map_A to obtain the final spatial attention Feature_map_E ∈ RC×H×W

as follows:

Ej = α
N

∑
i=1

(
sjiDi

)
+ Aj, (2)

where α is a scale parameter initialized to zero and gaining more weight through gradual
learning. It can be seen from Equation (2) that the final spatial attention Feature_map_E
is the weighted sum of all the spatial attention local features and the original features.
Compared with the original features, it aggregates the contexts of the target in space.

The architecture of the channel attention module is shown in Figure 5. Its process
resembles the spatial attention feature extraction process. The convolution part is re-
moved to ensure that the relationship between channels does not change. By reshaping
Feature_map_A into RC×N and multiplying it with its transpose, the channel attention
matrix MC ∈ RC×C is calculated by the Softmax layer. This matrix is multiplied by the
Feature_map_A matrix, and the result is reshaped to RC×H×W , which represents the local
feature of the channel attention. Finally, the same weighting method as the spatial attention
is used to combine the local features of the channel attention and Feature_map_A, obtaining
the final channel attention Feature_map_F ∈ RC×H×W .
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Figure 5. Overall Architecture of the Channel Attention Module in Figure 3.

3.3. Target Positioning

The target positioning module uses Feature_map_X (Template) as the convolution
kernel and Feature_map_X (Search) as the feature map for convolution to achieve cross-
correlation. Then, the coordinates are determined according to the confidence of the
generated feature map and upsampled to the original image size using bicubic interpolation.
The overall tracking network scheme is summarized in Algorithm 1.

Algorithm 1 SiamRA Tracking Network Scheme

1. Input: Input of this scheme

• Train: Train on Image sequences I (GOT10K, TrackingNet, and COCO) and ground-
truth gt, Pre-train ResNet-24 model R;

• Implement: Initial target coordinates (x0, y0, w0, h0), Test Image sequences I′;

2. Output: Output of this scheme

• Train: SiamRA tracking network model T;

• Implement: Tracking result (xi, yi, wi, hi);

3. Initialization: Initialize the proposed CNN with given hyperparameters

• Epoch = 50, λ = 0.00001;

• Optimizer = SGD, learning-rate = 0.01∼0.00001, Momentum = 0.9, Weight decay = 0.0001,
Scheduler = logspace;

• Load Pre-trained ResNet-24 model R and initialize the attention module randomly;
4. Training:

1: Obtain example images Z and search images X by cropping and resizing sequences I;

2: for i → 1 to Epoch do

3: Randomly shift example images Z from 0 to 64;

4: Input example images Z to input_z in Figure 1;

5: Randomly shift search images X from 0 to 8;

6: Input search images X to input_x in Figure 1;

7: Train model T with logistic loss l in learning-rate.

8: end

9: Obtain the SiamRA tracking network model T;

5. Implementation:

• Input: Initial target coordinates (x0, y0, w0, h0), Test Image sequences I′;

• Obtain example image Z by cropping and resizing initial frame from sequences I′;

• Get search images X by cropping and resizing sequences I′;

• (xi, yi, wi, hi) = T(Z, X);

• Output: Tracking result (xi, yi, wi, hi).
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4. System Optimization

Although the SiamRA network uses the attention mechanism to reduce the complexity
of the algorithm, redundant calculations are still unavoidable. In UAV systems with limited
resources, any excess calculations will inevitably affect the efficiency of the visual navigation
system. The removal of network redundancy by a pruning algorithm has provided excellent
results in vision tasks such as target detection and classification [32]. However, the previous
method can only reduce the branches of the intermediate convolution kernel in SiamRA
without maximizing the system efficiency because the residual block structure of ResNet
needs to ensure the consistency of the front and rear channels. To enhance the efficiency of
the visual tracking system without reducing the network’s deep feature extraction capability,
this paper proposes SiamPRA, in which SiamRA is optimized as in Algorithm 1. In the
SiamPRA scheme, the BatchNormal (BN) layer coefficients are sparsified via sparsification
training. Then, the structural pruning algorithm, full pruning (FP), optimizes the Siamese
network presented in Figure 1 to retain the most important and effective convolution kernel.
The number of channels reserved in the last layer of the ResNet feature map is taken as the
number of convolution kernels reserved in the attention module. Finally, the visual targets
are tracked according to the fine-tuned pruned network. The overall SiamPRA scheme is
summarized in Algorithm 2.

Algorithm 2 Search for Pruned Structure

1. Input:

• SiamRA Networks, pruning ratio ε;

2. Output:

• SiamPRA model T∗ ;

3. Procedure:

1: Train the SiamRA networks with the improved loss function Equation (3). Obtain the
sparse BN layer γ;

2: for j→to J do

3: Sort BN layer weight γ from largest to smallest to obtain Λ ={
γ1, γ2, . . . . . . , γ0.9j−1n

}
;

4: Prune 10% to obtain new Λ∗ =
{

γ1, γ2 . . . . . . , γ0.9jn
}

;

5: Obtain pruned model T∗ with Λ∗ and fine-tuning;

6: If pruning ratio ε <= 1− num(Λ∗)/ num(Λ);

7: break;

8: end if;

9: end for;

10: Obtain the SiamPRA model T∗.

Figure 6 shows the network-structured pruning process based on the BN layer co-
efficients. First, sparsification training of the network based on spatial channel attention
feature extraction is performed to obtain the trained network parameters. Then, the BN
layer coefficients in the network parameters are sorted and the smaller part of the BN
layer and its corresponding convolution kernel are deleted according to the pruning rate
ε. Finally, fine tuning and pruning continue until the network performance decreases
significantly. The network pruning process can be divided into the following three steps:

Step 1: Add the L1 norm of the constraint BN layer coefficient γ to the loss function
in the training process to promote the sparseness of γ. (This is done because the L1 norm
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can make the constraint item approach zero while solving for the minimum value to sparse
the parameters.) The loss equation [32] is

Loss = arg min
ω

∑
i

log
(

1 + e−gti∗T(Xi ,Zi)
)
+ λ ∑

γ

|γ|. (3)

The first term denotes the logistic loss function in Algorithm 1 and is used to ensure
that the difference between the estimated value of the convolutional network reference
function and the ground truth is sufficiently small. The second item denotes the L1 regular
item that has the effect of sparse parameters and λ is the regularization constraint coefficient.
In this paper, sparsification training is achieved by constraining γ; thus, most of γ is zero
or approximately zero to achieve γ sparsity. This ensures that all the convolution kernels
with minimal effects are pruned in subsequent pruning. There is low loss of accuracy after
pruning, thus accelerating the pruning process.

This study adopts the calculation formula for pruning judgment based on the BN layer
as follows:

zm+1 = γm ẑm + βm; ẑm =
zm − µm√

σ2
m + εm

, (4)

where the BN layer has two trainable parameters: γ and β. The next layer input zm+1 is a
line equation with the standard deviation ẑm of the convolution calculation result of the
current layer m as the independent variable, γm as the coefficient, and βm as the bias.

Figure 6. The structured pruning process.

Step 2: After the sparse training is completed, the trained model starts pruning. FP
sorts the γ of all BN layers and prunes the corresponding ratio of the BN layer and its
corresponding convolution kernel according to the pruning ratio ε from small to large.

Because the residual block in ResNet has a shortcut, the number of input channels
must equal the number of output channels to sum the elements pairwise. Pruning directly
deletes all the convolution kernels and BN layers below the threshold, as shown in the
residual block pruning part in Figure 7. If the channels of different dimensions of the
first layer of Pruned_Feature_map_A and the last layer of Pruned_Feature_map_B of the
residual block are pruned, it may not be possible to sum elementwise owing to the unequal
number of channels.

In this FP algorithm, a new solution to this problem is proposed. As shown in Figure 7,
when Pruned_Feature_map_A and Pruned_Feature_map_B are pruned in the same channel,
the corresponding weight of the BN layer is low. Therefore, as shown in Equation (5), for a
given channel C = i, the new feature map generated by the shortcut of two feature maps
approaching zero will also approach zero. Similarly, if any feature map is not zero, the new
feature map is not necessarily zero. The channel approaching zero in the new feature map
has no effect in the next convolution layer; therefore, it is pruned.
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FC(x, y, i) = lim
(x,y)→0,

c=i

FA(x, y, c) + lim
(x,y)→0,

c=i

FB(x, y, c)

=

 0 · · · 0
... 0

...
0 · · · 0

+

 0 · · · 0
... 0

...
0 · · · 0

 =

 0 · · · 0
... 0

...
0 · · · 0

 (5)

This method prunes the channel of the feature map close to zero generated by the
residual block. As shown in Figure 7, the algorithm takes the union of the unpruned chan-
nels of the two feature maps. This prunes the unimportant BN layer and its corresponding
convolution kernel under the same channel and obtains Pruned_Feature_map_C. Accord-
ing to the channels reserved by the previous residual block, the algorithm determines the
same channels; the next residual block should be kept before pruning.

Figure 7. Residual block pruning strategy. “0” represents the pruned feature map, and “1” the
retained feature map.

Step 3: Conducting fine-tuning. Loading all the parameters of the pruned model and
then training it overall on the fine-tuned dataset. The network can be restored to its original
performance by training only a few epochs (after pruning the network, the accuracy may
temporarily decrease). The fine-tuned network may occasionally perform better than the
original network during the experimental process of this FP algorithm.

5. Experiments

The visual navigation system of UAV is an important application scenario for the
proposed algorithm. However, because the system involves multiple fields, in order to inde-
pendently verify the performance of the proposed tracking algorithm without system inter-
ference, we only test the tracking algorithm objectively, subjectively, and on the computing
platforms that can be mounted on UAVs for efficiency testing. Without specified, the ex-
periments were conducted on a PC with 16 GB RAM, 3.40 GHz CPU, and NVIDIA 2080Ti
GPU. All experimental frameworks were accelerated by PyTorch, CUDA 9.0, and cuDNN
7.6. The general dataset VOT2018 [33], OBT100 and the UAV image dataset UAV123 [34]
were used to verify the effectiveness of the SiamPRA method.

5.1. Experimental Environment
5.1.1. Dataset Description

This study used the GOT10K dataset [35], TrackingNet dataset [36], and COCO
dataset [37] as the training datasets. The datasets were cropped to obtain 255 × 255 search
images and 127 × 127 template images which were input into the network as training images.

5.1.2. Evaluation Criteria

The objective indicators of the datasets VOT, UAV123 and OTB100 were used to
evaluate the performance of the algorithm. Acc. in the VOT denotes the tracking accuracy
calculated by the overlap rate between the predicted box and the ground truth box; Rob.
denotes the stability of the tracking calculated by the number of tracking failures in the
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video; Expected Average Overlap (EAO) denotes the tracking expected average coverage
rate calculated by Acc. and Rob., and is negatively correlated with the tracking failure time.
An efficient algorithm generally has a low Rob. value and high EAO. and Acc. values.
Prec. in UAV123 and OTB100 denotes the tracking accuracy calculated by the distance
between the center of the predicted box and the center of the ground-truth box below the
threshold (set as 20); Succ. denotes the success rate of the tracking calculated by IoU above
the threshold (set as 0.6). FPS denotes the tracking speed calculated by the amount of
tracking completed per second; MACs denotes the memory usage which is calculated per
second; Params and model size denote the number of parameters and the size of the model,
respectively.

5.1.3. Implementation Details

The pre-trained model on the ImageNet [38] dataset was used to initialize the ResNet
in the SiamRA network and fine-tune the visual tracking task on the TrackingNet, GOT10K,
and COCO datasets. Because the spatial-channel attention module is not part of the
standard ResNet structure, there is no corresponding pre-training weight. Therefore, we
initialized these two modules randomly. The input search images were randomly shifted
within ±64 pixels and the template images within ±8 pixels. The COCO dataset was used
to generate positive and negative datasets of the same type.

5.2. Comparison of System Effectiveness

Embedded vision systems have very limited computing power and storage resources,
such as UAVs. Therefore, it is required that the algorithms ensure accuracy, reliability,
and speed while minimizing the model size and computational complexity. The proposed
method was compared with state-of-the-art methods in terms of accuracy, speed, and model
size on the VOT2018 and UAV123 datasets to verify its effectiveness. As can be seen in
Table 1, the proposed algorithms achieved the best performance in terms of robustness
and running speed, respectively, and greatly reduces the model size and computational
complexity while ensuring accuracy. The use of spatial-channel attention makes SiamPRA
more robust. However, to reduce the number of parameters and the algorithm complexity,
RPN and anchor-free algorithms are not used for bounding-box regression. This results
in a lower overlap rate performance than those with bounding box regression. When
using the UAV for tracking, these algorithms have high computational costs and more
parameters, making it difficult to perform real-time operations on resource-constrained
embedded platforms. The Model Size and the Params of SiamPRA are only 6 MB and
802.56 K, which is a great advantage. Among them, the 802.56 K Params are respectively
composed of 749.1 K for the backbone network and 53.46 K for the spatial-channel attention
module, which also proves that the attention mechanism can improve the performance of
the network under the condition of low parameters.

Figure 8 shows the advantages of the algorithms in this paper more visually, where
the horizontal coordinates represent EAO/Succ and the vertical coordinates represent
FPS/GMAC. For target tracking algorithms applied to UAV systems, it is necessary to
improve the algorithm’s speed and reduce the parameters while maintaining a relatively
high accuracy rate. An algorithm with better overall performance should be in the upper
right corner of the coordinate system, demonstrating that it can achieve high accuracy
target tracking with high speed, low computation and storage space. From the Figure 8,
it can be seen that SiamPRA achieves the best FPS and GMAC with high accuracy and
is the algorithm with the best overall performance. To further evaluate the effectiveness
of the proposed algorithm, this study conducted comparisons with mainstream methods
on the UAV images in Figure 9. The results show that the proposed algorithm can
effectively handle partial occlusion, small targets, and the influence of similar objects. This
demonstrates that the SiamPRA can effectively solve the challenges in UAV image tracking
and the performance is superior to that of the other algorithms.
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Table 1. Comparison of the proposed method with state-of-the-art methods on the VOT2018, UAV123
and OTB100 datasets.

Dataset
Methods

VOT2018 UAV123 OTB100
FPS MACs Params Model Size

EAO Rob. Acc. Succ. Prec. Succ. Prec.

MDNet [39] - - - 0.528 - 0.699 0.932 1 0.26 G 4.43 M 366 MB
ECO [22] 0.28 0.276 0.484 0.525 0.741 0.699 0.913 8 - - 329 MB
SiamFC [6] 0.188 0.585 0.503 0.523 0.731 0.605 0.799 86 3.2 G 2.34 M 8.9 MB
SiamRPN++ [9] 0.414 0.234 0.60 0.613 0.807 0.688 0.899 35 34.648 G 32.979 M 206 MB
ATOM [11] 0.401 0.204 0.59 0.632 0.844 - - 30 - - 109 MB
SiamFC++ [10] 0.426 0.183 0.587 - - 0.688 0.911 90 19.793 G 13.887 M 53.14 MB
SiamRA 0.403 0.15 0.58 0.605 0.767 0.686 0.913 84 2.59 + 0.16 G 1.3 + 0.32 M 7 MB
SiamPRA 0.396 0.193 0.571 0.598 0.761 0.664 0.881 91 1.786 + 0.03 G 749.1 + 53.46 K 6 MB

(a) FPS (b) FPS (c) FPS

(d) GMACs (e) GMACs (f) GMACs

Figure 8. Comparison results of FPS and GMACS on the VOT2018, UAV123 and OTB100 datasets.
Column one represents the results from VOT2018, column two represents the results from UAV123,
and column three represents the results from OTB100.

In addition, to better analyze the effectiveness and efficiency of the algorithm, ex-
periments were conducted on the two most commonly used embedded platforms: FPGA
and embedded GPU. The FPGA platform was Zynq UltraScale+MPSoC ZCU102 with
XCZU9EG-2FFVB1156 CPU, which is suitable for industrial applications requiring high
reliability. The experimental environment was Vitis 1.0, with Python 3.6, TensorFlow 1.12,
OpenCV-Python, and OpenBLAS. The embedded GPU experiments were conducted on
NVIDIA’s Jetson Nano, Xavier NX, and Xavier AGX. The Jetson Nano can run at a low
power consumption of 5 W, which is suitable for power-sensitive tasks in industrial sce-
narios. The Xavier AGX is a high-performance platform for scenarios requiring higher
processing speeds. The power consumption and performance of the Xavier NX lie between
those of the above two. The experimental environment was JetPack 4.5.1, with Python
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3.6, PyTorch 1.7, and OpenCV 3.4.3. All experiments were conducted without engineering
optimization. The results are shown in Table 2.

(a) Car1 (b) Car2 (c) Car3

(d) Car4 (e) Person1 (f) Person2

(g) Person3 (h) Person4 (i) Person5

(j) Boat (k) Bike1 (l) Bike2

(m) Uav1 (n) Uav2 (o) Truck1

Figure 9. Comparison of target tracking results in UAV images. The targets in UAV images present
challenges such as small size, similar targets, partial occlusion, object size change, camera motion,
and fast movement.

In this study, the pre-processing, feature extraction, and post-processing of SiamPRA
were tested separately in the embedded system. Among them, pre-processing mainly
included the data loading and scaling modules, feature extraction included the backbone
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network and attention mechanism modules, and post-processing corresponded to the track-
ing result return and target localization modules. As can be seen in Table 2, the embedded
GPU-based algorithm implementation was the most time-consuming in this module owing
to it being the most computation-intensive in feature extraction. However, in the ZCU102
platform, the feature extraction part was parallelized by the programmable logic (PL) side,
and thus took only 0.02 s. As shown in Figure 10, the SiamPRA algorithm consumed
only approximately 26.64% of the total PL hardware resources on average. For the other
two modules, ZCU102 used the programmable system (PS) side for data scheduling and
processing; thus, it requires a longer time and has a high potential for speedup. In the above
experiments, the Xavier AGX had the fastest average inference time of 0.057 s, achieving
real-time processing speed without engineering optimization. The above experimental
results and analysis demonstrate the effectiveness of SiamPRA in vision tracking tasks.

Table 2. Results of SiamPRA running on the embedded platform.

ZCU102 Xavier-AGX Xavier-NX Jetson-Nano

Pre-processing 0.051 s (PS) 0.022 s 0.024 s 0.030 s
Features Extraction 0.020 s (PL) 0.029 s 0.030 s 0.034 s
Post-processing 0.092 s (PS) 0.006 s 0.009 s 0.012 s
Total time 0.163 s 0.057 s 0.063 s 0.076 s

Figure 10. FPGA resource utilization of SiamPRA algorithm.

5.3. Network Architecture Performance Analysis

Ablation experiments on the attention module were conducted to ascertain the effec-
tiveness of the network architecture. Because the proposed algorithm employs similarity-
based target tracking, it requires the backbone network to have good translational in-
variance. The network without and with the attention module on the two datasets were
compared by ablation studies to evaluate the effectiveness of the spatial attention module
and the channel attention module. Table 3 shows the comparison results. Using SiamRA,
which only contains the basic network ResNet, an EAO of 0.338 was obtained on the
VOT2018 dataset. Adding the attention module after extracting the depth features, the EAO
increased to 0.403, an improvement of 19.2%. This shows that spatial information and
channel information can be aggregated through the spatial-channel attention module,
thus focusing on the target area, reducing attention to similar scenes or similar targets,
and improving the robustness.
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Table 3. Comparisons of SiamRA for different feature extraction configurations.

Dataset Models
VOT2018 UAV123

EAO Acc. Rob. Succ. Prec.

SiamRA(ResNet) 0.338 0.587 0.245 0.543 0.701
SiamRA(channel attention) 0.344 0.576 0.23 0.564 0.715
SiamRA(spatial attention) 0.373 0.562 0.172 0.594 0.759
SiamRA(spatial-channel attention) 0.403 0.58 0.15 0.605 0.767

5.4. System Optimization Performance Analysis

The results before and after pruning were also compared to evaluate the effectiveness
of network-structured pruning based on BN layer coefficients. The results without pruning
the last residual block of the network and those without sparse training along with the
experimental comparison are shown in Table 4.

Table 4. Comparisons of SiamPRA for different system optimization configurations.

Sparse Full Pruning
VOT2018

MACs Ratio
EAO ∆EAO

Original SiamRA – – 0.403 - 2.75 G -
Sparse SiamRA ! # 0.409 +0.006 2.75 G -
Pruned SiamRA # # 0.329 −0.074 2.45 G 14%
Pruned SiamRA # ! 0.375 −0.028 1.98 G 37%
SiamPRA ! ! 0.396 −0.007 1.82 G 44%

In this study, the L1 norm regular item of the BN coefficient γ in Equation (3) makes
the γ coefficient sparse. By comparing no sparsity regularization (λ = 0) and sparsity
regularization (λ = 10−5) the sparse γ coefficient will fall into a small region near zero
and the γ coefficients that are not pruned will be evenly distributed as shown in Figure 11.
Therefore, the addition of the L1 regular item improves the pruning efficiency of the system
for the convolution kernels and BN layers, accelerates the pruning speed, and increases
the proportion of the final pruning. It can also be seen from Table 4 that the addition of the
L1 norm regular item does not affect the accuracy of the tracking and results in a higher
pruning rate and EAO after pruning.

Current pruning algorithms such as [17,32] assume that networks containing Residual
Blocks such as MobileNet and ResNet need the same number of channels in the first and
last layers to perform elementwise addition. Usually, the last layer of the residual block is
not pruned. Experimental results show that as the degree of pruning deepens, this type of
algorithm will cause the number of channels in some layers to become very small, resulting
in a significant decline in tracking performance. Because the number of channels in the
last layer of the residual block is four times that of previous channels, it is difficult to
sufficiently optimize the amount of computation. It can be seen from Figure 12 that the
network pruned by the FP method at a similar pruning ratio is smoother, without some
channels being close to zero, and has a higher EAO.

It can be seen from Table 4 that the FP algorithm has a higher pruning ratio and
accuracy. It can achieve a pruning ratio of 44% when the EAO is only reduced by 0.007.
This indicates that the tracking algorithm after pruning through the FP method can have
fewer calculations and parameters while maintaining high-accuracy tracking and can
perform better on the embedded vision platform.
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Figure 11. Statistical results of γ under λ = 0 and λ = 10−5.

Figure 12. Remaining channels for Network Slimming and the SiamPRA algorithm.

6. Conclusions

This paper proposed a visual tracking algorithm architecture for visual navigation
systems involving resource-constrained embedded platform in UAVs. The main contribu-
tions of this study are twofold. First, a spatial-channel attention mechanism is integrated
into the Siamese-based visual tracking network for the first time. The attention mechanism
enhances the feature extraction ability of the network, which in turn improves the tracking
accuracy and robustness. Second, considering the limited resources of the embedded
platform, this study proposes an algorithm that can fully prune the ResNet and reduce the
computation and parameters of the tracking algorithm.

The limitation of SiamPRA lies in its boundary box estimation. Related research
results show that although the RPN or anchor-free module can improve the bounding box
efficiency, it can create high computing and memory overheads. In addition, the algorithm
does not consider the application scenario of long-time tracking and does not introduce a
recovery mechanism after tracking loss to improve accuracy. In future work, we will de-
velop corresponding algorithm optimization methods for RPN or anchorless modules and
introduce adaptive mechanisms to quickly re-detect the tracking target in case of tracking
failure, achieving faster and more accurate for long-time target tracking for UAV images.
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