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Abstract: Location-based services have become an important part of our daily lives, and while users
enjoy convenient Internet services, they also face the risk of privacy leakage. K-anonymity is a
widely used method to protect location privacy, but most existing K-anonymity location privacy
protection schemes use virtual locations to construct anonymity zones, which have the problem of
being vulnerable to attackers through background knowledge, while the improved collaborative K-
anonymity scheme does not sufficiently consider whether collaborating users share similar attributes.
We propose a distributed K-anonymity location privacy-preserving algorithm based on interest
points and user social behaviors to solve these problems in existing K-anonymity schemes. The
method determines the similarity of users by their interest points and social behaviors and then
selects users with high similarity to build an anonymous set of collaborative users. Finally, to ensure
the relatively uniform distribution of collaborative users, a homogenization algorithm is used to
make the anonymous location points as dispersed as possible. The experimental results showed that
our algorithm can effectively resist background attacks, and the uniformly distributed anonymous
location points can achieve higher-quality anonymous regions.

Keywords: location privacy protection; K anonymity; user similarity; location; points of interest;
homogenization user collaboration

1. Introduction

Location-Based Service (LBS) [1,2] is a service developed based on location information
provided by users, which provides users with services such as point of interest query and
personalized information push with the support of a Location-based Services Platform
(LSP). With the rapid development of 5G and IoT technology, terminal devices are becoming
popular, LBS covers many application scenarios, and a series of privacy leakage problems
come with this. When users request services from location service providers, they need
to provide their location information, and the location service providers return services
through the received location information, such as nearby hotels, restaurants, navigation
routes, local weather conditions, and so on [3–7]. There is a hidden danger of privacy
leakage, which is that if an attacker obtains the user’s requested data, he/she can steal
the user’s true location, and the security of the user’s personal information will also be
threatened. Therefore, protecting user location privacy has also become a research topic
that cannot be ignored.

There are two types of location privacy for users, namely spatial location privacy
and spatio-temporal correlation location privacy. Among them, spatial location privacy is
the location service request information initiated by the user at each point in time; spatio-
temporal location privacy refers to the location service request information continuously
initiated by users during a certain period of time. There are many protection methods
for the two types of location privacy mentioned above, such as differential privacy [8,9],
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the homomorphic encryption method [10], coordinate transformation [11], anonymous
steganography, etc. K-anonymity [12] belongs to anonymous steganography, which con-
structs an anonymous area by combining the user’s real location with K-1 virtual locations.
When the requesting user sends an LBS request, the user replaces his/her real location
with the anonymous area and submits it to the LSP, effectively protecting his/her per-
sonal location privacy [13,14]. It has the following advantages: (1) low computational
overhead; (2) simple structure, independent of complex password systems; (3) accurate
service requests ensure high-quality LBSs.

However, in the traditional K-anonymity approach, the virtual locations for collab-
oration are not controllable, and they may generate locations that are unlikely to exist in
daily life, such as hilltops, lakes, rivers, etc. After these locations are submitted, LSPs can
identify these unoccupied areas, which in turn leads to a reduction in the size of the anony-
mous area and a decrease in anonymity performance. To solve this problem, distributed
K-anonymity based on user collaboration is proposed, in which users can autonomously
seek the help of collaborating users around them and construct anonymity zones with the
help of collaborating users’ real locations. However, collaborating users are not associated
with requesting users, and they are vulnerable to attackers using contextual inference at-
tacks to exclude some of the collaborating users, resulting in degraded anonymity privacy
protection performance. Although the collaborative user’s location will not appear in the
theoretical unoccupied area, the distribution of location points is still uncontrollable, and
there is a high probability that the anonymous location points will be too concentrated
or too scattered, which will make the constructed anonymous area smaller in scope. The
K-anonymity scheme uses the entire anonymized area instead of the user’s real location
to request the query service, so we always want a relatively large anonymized area to
protect the user’s location privacy while ensuring the quality of service. To solve the above
problems, this paper proposes a user-similarity-based privacy-preserving algorithm for
K-anonymous locations. The main contributions of this paper are as follows:

• A comprehensive user similarity is constructed by user point of interest similarity and
user social behavior similarity, so that the requesting user can find the undifferentiated
collaborating user when the collaborating user constructs an anonymous zone. This
approach makes it impossible for an attacker to infer the location of the real user
through background knowledge.

• The real location of the collaborating user is used to form the anonymity set, avoiding
the problem of uncontrollable virtual locations. The requesting user can construct
the anonymity zone independently of the collaborating user without the help of a
centralized anonymizer.

• By homogenizing the collaborative user set, the homogeneity of the anonymous
location points within the anonymous region is improved while the range of the
anonymous region is guaranteed to be constant, resulting in a higher quality of the
anonymous region.

The rest of this paper is organized as follows. Section 2 describes the related work.
Section 3 presents the definitions related to location privacy protection schemes. Section 4
presents the proposed Se-CUA approach. Section 5 discusses the security of the proposed
scheme and presents the simulations and results, and Section 6 concludes the paper.

2. Related Works

The anonymity-based location privacy protection methods are divided into central-
server-based and distributed location-based anonymity protection methods. In a central-
server-based location privacy protection scheme, all user anonymization operations are cen-
tralized in a central anonymous server between the user and the location service provider.
However, this location privacy protection scheme needs to place the burden of privacy
protection on a trusted central anonymizer, and the central server becomes a performance
and security bottleneck, which will directly cause the leakage of the user’s location privacy
if the central anonymizer is not trusted or breached by attackers. With the improvement of
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the performance of various terminal devices and the advancement of computer processing
power, a distributed terminal-based user collaborative location privacy protection scheme
has emerged in order to prevent the problem of a single point breakthrough that exists in
the central anonymous server. Table 1 provides a detailed comparison of these schemes.

Table 1. Comparison of existing studies.

Virtual Location Solutions Real Location Solutions

[15] [16,17] [18] [19] [20] [21] [22] [23]

Privacy protection degree Low Medium High High High Medium High High
Calculated overhead Low Medium Low Low Medium Low Low Medium

Communication overhead Low Low Medium High High Low Medium High
Service quality Medium High Medium Medium High Medium High High

2.1. Virtual Collaboration Location-Based Solutions

Gruteser et al. [15] first used K-anonymity for location privacy protection, but they
assumed that all users have the exact location privacy protection requirement K, which
cannot meet the personalized needs of individual users. In addition, the solution is less
efficient as it processes each user individually.

Niu et al. [16] proposed a virtual location selection algorithm that selects anonymity
sets based on the query probability of each location and filters the regions with higher
privacy levels together to form anonymity sets by entropy filtering. At the same time,
geometric methods are used to make the location anonymity units as far away as possible
to make the constructed anonymity regions larger. Subsequently, to improve the query
cache hit rate, Niu et al. [17] proposed a cache-based virtual location selection algorithm.
In this scheme, users cache past service data and prioritize the use of local search to obtain
service data from partner users when LBSs are needed. Historical query probability is
introduced to improve the cache hit rate and to further improve the degree of location
privacy protection by maximizing query privacy.

Parmar et al. [24] proposed a new privacy-preserving technique based on virtual gen-
eration. The proposed virtual generation technique is a circle-based technique. It generates
virtual locations in a circular region and is effective against anonymous spatial region
center attacks, map matching attacks, and location homogeneity attacks. Yang et al. [18]
utilized the Stackelberg game framework to identify the optimal set of virtual locations by
considering location semantics, physical dispersion, and query probability. This method in-
volves the mutual optimization of the user and adversary objectives and strives to maintain
the quality of service while safeguarding location privacy from single-point attacks.

Niu et al. [19] designed a personalized spatial camouflage scheme considering the
location privacy and query privacy of users and combined it with user customization to
allow users to autonomously choose the size of anonymous regions. A set of real regions is
first identified as candidates using a virtual location determination algorithm. Then, the
user is assigned an anonymous region that satisfies the expectation based on the user’s
personalized needs.

Zhang et al. [25] suggested a method for improving user privacy while avoiding the
issue of discarding unneeded historical query results. This approach utilizes caching and
spatial K-anonymity and involves multiple levels of caching to reduce the reliance on
Location-Based Services (LBSs). They used a Markov model to predict a user’s next query
location based on movement patterns. Combining this anticipated location with the cache’s
contribution and data freshness can increase the cache hit rate while safeguarding the
user’s location privacy.

Zhu et al. [26] proposed a knowledge-driven location privacy protection scheme to
meet the demand for customized location privacy protection based on users’ personalized
features. The solution proposes the UBPG algorithm to mine the base persona, model
user familiarity and user curiosity, and generate a psychological portrait. Then, a location
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migration matrix based on user profiles is constructed to migrate real locations to anony-
mous locations. Sei et al. [27] proposed a privacy-preserving data collection method that
considers many missing values to address the problem that existing methods for collecting
personal information do not take into account the possible presence of missing values while
ensuring data privacy.

Liu et al. [28] proposed a method to select virtual locations in terms of temporal acces-
sibility, directional similarity, and in/out degree for the problem that the set of adjacent
locations submitted in consecutive requests always contains tight spatio-temporal corre-
lations, leading to degraded privacy-preserving performance. The method filters out the
virtual locations that are identifiable considering spatio-temporal correlation and retains
the remaining location points, thus satisfying the user’s location privacy protection needs.

2.2. Real Collaboration Location-Based Solutions

Wang et al. [29] proposed a new approach to constrain users’ destructive behaviors
while constructing an anonymous blockchain. They used a Multi-Attribute Decision-
Making (MADM) algorithm to transform users’ credit data into credit values and store
them in the anonymous blockchain along with transaction information. In addition, they
proposed a credit value reward and punishment mechanism that treats anonymous block
building as a two-sided game between requesters and participants. In this game, the
credit value reward and punishment mechanisms constrain destructive behaviors. After
the simulation experiments, it was verified that the method can be applied in practical
scenarios to effectively constrain users’ destructive behaviors, quickly build anonymous
zones, and reduce the probability of user location leakage problems.

Yu et al. [20] proposed a method called Privacy-Preserving Trajectory Similarity Com-
putation (PTSC), which aims to solve the privacy leakage problem that may result from
trajectory similarity calculation in trajectory outsourcing services. In this method, the
trajectory service stores the trajectory owner’s trajectory in encrypted form while receiving
encrypted interest trajectories from the trajectory querier. It can securely compute the
similarity between the encrypted interest trajectories and the stored trajectories based on
the encryption. A secure computation protocol based on the longest common subsequence
was also proposed, which utilizes a homomorphism-like encryption algorithm and a secure
comparison protocol to achieve efficient computation of the longest common subsequence
of encrypted trajectories.

Ji et al. [21] proposed an approach to guarantee location privacy using a cache-based
method. This approach involves a collaborative mobile Peer-To-Peer (P2P) system where
users store service data on their mobile devices. The goal is to reduce the possibility
of third-party servers becoming a single failure point and minimize service requests to
safeguard location privacy. Nevertheless, the approach must address the issue of protecting
location privacy when users are in contact with LSPs, which is a typical case.

Liu et al. [22] proposed a blockchain-based distributed K-anonymous location privacy
protection scheme for the problem of non-mutual trust among collaborating users. In this
scheme, the credit values of collaborative users are stored in the blockchain, and successful
participation in constructing an anonymous zone will be rewarded with corresponding in-
centives. At the same time, a breach of trust will be punished as a solution to the problem of
the incomplete trustworthiness of collaborative users in distributed K-anonymity schemes.
While satisfying the principle of K-anonymity protection, a combination of multiple private
blockchains is used to decentralize users’ transaction records. A reward mechanism was
proposed to encourage users’ participation.

Yang et al. [23] dealt with issues related to the behavior of collaborating users and
their ability to influence services in distributed K-anonymity algorithms. They proposed a
method for evaluating collaborating parties’ reputations based on entity integrity, location
information entropy, and service influence. Furthermore, they suggested constructing a
trusted invisible region to safeguard the location privacy of requesters. Nodes within this
region can select highly reputable nodes to participate in creating the anonymous domain.
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In summary, the existing techniques for safeguarding location privacy through K-
anonymity do not tackle the issue of whether the combined distribution of user locations
satisfies the conditions necessary for creating anonymous regions. As a result, there is a
possibility of minimizing the risk of virtual location tracking by enlisting users’ help in
forming anonymous zones. However, the lack of certainty in the locations of collaborating
users leads to ambiguity in the size of the anonymous zone. Moreover, the personal data of
collaborating users from different backgrounds vary, undermining anonymity’s efficacy.
Therefore, the current K-anonymity-based location privacy protection method falls short of
fully protecting users’ location privacy since the resulting anonymous region fails to meet
the privacy needs of the requesting users.

3. Preparatory Knowledge
3.1. System Architecture

In this paper, we used a distributed architecture of user collaboration, where the system
consists of mutually collaborating users, communication base stations, GPS satellites, and
LSPs, without needing a third-party centralized anonymizer. The schematic diagram of the
system structure is shown in Figure 1. When the requesting user initiates a request query
to the LSP, it first autonomously looks for similar users to collaborate in generating the
anonymous area. After receiving the real location of the collaborating user, it sends it to the
LSP with the requesting user’s location and query request and waits for the return result
from the LSP. The users involved in the collaboration are all real users, and we selected
the users with high similarity in the network to participate in the collaboration, aiming
to ensure that the participating users are maximized from the attackers. The similarity of
users is measured by the user similarity metric.

Figure 1. Schematic diagram of the system structure.

3.2. Attack Model

The attacker’s goal is to obtain sensitive information about a specific user, and we
classified the adversaries into two categories: passive and active adversaries. A passive
adversary is any entity that can listen and eavesdrop on wireless channels between entities
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or can hack into users to obtain sensitive information about other users. Passive adversaries
use eavesdropping attacks to obtain additional information about specific users. Active
adversaries can compromise LBS servers and obtain information known to the server. In
this work, we treated the LBS server directly as an active adversary that obtains global
information and monitors the user’s current query. In addition, active adversaries are
able to access historical data and the current profiles of specific users and understand the
location privacy protection mechanisms used in the system.

In this work, the main attacks adopted by the adversaries were conspiracy attacks
and inference attacks. Conspiracy attack means that some adversaries do not have the
required strategy to determine the real location information of the target user; however, the
concatenation of their private user datasets can satisfy the corresponding strategy, and they
will join together to try to obtain the real location of the target user. An inference attack is
an attack in which an adversary infers sensitive information about a user’s location privacy
by combining non-sensitive private data obtained by various means.

As an active adversary, LBS servers can not only launch inference attacks by obtaining
historical data and current queries of specific users, but also join other attackers to launch
conspiracy attacks on target users.

3.3. Collaborative User Similarity

User similarity is an important indicator of how similar the attributes and behaviors
of two users are. In this paper, user similarity consists of two parts: user interest point
similarity determined by the users’ interest points, which consists of the semantic similarity
and distance similarity of interest points. The greater the interest point similarity, the more
similar the users’ attributes and interests seem to be. The other part is the similarity of
users’ social behavior determined by information about their interactions with each other
in the social network, which is measured by the number of senders and recipients who are
similar to the target user; the higher the number, the more similar the interaction between
users is. The higher the similarity of users, the more suitable they are to participate in the
construction of anonymous regions as collaborative users.

3.3.1. Semantic Similarity of Interest Points

A Point Of Interest (POI) is a certain location point with semantic labels, and a mean-
ingless location point is not a point of interest. For example, if a user requests navigation to
home from a restaurant, the restaurant is a point of interest, the coordinates of the location
are the location information, and the route home is the query content. In a considerable
number of scenarios, the POI and query content have a semantic overlap. Location point
similarity is the degree of similarity between the points of interest frequented by two users;
the higher the degree of similarity, the less likely it is that the two users can be identified by
background knowledge.

Interest point similarity consists of semantic similarity and positional similarity. Se-
mantic similarity is the degree of semantic similarity between two points of interest, and we
can obtain the semantic similarity by comparing the semantics of the information contained
in two points of interest. The points of interest contain information such as the name of
the point of interest, the type of point of interest, the text description address of the point
of interest, the coordinates of the point of interest, etc. The types of points of interest are
shown in Table 2. Thus, the points of interest can be expressed as P = {name, typetext,
coordinate}. . . . Since the name of a point of interest in quite a few cases does not give the
user a clear idea of the services offered by the point of interest, we also need to know the
functional classification of the point of interest and a textual description of the content of
the services offered by the point of interest.

The function of an Apple-Authorized Franchise is described as mobile phone/sales;
an Apple-Authorized Service Provider is described as mobile phone/repair; Starbucks
Coffee is described as catering/coffee. Apple-owned stores and Starbucks Coffee are two
points of interest with entirely dissimilar semantics, with completely different names and
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functional descriptions. Apple-Authorized Franchise stores and Apple-Authorized Service
Providers are two points of interest with medium semantic similarity, with the same name
and different function descriptions. Multiple Apple-Authorized Franchise stores constitute
the interest points with high semantic similarity, whose names and function descriptions
are the same; only the locations are different.

Table 2. Types of points of interest contained in the dataset.

Point Type Point Type

Entrance/Exit Finance
Real Estate Hotel
Enterprises Beauty
Shopping Attractions

Transportation Gourmet
Education Car Service

Life Services Media
Leisure Medical
Sports Government

In this paper, we used the Levenshtein edit distance [30] algorithm to calculate the
semantic similarity of location points. The edit distance is the minimum number of single-
character edit operations needed to transform one string, L1, into another string, L2. There
are three single-character editing operations, each with a weight of 1: insert, delete, and
substitution. They are defined as follows:

Edita,b(i, j) = max(i, j) min(i, j) = 0 (1)

Edita,b(i, j) =

min


Edita,b(i− 1, j) + 1
Edita,b(i, j− 1) + 1 min(i, j) 6= 0

Edita,b(i− 1, j− 1) + 1 (ai 6= bj)

(2)

Edita,b(i, j) refers to the distance between the first i characters in string a and the
first j characters in string b. (i, j) can be considered as the length of string a and string b.
Therefore, the final edit distance is Edita,b(|a|, |b|), when i = |a|, j = |b|.

When min(i, j) = 0 corresponds to the first i characters in a and the first j characters
in b, at this point, max(i, j) has an a value of 0, so the distance between them is max(i, j),
which is the largest of i,j.

When min(i, j) = 0 corresponds to the first i characters in a and the first j characters in
b, at this point, i, j have a value of 0, so the distance between them is max(i, j), which is the
largest of i, j.

When min(i, j) = 0, Edita,b(i, j) is the minimum of the following three values:

1. Edita,b(i− 1, j) + 1 means delete ai;
2. Edita,b(i, j− 1) + 1 means insert bj;
3. Edita,b(i− 1, j− 1) + 1 (ai 6= bj) means replace bj.

After finding the edit distance, the semantic similarity between the two semantic
strings is as follows:

Sim_sem(A, B) =
Max(lA, lB)− Edit(numA, numB)

Max(lA, lB)
(3)

where lA and lB are the string lengths of the two interest point semantics and Edit(numA,
numB) is the minimum number of edit operations required to convert from string A to
string B. In this paper, we used the edit distance algorithm to calculate the semantic
similarity of location points. The larger the Sim_sem(A, B) value, the greater the semantic
string similarity of the two words. The A maximum value of 1 indicates that the two
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semantic strings are identical; the A minimum value of 0 indicates that the two semantic
strings are completely different.

3.3.2. Distance Similarity of Interest Points

There are often cases of “same name and different location” among users’ interest
points, and the semantic similarity of interest points alone is not enough to describe the
similarity of users’ interests. Therefore, this paper added the distance of interest points
to describe the similarity of interest points comprehensively, and the distance similarity
reflects the distance relationship of interest points with the same or similar names. The
distance similarity is calculated using the Euclidean distance.

Let the coordinates of the points of interest of user A be x1, y1 and the coordinates of
the points of interest of user B be (x2, y2); let the spatial distance between point of interest
A and point of interest B be dis(A, B).

The minimum value of dis(A, B) is 0, indicating the same latitude and longitude,
and the maximum value D, where D is the identification threshold, which indicates the
maximum area of this point of interest. When dis(A, B) is greater than D, it means that they
are not the same point of interest. According to the threshold value D, it is obtained that

Sim_dis(A, B) =
{

1 0 ≤ dis(A, B) ≤ D
0 dis(A, B) > D

(4)

In the above equation, A and B denote two points of interest; dis(A, B) is the Euclidean
distance between two points of interest. When 0 ≤ dis(A, B) ≤ D, Sim_dis(A, B) = 1,
this means that the two points of interest A and B are the same point of interest; when
dis(A, B) > D, Sim_dis(A, B) = 0, this means that the two points of interest A and B are
not the same point of interest.

3.3.3. Similarity of Social Behavior of Collaborating Users

User social behavior similarity is an important part of user similarity, reflecting users’
interest preferences, behavior habits, emotional orientation, and other important attributes,
and the most-easily identified behaviors among users mostly exist in social networks.
The user relationship in social networks is divided into the one-to-one relationship and
one-to-many relationship: the one-to-one relationship indicates the interaction between
two independent users, which is manifested as mutual message sending; the one-to-many
relationship represents the information interaction between a single user and multiple
users, which is reflected in the adsorption effect of influential users on other users in social
networks, such as the followers of Weibo and Twitter.

If user U sends a message to user V, at the same time, user V receives a reply from
user U. Then, a positive and successful interaction between user U and user V can be
considered, indicating that a one-to-one relationship between user U and user V has arisen.
If user U1 and user U2 follow user V, it means that a one-to-many relationship has been
developed between user V and users U1 and U2. Therefore, user behavior similarity can
be defined as follows: when both senders U1 and U2 send messages to recipients V1 and
V2, U1 and U2 are similar senders. When both V1 and V2 receive messages from U1 and U2,
V1 and V2 are identical recipients. When both U1 and U2 follow V, U1 and U2 are identical
followers. The similarity of user behavior can be mathematically defined as follows:

Similar followers: U1
F∼U2 : ∃V(U1 ⇒ V

⋂
U2 ⇒ V);

Similar speakers: U1
S∼U2 : ∃V(U1 → V

⋂
U2 → V);

Similar recipients: U1
R∼U2 : ∃V(V → U1

⋂
V → U2).

U1 ⇒ V indicates that user U1 follows user V; U1 → V indicates that user U1 sent a
message to user V; V → U1 indicates that user U1 received a message from user V. Then,
the similarity of the social behavior of users U and V can be expressed as:

Sim_act(U, V) = SimF + SimS + SimR (5)
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where SimF is the similarity of following, which indicates the number of users who follow
the same user V by both users U1 and U2. SimS is the similarity of sending, which indicates
the number of users who send messages to the same user V by both users U1 and U2. SimR
is the similarity of receiving, which indicates the number of users who receive replies from
user V by both users U1 and U2. Sim_act(U, V) indicates the similarity of user behavior
that combines the three behaviors of users in the social network degree.

By calculating the above user attributes, we can quantify the degree of similarity be-
tween collaborating users into specific values. With these values, we can further determine
which users are more suitable to participate as collaborative users in the construction of
anonymous regions.

4. K-Anonymous Location Privacy-Protection Algorithm Based on User Similarity
4.1. Collaborative User Similarity Calculation Algorithm

The calculation of user similarity based on a single attribute has limitations, such
as the occurrence of interest points with the same name distributed in different locations
or interest points with different names in the same location. Therefore, it is necessary to
combine user attributes to improve the accuracy of user similarity calculation. In addition,
different attributes have different impacts on users, and the corresponding weights should
be assigned based on the degree of impact of different attributes on users.

Set the data weight coefficients for different attributes of each user as ε = ε1, ε2, ε3, then
the relative importance of user attribute i and attribute j can be expressed as εij. Assume
the approximation of the ratio of the weight coefficient of attribute i to that of attribute
j is rij ≈ εi/ε j. If there are n user attributes, then (n(n− 1))/2-times of comparison are
required, and the matrix R is obtained by comparing n user attributes in pairs:

R =


r11 r12 . . . r1n
r21 r22 . . . r2n
. . . . . . . . . . . .
rn1 rn2 . . . rnn


≈


ε1/ε1 ε1/ε2 . . . ε1/εn
ε2/ε1 ε2/ε2 . . . ε2/εn

. . . . . . . . . . . .
εn/ε1 εn/ε2 . . . εn/εn


(6)

Based on the matrix R, we can use the Lagrange multiplier method to calculate the
weight coefficients ε for each indicator.

The Lagrange multiplier:

L(x, λ) = f (x) +
l

∑
k=1

λkhk(x) (7)

where λk is the Lagrange multiplier, means a coefficient that is determined for each constraint.
From the matrix R, we can obtain:

rij = 1/rji
rij = rik · rkj (∀i, j, k ∈ J)
rii = 1

 (8)

The relative importance of indicator i and indicator j can be expressed as ∑n
i=1 rij:

n

∑
i=1

rij =
∑n

i=1 εi

ε j
(9)

When ∑n
i=1 wi = 1, we have:

ε j =
1

∑n
i=1 rij

(10)
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According to the least-squares method, it is obtained that:

n
∑

i=1
εi = 1

min

{
n
∑

i=1

n
∑

j=1

(
rijε j − εi

)2
}

εi > 0, i = 1, 2, . . . , n

(11)

According to Equation (8), we can obtain:

L =
n

∑
i=1

n

∑
j=1

(
rijε j − εi

)2
+ 2λ

(
n

∑
i=1

εi − 1

)
(12)

n

∑
i=1

(rilε l − εi)ail −
n

∑
j=1

(
rl jε j − wl

)
+ λ = 0 (13)

where l = (0, 1, 2, . . . , n). The weight factor ε = ε1, ε2, ε3 can be derived from Equation (14)
and ∑n

i=1 εi = 1.
User similarity is composed of user interest point distance similarity, user interest

point semantic similarity, and user social behavior similarity, which can be expressed as:

Simuser(U,V) = ε1 × Sim_act(U, V)

+ε2 × Sim_sem(U, V)
+ε3 × Sim_dis(U, V)

(14)

where Sim_act(U, V) is the user behavior similarity of user U and user V, Sim_sem(U, V)
is the semantic similarity of the interest points of user U and user V, Sim_dis(U, V) is the
distance similarity of interest points of user U and user V, and Simuser(U,V) is the combined
similarity of user U and user V. Moreover, ε1 and ε2 are the weights of the above attributes,
and ε1 + ε2 + ε3 = 1.

The similarity values of the participating collaborating users in the network can be
obtained according to the user similarity calculation formula. The users with relatively
higher similarity can be obtained by ranking the similarity values from the largest to
the smallest. The anonymous region constructed by the participation of these users can
effectively improve the location privacy protection performance of the anonymous area. In
order to avoid the disclosure of user privacy data by the server, the algorithm is executed
by the client, as shown in Algorithm 1:

Algorithm 1: User similarity calculation algorithm.
Input: user’s POI name, POI coordinates
Output: user’s similarity set η:
1. Calculate semantic similarity Sim_sem(A, B);
2. Calculate the spatial distance of the POI location dis(A, B);
3. If dis(A, B)>D, then Sim_dis = 0;
4. If 0 ≤ dis(A, B) ≤ D, then Sim_dis = 1;
5. From Sim_act(U, V) = SimF + SimS + SimR, find the behavioral similarity

Sim_act(U, V);
6. Superimpose the weights to find user similarity Simuser(A,B);
7. Arrange Simuser(A,B) from largest to smallest, and select 2 ∗ K maxima to obtain

the user similarity set η.

4.2. Collaborative User Selection Algorithm

The collaborative user anonymity set obtained by the similarity algorithm in the
previous section can effectively avoid the problem of attackers filtering false locations
through background knowledge, but this does not yield an ideal anonymity set for the
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location distribution. Expanding the size of the anonymization area can lead to better
anonymization, but too large an anonymization area can affect the quality of service.
Therefore, we filter the anonymized set once to obtain an anonymized region with the
near-uniform distribution of location points while ensuring that the anonymized part does
not change as much as possible.

Algorithm 1 is used to obtain the user similarity set, in which all users forming set have
high user similarity. However, according to the calculation method of users’ interest points,
it is known that the higher the similarity, the higher the likelihood that the similarity of their
demonstrated interest points is also high. These users may be located in close proximity
to each other when constructing collaborative anonymous regions, resulting in regional
aggregation. Uneven anonymity zones are likely to allow attackers to infer the area where
the user’s real location is located, resulting in a smaller anonymity zone and exposure of
the user’s real location, which is something we need to strongly avoid. Therefore, in order
to make the selected collaborative user locations as dispersed as possible, the locations
need to be homogenized.

The location point homogenization process is shown in Figure 2. According to
Algorithm 1, the user similarity set η is obtained, which contains 2 ∗ K collaborative users
with the highest similarity. However, the 2 ∗K collective users may be unevenly distributed,
which causes the quality of the anonymous region to decrease. Thus, the privacy protection
performance and the ORB algorithm were used in this paper to homogenize the locations
of collaborative users.

Figure 2. Position homogenization process.

As shown in Figure 2, we considered the set of 2 ∗ K collaborative users with real
locations as points on a square region, which is the root node with value 1 and can be
denoted as node = 1. Then, the square region composed of 2 ∗ K collaborative users
is quadratically divided; each region is viewed as a node, and the location point of the
collaborative user is an element in the node; at this time, node = 4. Continue to quadratically
divide the new four nodes; at this time, if the number of elements in the new node obtained
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is 0, the node is deleted. If the number of elements in the node is 1, the node is retained and
no longer divided. If the number of elements in the node is greater than 1, then continue
the quadruple split operation; after n splits, the number of nodes node = 4n, n ∈ N+.
At this time node ≥ K − 1, stop node splitting. K is the location anonymous parameter,
that is the number of anonymous locations that the user expects to include in the location
anonymous set.

The obtained nodes all have at least 1 element inside, that is they contain at least 1
collaborating user’s location point. The location point near the center in each node is
selected and put into the collaborative user set ξ, and there are K − 1 elements in the
collaborative user set, that is K− 1 similar collaborative users with real locations; the results
are shown in Figure 3.

Figure 3. Position point homogenization results.

Finally, the obtained K − 1 collaborating users’ locations and the requesting users’
locations are jointly constructed as anonymous regions and sent to the service provider.

In order to test the uniformity effect of position points, we used the Hopkins statistic
to judge whether the data are evenly distributed in space. First, n points were found
randomly from the location points obtained by the algorithm, denoted as X1, X2, ..., Xn.
For each of these points Xi, find the nearest point in the set of locations and calculate
the distance between them to obtain the distance vector x1, x2, ..., xn. Then, n points are
randomly generated from the range of possible values of the anonymous set, denoted as
Y1, Y2, ..., Yn. For each randomly generated point Yn, find a sample point nearest to it and
calculate the distance between them to obtain y1, y2, ..., yn. Then, the Hopkins statistic H of
the cooperative user set can be expressed as:

H =

n
∑

i=1
yi

n
∑

i=1
xi +

n
∑

i=1
yi

(15)

As shown in Figure 3, the location points selected by the algorithm are all points near
the center of the square region in which they are located, and the randomly generated
points within the square region are more likely to be near the center of the region. Therefore,

n
∑

i=1
xi ≈

n
∑

i=1
yi. The Hopkins statistic H is close to 0.5, indicating that the location points

selected by the algorithm are closer to a uniform distribution.
The specific process of the Collaborative User Selection Algorithm (Se-CUA) is de-

scribed in Algorithm 2.
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Algorithm 2: Collaborative anonymous user selection algorithm.
Input: user similarity set, user real location loc, location K, anonymous parameter K
Output: optimal collaborative anonymous set:
1. Collaborate the user’s location set as the root node, and each location point is

an element within that node;
2. Divide the root node into four equal parts, and check the elements in each child

node;
3. If the element in node is 0, the child node is deleted;
4. If the element in node is 1, the child node is no longer split;
5. Continue to divide each child node into four equal parts until the number of

nodes m ≥ k− 1;
6. Select the nearest element of each child node to the center to obtain the

collaborative user set ξ.

5. Privacy Analysis and Experimentation

This section tests and verifies the performance and privacy of the algorithm proposed
in this paper, respectively, from the aspects of privacy analysis, performance analysis, and
privacy verification. The types of attacks that the scheme can resist were proven by analysis,
and the privacy of the scheme was proven by the degree of protection of the user’s location
privacy by privacy measurement.

The experiment was implemented using the python language on a windows11 plat-
form, and the operating environment was based on the PyCharm integrated development
environment. The point of interest dataset in the experiment was the geographical dataset
of Luolong District, Luoyang City, containing 12,425 POIs. The user social behavior dataset
refers to the likes, comments, reposts, and mutual following data among microblog users,
including 120,000 microblog dynamic data.

5.1. Privacy Analysis

Definition 1. It is known that ∀i ∈ O satisfies P(l̃oc|loci) = φ, where the set O is the set of
collaboration, l̃oc is the location information of the user inferred by the attacker through the received
data, loci is the location information received by the attacker through observation, the set C is the
set of location information observed by the attacker, and P(l̃oc|loci) denotes the probability of the
attacker inferring the location information through the collected location information.

Lemma 1. Se-CUA can resist complicity attacks.
An attacker may join other users or even location service providers to launch a conspiracy

attack to obtain a user’s real location. In this paper, the scheme, through the collaboration of K− 1
users with high similarity, can find K locations in the set of anonymous locations that are most
similar to the requested user’s location, thus achieving K-anonymity. The probability of inferring
the true location of the requesting user is 1/K regardless of how many users the attacker unites.

The collaborating users in the algorithm only provide their real locations to participate in
the collaboration and do not know the information of other collaborating and requesting users.
Anonymous areas are constructed from real locations provided by users that do not contain personal
information, and these locations are not confidential and can be easily accessed by anyone. The real
location of the requesting user is always hidden in the K anonymous location information, so it is
resistant to conspiracy attacks.

Definition 2. Given loci ∈ C, the set C is the location information observed by the attacker, and
C = K. The attacker inferred the locations as l̃oca, l̃ocb. If P

(
l̃oca | loci

)
= P

(
l̃ocb | loci

)
is

satisfied, this shows that the attacker observes two identical location units obtained because the
probability is the same and indistinguishable; if P

(
l̃oca | loci

)
6= P

(
l̃ocb | loci

)
is satisfied, this
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shows that none of the location units observed by the attacker are identical, and the attacker cannot
distinguish them. This indicates that the scheme can resist inference attacks.

Lemma 2. Se-CUA can resist inference attacks.
In location-based services, suppose the attacker is a location service provider who has the most

background information about the user. In the Se-CUA algorithm, the anonymous location unit
selected based on user similarity satisfies P

(
l̃oca | loci

)
6= P

(
l̃ocb | loci

)
, and the attacker cannot

analyze the real location of the requesting user based on the difference in the background information
of the location unit. Therefore, the attacker infers that the true location of the requesting user satisfies
P
(

l̃oca | loci

)
6= P

(
l̃ocb | loci

)
and is able to resist the inference attack.

5.2. Performance Verification

When requesting users adopt this scheme to protect their location privacy, the se-
lection of collaborating users is decided by the requesting users according to their own
situation. Therefore, as the value of privacy-preserving requirement K gradually increases,
the average computational delay for its successful construction of the anonymity zone
shows an increasing trend, while for collaborating users, who only need to contribute their
location, so the required average computational delay does not correlate with the value of
K. When the requesting user needs a higher privacy protection capability, the requesting
user needs to receive more location information from the collaborating user, resulting in a
larger communication overhead for the requesting user, while the collaborating user uses
peer-to-peer communication, whose communication overhead does not increase with the
value of K.

As can be seen from Figure 4, the average computational delay and average communi-
cation overhead of collaborating users do not change much with K as the privacy protection
requirement K increases, and their computational delay and communication overhead are
within the acceptable range. As the privacy requirement K increases, the computational
latency and communication overhead of the requesting user increase significantly. When
the privacy requirement K is 50, the average computational delay of the requesting user
is 700.46 ms and the average communication overhead is 43.72 KB, indicating that this
scheme has good available lines and can effectively generate anonymous zones for the
requesting user to satisfy the requirements. Compared to the MADM algorithm in [17],
which uses credit values to find cooperative users, both cooperative and requesting users
must maintain the blockchain, which introduces an additional communication overhead.
As can be seen in Figure 4b, both requesting and collaborating users in this paper’s scheme
spend less communication overhead in constructing anonymous regions. However, in
terms of average computational latency, this scheme uses more stringent selection criteria
for collaborating users, resulting in more computational time for requesting users, but not
for collaborating users, and the experimental results are shown in Figure 4a. Therefore,
compared to the MADM algorithm, the requesting user in the scheme of this paper requires
more computational latency and the collaborating user requires less communication latency.

5.3. Privacy Verification

The privacy performance of the Select Collaborative User Algorithm (Se-CUA) was
evaluated below in terms of location privacy leakage probability, anonymity entropy,
and query accuracy, respectively. The En-2ps algorithm [22] uses real user locations as
collaborative locations to construct anonymous sets and uses blockchain to constrain users’
behaviors and select users with high trustworthiness as collaborative users. The pati-PPM
algorithm [28] selects virtual locations from three aspects based on the existing virtual
location algorithm to achieve better privacy protection. Both of the above schemes have
excellent performance in their respective directions. In this paper, we compared the above
two algorithms to verify the performance of this scheme.
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Figure 4. Average computational delay and communication overhead. (a) Average calculation delay.
(b) Average communication overhead.

When there is K location information in the anonymization set, then the probability
of location leakage is p = 1/K. The real location of the user is known to be i. After the
K-anonymity algorithm to obtain the K− 1 collaborative user location anonymity set, the
anonymity entropy can be expressed as:

Hi = −
k

∑
i=1

pilog2 pi (16)

where pi denotes the probability that the user’s true location j is the collaborating user’s
location i. The larger the entropy value, the lower the probability that the user’s true
location is leaked and the better the privacy protection performance. When the probabilities
are the same, the anonymity entropy reaches the maximum value, the uncertainty of the
event is the highest, and the privacy protection is the best.

The larger the value of K in the anonymity set, the better the quality of the anonymity
region, the more request information the user sends to the LSP, and the smaller the proba-
bility that the user’s true identity is leaked. The experiments compared the theoretical best
value, Spati-PPM algorithm, and En-2ps algorithm as their privacy-preserving performance
changes as the parameter K increases. As shown in Figure 5a, when the K value is the
smallest, the Se-CUA algorithm does not have an advantage over the En-2ps algorithm
due to the ineffectiveness of the virtual location homogenization algorithm in the Se-CUA
algorithm. When K = 6, the two algorithms have close anonymity entropy. When K > 6,
the anonymity entropy of the algorithm in this paper is higher than that of the En-2ps
algorithm and keeps relatively high privacy-preserving performance afterward. This is
due to the fact that, as the value of K increases, the homogenization of virtual locations by
the En-2ps algorithm becomes more and more effective, and the location points within its
anonymization region are more dispersed, making the anonymization region larger in size
and with stronger privacy protection performance.

The En-2ps algorithm also involves the protection of query privacy. The behavior of
collaborative users is constrained by blockchain and smart contracts, which ensure the
trustworthiness of collaborative users, and the location of their participation in constructing
anonymous regions is the real location of collaborative users. From Figure 5b, it can be seen
that the privacy leakage probability of the En-2ps algorithm is significantly smaller than
that of the Se-CUA algorithm in this paper when K < 10. When K > 10, as the value of K
increases, the Se-CUA algorithm achieves a lower privacy leakage probability because the
collaborative user is less likely to be identified using background knowledge. After all, the
similarity of the collaborative user is considered, but the difference between the two privacy
leakage probabilities is not significant. When K > 30, the Se-CUA algorithm has a privacy
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leakage probability of less than 10 percent, which protects the location privacy of users
more effectively. Figure 5c shows that the Se-CUA algorithm has a higher query accuracy
than the other two algorithms, and this advantage becomes more obvious as the value of K
increases. This is because the Se-CUA algorithm does not let the anonymous area increase
unrestrictedly while ensuring a relatively large anonymous area. The homogenization of
collaborating users by the Se-CUA algorithm does not expand the area of the anonymous
area, but improves the resistance of the anonymous area to attacks.

Figure 5. Location privacy and leakage probability. (a) The graph of the variation of position privacy
with parameter K. (b) Graph of privacy leakage probability with parameter K. (c) Query accuracy
plotted with parameter K.

In summary, the proposed algorithm in this paper, while ensuring a lower privacy
leakage probability, effectively improves the anonymity entropy. When the privacy pro-
tection demand K < 10, because the number of collaborative users is small, the area of
the anonymity region is small, and there is no advantage compared with other algorithms.
When the privacy protection demand K > 10, with the increase of the number of collabora-
tive users, collaborators with high user similarity are not easily detected, and the uniformly
distributed anonymity region also has a high resistance to background knowledge attacks.
The experimental results showed that the algorithm proposed in this paper can protect
the location privacy of the requesting users more effectively when the privacy-preserving
demand K > 10.

6. Conclusions

In location-based services, the virtual locations that constitute the anonymity set
are easily recognized by attackers through background knowledge, which reduces the
anonymity effect. We proposed a collaborative user-based location privacy protection



Electronics 2023, 12, 2446 17 of 18

scheme that considers users’ POI and behavioral similarity when selecting collective users
to prevent attackers from achieving inference attacks based on background knowledge. In
this paper, we first calculated the similarity of users and filtered the suitable collaborative
users according to their similarity. To prevent the location of joint users from being too
concentrated, we used the location point homogenization algorithm to make the collective
users as evenly distributed as possible.

The algorithm proposed in this paper had a better privacy-preserving effect when
K > 10, but when there were fewer collaborating users in the network, there were even fewer
collaborating users with high similarity, and the algorithm had poor privacy-preserving
performance. How to improve the privacy-preserving performance of the algorithm in the
environment of fewer collaborating users and further reduce the communication overhead
are the focus of the next research.
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