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Abstract: Unknown objects in agricultural soil can be important because they may impact the health
and productivity of the soil and the crops that grow in it. Challenges in collecting soil samples present
opportunities to utilize Ground Penetrating Radar (GPR) image processing and artificial intelligence
techniques to identify and locate unidentified objects in agricultural soil, which are important for
agriculture. In this study, we used finite-difference time-domain (FDTD) simulated models to gather
training data and predict actual soil conditions. Additionally, we propose a multi-class support
vector machine (MSVM) that employs a semi-supervised algorithm to classify buried object materials
and locate their position in soil. Then, we extract echo signals from the electromagnetic features of
the FDTD simulation model, including soil type, parabolic shape, location, and energy magnitude
changes. Lastly, we compare the performance of various MSVM models with different kernel
functions (linear, polynomial, and radial basis function). The results indicate that the FDTD-Yee
method enhances the accuracy of simulating real agricultural soils. The average recognition rate of
the hyperbola position formed by the GPR echo signal is 91.13%, which can be utilized to detect the
position and material of unknown and underground objects. For material identification, the directed
acyclic graph support vector machine (DAG-SVM) model attains the highest classification accuracy
among all soil layers when using an RBF kernel. Overall, our study demonstrates that an artificial
intelligence model trained with the FDTD forward simulation model can effectively detect objects in
farmland soil.

Keywords: machine learning; soil physics; FDTD; SVMs; multi-classification

1. Introduction

Electromagnetic wave detection is a non-invasive object detection technique widely
used in agriculture [1]. The classification or analysis of radar signals in terms of differences
in electromagnetic properties has become a key research issue [2–4], because the modeling
of agricultural soil requires efficiency and precision in order to provide the elusive physical
parameters needed to meet the requirements of artificial intelligence algorithms that require
multi-sample supervised learning. Artificial intelligence methods can quickly locate objects
through GPR image processing, but it is very difficult to collect unknown sample character-
istics, such as the electrical conductivity and water content of an object in actual farmland
soil [5]. Our proposed solution to address this issue involves utilizing the FDTD simulation
method to replicate the actual physical conditions of the soil environment. Additionally, we
aim to enhance the precision of GPR signal classification by tackling the multi-classification
problem through SVM. In their analysis of electromagnetic scattering from inhomogeneous
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dielectrics, Taylor and Castillo [6] proposed a straightforward boundary absorption interpo-
lation method using the FDTD simulation method. The absorption effect of the boundary
in FDTD forward modeling can directly affect the calculation accuracy and image quality
and reduce the interference of FDTD boundary reflection echo. De-shan et al. [7] used C
language and VC++ to develop a 2D forward modeling software for ground penetrating
radar based on the finite difference time domain method. The differential formula of the
DB2-MRTD algorithm is derived, and a multi-resolution time-domain (MRTD) forward
modeling program is developed. Teixeira and Chew [8] used FDTD to simulate the prop-
agation of electromagnetic waves in dispersive soil, and compared their findings with
many experimental results to verify that FDTD can effectively simulate the propagation of
electromagnetic waves in dispersive media.

To enhance the effectiveness of buried object detection using GPR while reducing
the occurrence of false positives, several researchers have employed intelligent detection
techniques, including machine learning [9–15]. Common classification methods include
discriminant analysis, k-nearest neighbors [16], Bayesian classifiers [17], neural networks
(ANN) [18,19], HMM [20–22], Random Forest [23] and Support Vector Machine (SVM)
etc. [24,25]. Among them, support vector machine (SVM) is a binary correlation classifier
that can be used for classification and regression analysis. The fundamental concept
involves creating a hyperplane that can effectively divide data into two distinct classes
with the greatest possible margin, and was originally introduced by Cortes and Vapnik [26].
After continuous improvement, the two-class SVM can no longer meet many classification
requirements, so the multi-class SVM has been widely developed and applied [27]. Keskes
and Braham [28] proposed a new method associated with Recursive Undecimated Wavelet
Packet Transform (RUWPT) and Directed Acyclic Graph Support Vector Machine (DAG
SVM) to solve classification problems [29]. Xie et al. [30] proposed a new method to
identify GPR images of reinforced concrete structures and automatically identify voids
using the SVM algorithm. Dinh et al. [31] combined traditional image processing techniques
with deep convolutional neural networks to locate pixels of steel bar peaks; in the end,
higher accuracy was obtained, but the algorithm did not account for its scalability. The
effectiveness of the algorithm can only be used to detect specific objects. In their study,
Karem and Frigui [32] suggest enhancements to edge histogram detectors that aim to
decrease the occurrence of false positives. Their approach involves training Likelihood
K-Nearest Neighbors or SVM classifiers on data acquired by a GPR sensor-equipped mine
detector mounted on a vehicle.

The objective of this study is to develop a semi-supervised algorithm based on MSVM
to create a GPR signal classification model. The model should be efficient enough to
accurately categorize GPR signals from buried objects made of various materials, even
when limited GPR data is available for training. The FDTD method can effectively replicate
the true physical environment of soil, enabling the capture of specific information about
various buried objects such as their material composition, positioning, and parabolic shape.
By analyzing the amplitude, phase, and other signal characteristics of GPR, the MSVM is
employed to classify different soil buried objects. In this study, various kernel functions
were evaluated, and the optimal MSVM model was selected. The results demonstrate
that this technology has great potential in agriculture, allowing for the detection of buried
objects in soil, thus enhancing the efficiency of farmland operations and promoting a
positive impact on the environment.

2. Materials and Methods
2.1. Experimental Preparation

The object detection study utilized the 2D module of gprMax to produce 210 GPR
images, using the bowtie-shaped MALA 1.2 G antenna model as the benchmark [33]. The
GPR frequency was set to 5 GHz, with time steps set to 3 × 10−12 and a time window of
5 × 10−9. Out of the 210 images, 180 were used as material training sets, and the remaining
30 were used as material test sets [34]. The simulated soils distribution map was based on
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the US Department of Agriculture (USDA) soils classification criteria [35]. The electrical
conductivity of soil can be influenced by factors such as soil salinity, moisture, tempera-
ture, organic matter, and texture content. Additionally, the soil’s clay content, interfacial
polarization, and water content can significantly impact its dielectric constant [36,37]. This
study chooses three types of soil and compares them with an FDTD simulation. The first
simulated soil is sand marked as “Ta” in this paper. The second one is clay, marked as
“Tb”; The third one is silt, marked as “Tc”. In the soil obstacle verification experiment, the
relative permittivity of the soil ranged from 5 to 30, and the conductivity ranged from 0.01
to 0.5 ms/cm.

In this work, the prediction models for buried objects in soils were divided into five
categories: glass sheets, PVC plastics, wood blocks, dry hard stones, and metal ores. Before
burying, the distance from the soil surface to the depth of 5 types of soil obstacle materials
was measured, and then, the experimental operation was to attempt detection by dragging
the GPR in different soil environments, as shown in Figure 1.
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Figure 1. Experimental Environment and Equipment.

After collecting the GPR data, as shown in Figure 2, we calibrate the speed by first
acquiring the time window parameters. Next, we adjust the blue curve in the figure by
clicking on the vertex position of the parabola with the mouse and performing shape fitting.
By doing so, we obtain the precise propagation speed of electromagnetic waves in the soil
and the depth location of the abnormal signal.
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In the experiment, the media categories were numbered 1, 2, 3, 4, and 5, respectively,
as shown in Table 1. The dielectric constant of the glass pieces ranges from 1.1 to 2.2, and
its conductivity is between 0.001 and 0.01 s/m. The dielectric constant of wood materials is
between 2.8 and 3.0, and its conductivity is between 0.0001 and 0.001 s/m. The PVC plastic
block has a dielectric constant of between 3.0 and 8.0 and a conductivity value between
0.001 and 0.01 s/m. The dielectric constant of dry hard stone is between 6.0–12.3 and its
conductivity is between 10 × 10−6 to 10 × 10−8. The last material is metal block or ore,
with a dielectric constant greater than 500, and is totally conductive.

Table 1. Conductivity and dielectric constant of five typical tillage soils objects.

Sample NO. Category εx µx (s/m) Velocity (m/µs)

1 Glass 1.1–2.2 0.001–0.01 150–200
2 Wood 2.8–3.0 10−4–10−3 112–122
3 PVC plastic 3.0–8.0 0.01–0.001 170
4 Stone 6.0–12.3 10−6–10−8 134
5 Mental >500 / Close light speed

2.2. Maxwell’s Equation and FDTD Simulation Principle

The basic idea of FDTD is to use a central difference quotient to replace the first-order
partial quotient of field quantity with respect to time and space. It can directly simulate
very rich electromagnetic field problems with time domain information, and simplify the
complex soil layer medium physical process into a mathematical difference or electromag-
netic format parameters [38]. When solving the actual model, the relationship between
field quantities obeys the six rotation equations of the Maxwell equation. In this way,
geometric space problems can be solved by separation into orthogonal spatial grid points.
The electric and magnetic fields were classified and placed in spatially discrete positions
with excitation sources. Therefore, FDTD relies on Maxwell’s principle to decompose its
discrete three-dimensional geometric structure problem in the medium into Yee units. As
shown in Figure 3, H (A/m) represents the magnetic field strength; E (V/m) represents
the electric field strength; where i, j, k represents a three-dimensional coordinate position
in space.
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Figure 3. Magnetic field components in Yee cells (a) and Distribution of electric (b).

In the two-dimensional structure of FDTD, since a certain coordinate has no numerical
change in direction, for example, the coordinate value on the Z axis of the constructed model
in this paper was fixed in the XYZ coordinate system. The partial derivative associated with
this coordinate exists. Obviously, the electromagnetic classification in the two-dimensional
case can be divided into two independent groups, such as Ex, Ey, and Hz as a group that
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can be denoted as TE electromagnetic field group (formula (1) and (2)). Similarly, Ez, Hx,
and Hy can be denoted as TM electromagnetic field group (formula (3) and (4)). This FDTD
equation can be simplified into two-dimensional problems. The TE formula for Ex, Ey
electromagnetic field is: 

∂Ex
∂t = 1

ε

(
∂Ex
∂t − ∂Ex − Jx

)
∂Ey
∂t = 1

ε

(
∂Hx
∂x − ∂Ey − Jy

) (1)

The TE formula for Hz electromagnetic field is [39]:

∂Hz

∂t
=

1
ε

(
∂Ex

∂y
−

∂Ey

∂x

)
(2)

where, σ (S/m) represents the medium’s conductivity; ε (F/m) represents the dielectric
constant of the medium; represents the permeability of the medium; J (A/m2) is the current
density. The TM formula for Hx, Hy electromagnetic field is:{

∂Hx
∂t = − 1

εµ
∂Ez
∂y

∂Hy
∂t = 1

µε
∂Ez
∂x

(3)

The TM formula for Ez electromagnetic field is:

∂Ez

∂t
=

1
ε

(
∂Hy

∂x
− ∂Hx

∂y
− σEz − Jz

)
(4)

2.3. Simulated Experiment Setup and Evaluation

The SVM’s training process used python 3.7 and the model name is “ScikitLearn”,
which is a machine learning library in python [40]. The total size of the FDTD 3D model
is set to 240 × 210 × 120 mm, and the base model is set to 240 × 210 × 2 mm, which
represents the X, Y, and Z directions, respectively. In the 3D model, we divide the data
model into 24 slices, the total time depth is 32.21 ns, the distance depth is 0.4 m, and the
number of samples is 148. The velocity of the model is 0.025 m/ns, the effective time
window is 88.66 ns, and the binary value is 128. The soil’s object position prediction
from GPR images can be converted to an image processing problem. As depicted in
Figure 4, the output is produced by gprMax’s B-scan module and the objects in GPR images
are identified based on the propagation of pulse signals, resulting in features such as
hyperbolic curves, linear segments, and electrical impedances. Figure 4a below shows
a schematic diagram of the detected soil objects generated by ParaView 5.6.0 (regular-
shaped rectangular parallelepiped as an example). According to the procedures described
in Section 2.1, we composed the FDTD grid space by electromagnetic field as a cube of
0.240 m × 0.20 m × 0.002 m. The rectangular frame forms a perfect matching layer (PML)
with a thickness of 0.02 m. Where the label “Air” means an air layer with a height of 0.03 m.
The simulated radar transmitter probe is marked “TX” and the receiver probe is marked
“RX”. The length, width, and height of the object are known. The B-scan GPR image in
Figure 4b exhibits a hyperbolic pattern that can be characterized by various parameters.
C0 represents the horizontal position of the apex and the vertical position of the apex can
be equal to (0.17 m − Zt + Zm). Point P is the coordinates of the hyperbolic vertex. β
represents the slope of the hyperbola asymptotes. Zt is the depth from the top surface of
the object to the ground, and Zm is the distance from the hyperbolic apex to the upper
surface of the object. Points A (a1, b1), B (a2, b2) and P in Figure 4b belong to the geospatial
coordinates system.
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Figure 4. FDTD simulated magnetic field space: figure (a) illustrates the soil objects that were detected
using ParaView 5.6.0, with a regular-shaped rectangular parallelepiped being used as an example.
Figure (b) exhibits a hyperbolic pattern that can be characterized by various parameters.

Afterwards, the FDTD was meshed and its boundaries were converted into a grayscale
image in the hyperbolic pattern of a B-scan. Here, we used the Hough transform algorithm
to identify the target contour [41–44]. In B-scan maps, the echoes of electromagnetic waves
appear as hyperbolic or approximate hyperbolic, and their positional relationship can be
expressed as the following equation:

t2

t2
0
−

4 ∗
(

x− c2)2

(v ∗ t0)
2 = 1, (5)

and t0 = 2 ∗ 0.17−Zt−Zm
v , where 0.17−Zt−Zm is the target’s depth; t means signal traveling

time; v represents the propagation speed of electromagnetic waves. To be discretized, the

hyperbolic Equation (1) can be expressed as j2
j20
− (i−i0)

2

v
2j0dc dt

= 1, where tj = jdt, Ci = idc,

C0 = i0dc, t0 = j0dt, the coordinates of the hyperbolic vertices are i0 and j0 [45]. To extract
the region of interest for Hough algorithm accumulation, we composed it by the vertex
coordinate (i0, j0). The transformation equation of the Hough algorithm can be calculated
by (6).

H(i0, j0) =
ixN

∑
ix1

jxn

∑
jx1

I(i, j)Q(i, j) (6)

where Q(i, j) is the gray value function. Obviously, according to the distribution between
H(i0, j0), we can estimate the object hyperbolic vertex position.This can be defined as
C0 ∈ [0, ntrace], where ntrace is the number of traces in the GPR image. Where Zt ∈

[
0, Tdepth

]
and Zm ∈

[
0, Tdepth

]
. Tdepth is the depth perpendicular to the ground, which is measured

as the length of the time windows. The range of the β belongs to β ∈
[
0, π

2
]
. When the

gray image is obtained, we mark the hyperbola vertices P in the hamming distance of
the coordinate system and encode them into a binary image. The general steps can be
divided into: (1) Searching for a hyperbolic contour from the generated sample GPR image.
(2) Selecting the optimal segmentation threshold based on the edge detection. (3) Extracting
the hyperbolic characteristic of the electromagnetic signal. (4) Image binary coding. (5) End
the image processing flow and output local coordinates. (6) Convert position coordinates to
geospatial coordinates. (7) Predict hyperbolic contours of known materials based on partial
parameters. Finally, we simulate realistic soil with a stochastic distribution of dielectric
properties constructed by Yee units of the FDTD geometry mesh [46]. The sand fraction,
clay, and silt fraction are set according to the parameters described in Section 2.1. The
bulk density of soils is 2 g/cm3. The volumetric water fraction range was 0.001–0.25. Its
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roughness is set among a range of 3–8 mm [47]. The soil’s fractal weight in the x, y and z
direction ranges among 0.5–1. The fractal dimension values are between zero and three.
Figure 5 shows the 3D heterogeneous soils layer that is constructed by the FDTD grid in
the geometry view.
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2.4. Principle of Multi-Classified SVM

SVMs can handle high-dimensional feature spaces, which can be beneficial when
dealing with the large amount of data generated by electromagnetic signals and efficiently
process and extract relevant features from the data to accurately classify different objects. It
is evident that the majority of clustering methods are only capable of categorizing data that
can be represented linearly in a limited number of dimensions. This means that SVMs can
accurately classify the reflected intensity of electromagnetic signals, even in the presence
of noise or incomplete data. Here is the math principle of the SVMs: let us say we have

a set of data with an unknown distribution, given as S =
{

Xp
i

}N

i=1
∪
{

Yg
j

}N

j=1
, where XP

i

is the label of X = {(x1, y1), (x2, y2), . . . (xn, yn)}, Yg
i represents the unlabeled sample sets:

Y = {y′n, y′n, . . . y′n}. We denoted i and j to be the identity number of the GPR signal from
the testing groups [48,49]. The GPR image pair was constructed as

{(
Xp

i , Yg
j

)
, Lp

j

}
, where

Lp
j = 1 means this sample is matched to the predicted data, while Lp

j = −1 indicates
incorrect matches. Label Lx can be predicted accurately, as long as there is a sample-specific
data set Dp

i , which is derived from
{(

Xp
1 , Yg

1

)
, . . . ,

(
Xg

i , Yg
N

)}
, so the binary classification

equation can be expressed as:

Di

(
XP

i , Xg
j

)
=

{
≥ 0, Lp

j = +1
≤ 0, Lp

j = −1
j = 1, . . . , N (7)

Suppose there is an n training vector here xi ∈ RP (i = 1, 2, 3 . . . n), and the data set
can be divided into two categories. Their labels ∈ {1,−1}N . The basic SVM’s model
function can be represented as:

min
ω,b,ε

1
2

ωTω + C
n

∑
i=1

εi (8)

Subject to yi
(
ωT∅(xi) + b

)
≥ 1− εi, (εi ≥ 0, i = 1, 2 . . . . . . n),ω represents the normal

vectors of the hyper-plane, and b means the bias variables, ∅(xi) is the higher dimensional
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space function, and ∈i is the slack variables which violate the SVMs functional margin
demands. When the penalty factor C > 0, the Lagrange function can be minimized as:

L(ω, b, α, β) =
1
2

ωTω + C
l

∑
i=1

εi −
l

∑
i=1

βiεi −
l

∑
i=1

αi

[
yi

(
ωT∅(xi + b)− 1 + εi

)]
(9)

where α = (α1, α2 . . . , αl)
T and β = (β1, β2 . . . , βl)

T are Lagrange multipliers enforced un-
der condition yi

(
ωT∅(xi) + b

)
≥ 1− εi, (εi ≥ 0, i = 1, 2 . . . . . . n). To solve the optimization

problem introduced by the Lagrange function, we need to minimize the function as:

min
α

1
2

αTQα− eTα (10)

Which is subject to yTα = 0, (0 ≤ αi ≤ C, i = 1, 2 . . . n)
The Q is an n× n positive semi-definite matrix, and C is denoted as the upper bound. e

is the vector corresponding to the matrix. Where Qij = yiyjK
(
xi, xj

)
and Kij = ∅(xi)

T∅
(

xj
)

represent the core of kernel. The decision function is:

sgn(
n

∑
i=1

yiαiK(xi, x) + ρ) (11)

This is a ridge regression algorithm, where C can be denoted as C = 1/α, and ρ is the
intercept of the support vector function. The classification of objects buried in farmland is
not limited to just two categories. In fact, there are three MSVM methods that are commonly
used for multivariate classification problems: DAG, one against one (OVO), and one against
all (OVA). The OVA approach involves creating a binary SVM classifier for each category
and labeling samples as “positive” if they belong to that category, and “negative” if they
belong to any other category. For instance, if there are five different types of materials,
the first SVM classifier would mark all positive samples that belong to category 1 and
treat other categories as negative samples. Similarly, a second SVM classifier would be
constructed for category 2 as positive samples and negative samples for other categories.
For N samples, N SVM classifiers would be required. The OVO strategy can be used to
transform a multiclass classification problem into a binary classification problem. Two
categories from all categories are chosen arbitrarily, then, such steps are repeated until all
of the different paired sets of categories correspond to one SVM trainer [50]. Therefore, N
samples correspond to N (N − 1)/2 SVM models. After the final class of test samples is
determined by N (N − 1)/2 binary SVM classifiers, the score matrix is as follows:

R = (rii)n×n =


r11
r21
...

rn1

r12
r22
...

rn2

· · ·
· · ·

...
· · ·

r1n
r21
...

rnn

 (12)

where rii ∈ [0, 1] is the binary classifier’s confidence, i and i′ are the discrimination class.
The sample training phase of the DAG model is similar to OVO, but in its test phase, it
has N (N − 1)/2 internal nodes and (N − 1) leaves, similar to a DAG tree generated for
a multi-class problem [51]. The DAG will generate a multi-level two-class SVM classifier
until all of the last leaf nodes reach out.

2.5. SVM Kernel Function Selection

Applying GPR image feature mapping to the SVM classification, it makes the inner
product

(
x(i), x(j)

)
of ωTx + b map into

(
∅
(

x(i)
)

,∅
(

x(j)
))

. The kernel implicitly con-

verts two vectors to other forms and then finds the inner function. Where K
(

xi, xj
)
=

∅(xi)
T∅
(

xj
)

is called the kernel function. Assuming that xi and xj are n-dimension, but
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the actual demand needs to be mapped into n2 dimension, the K
(
xi, xj

)
can be obtained

from equation K
(

xi, xj
)
= ∅(xi)

T∅
(
xj
)
. Its matrix K is a symmetric matrix. Any vector

Z here has the relationship of zTKz = ∑k

(
∑i zi∅k

(
x(i)
))2

. Obviously, the square of the
original feature xi and xj inner product is calculated in advance by the dimensionality
reduction kernel function, thereby saving computation time. Here, training vectors xi are
mapped into a higher (probably infinite) dimensional space by the function Φ. This article
chooses three Kernel functions for comparison: Linear, polynomials (POLY), and RBF. The
linear kernels can be formed as K

(
xi, xj

)
= xT

i xj. For degree-d polynomials, the polynomial
kernel is defined as:

K
(
xi, xj

)
= (xT

i xj + c)
d

(13)

xi and xj are a vector form of the input data. When C = 0, this kernel is called
homogeneous; the corresponding feature dimension here is (n + d, d). Suppose that d = 2,
we can deduce the special quadratic kernel with multinomial theorem:

K
(

xi, xj
)
= ∑n

i,j=1

(
x2

i

)(
x2

j

)
+ ∑n

i=2 ∑i−1
j=1

(√
2xixi−1

)(√
2xjxi

)
+ ∑n

i−1

(√
2cxi

)(√
2cxj

)
+ c2 (14)

Gaussian kernel, also known as the radial basis function (RBF). In general, RBF has
only three layers in a neural network, in which there is no weight connection from the
input layer to the hidden layer, but the distance or similarity between different layers can
be calculated directly by the hidden layer [52]. Since the RBF network is only connected by
the weights between the hidden layers to the output layer, the training speed is faster than
nonlinear functions such as sigmoid [53]. The form of the original RBF kernel is e−r‖xi−xj‖

as the binary classifier [54]. Its multiple form implements as:

K
(
xi, xj

)
= exp (−

‖ Xi − Xj ‖2

2σ2 ) (15)

where ‖ xi − xj ‖2 is called the squared Euclidean distance between the two feature vectors;
σ is a free parameter and stands for the window width; r represents the kernel parameter
selected by cross-validation, and γ = 1

2σ2 . For σ = 1, the RBF equation is:

exp (−1
2
‖ xi − xj ‖2) =

∞

∑
n=0

(xT
i , xj)

n

n!
exp (−1

2
‖ xi ‖2) exp (−1

2
‖ xj ‖2) (16)

2.6. Workflow of Data Processing

We first conduct FDTD object modeling for five different materials. Then, we set
up the soil and position parameters. Next, we use GPR for detection at the same soil
depth. The experiment is divided into two parts, as shown in Figure 6. One part involves
modeling using gprMax software in the laboratory, while the other part involves detection
using instruments. The required parameters will be obtained based on the same external
conditions. The dataset for semi-supervised learning includes both labeled and unlabeled
data. For example, in this study, we correlate Emax and Pmax with the material type X.
We use known material types as labeled data and apply SVM classification to unknown
material types. After training, MSVM can predict simulation data and real data.
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3. Results and Discussion
3.1. Performance and Evaluation of Position Prediction

To get the specific position and value from ParaView, we load our simulation data
and create the visualization. Then, we select the “Selection” tool, click on the “Pick Data”
button, and select the point apex C0. In the “Properties” panel, we expand the “Information”
section to view the X, Y, and Z coordinates of C0. To get the value of the data at the selected
point, we expand the “Display” section and find the variable under “Cell Data” or “Point
Data”. Finally, the value of the variable at the selected point will be displayed. As shown
in Figure 7, there are two ways to compare apex C0, ParaView 5.6.0 (FDTD) and Hough
contour recognition, calculated by the S equation. The solid blue line represents the outputs
of the C0 value in ParaView, and the red dashed line represents the calculated value of the
contour recognition. A total of 15 samples were tested here, and the values of C0 in the 2nd,
3rd, and 4th samples were slightly inaccurate. The two sets of data were very close. This
proves the validity of the Hough transform combine with S equation method for detecting
hyperbolic contours.
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Figure 7. Horizontal position of apex in ParaView and Hough.

The ParaView and Hough algorithms are used to calculate point A (a1, b1) and point
B (a2, b2) of Figure 4, respectively. The five materials are: Plastic (P), Stone (S), Wood (W),
Glass (G), and Iron (I). “OT” represents the object’s type and Ta, Tb, and Tc represents
three types of soils with different conductivity and dielectric constants. We use Reflexw to
obtain the stratification in soil [55]. Figure 8 shows the stratification of soils after channel
tracking of GPR images. It can be see that accuracy of our method for calculating the
hyperbolic position based on the Hough transform and the “S equation” is ideal. When
the soil type is Tc, the plastic recognition rate of the hyperbolic position can reach 98.44%.
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When the soil type is Ta, the recognition rate of wood materials is also 82.66%. Overall, the
average recognition rate is about 91.13%, which indicates that the proposed GPR hyperbolic
recognition method, which is based on Hough image processing, is effective and feasible,
and it can generally be applicable to different types of soil layers.
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Figure 8. Soil stratification in GPR images (red color means the first soil layer, yellow color means the
second soil layer).

3.2. Material Identification with FDTD

Feature labels of SVMs include the object dielectric constant, highest amplitude values,
lowest amplitude values, magnetic loss and conductivity. Table 2 shows the model accuracy
of FDTD models at gprMax. Model accuracy was obtained by comparing the data between
the model real values and SVM prediction values. Here, we adopted the Mean Absolute
Error (MAE) to evaluate the method performance. We can find from Table 2 that the lowest
MAE boundary prediction was 0.21, and its corresponding object depth error was 0.82 mm.
In addition, it can be seen in the MAE data of the depth prediction that its minimum value
was 0.15. This indicates that the simulation can perform with high accuracy under the
FDTD prediction.

Table 2. FDTD simulation and estimated result of different boundary sizes and depths.

Model Test Boundary
Size (mm)

Center Position
Deviation

(m)

Test Middle
Depth Size

(m)

Calculated
Boundary Size

Calculated
Middle Depth

MAE
(Boundary)

MAE
(Depth)

(mm)

a 80 0.117 0.07 79.63 0.0715 0.37 0.15
b 40, 40 0.123 0.07 39.42, 38.17 0.0698 0.58 0.21
c 89.45 0.119 0.09 88.82 0.0896 0.63 0.43
d 40, 60, 40 0.121 0.10 40, 59.23, 39.98 0.1003 0.42 0.31
e 40, 40, 40 0.120 0.07 39.99, 39.87, 39.65 0.0692 0.21 0.83

The reflected intensity (amplitude) of the electromagnetic signals from objects in agri-
cultural soils directly reflects their material properties [56,57]. In this research, we examined
the electromagnetic properties of the five most commonly found materials in farmland soil:
PVC plastic, stone, wood, glass, and metal. We illustrate the energy amplitude diagrams
for each of these materials and use two features to analyze the electromagnetic signals: the
maximum value of electromagnetic signal strength (Emax) and the maximum value of the
object’s amplitude (Pmax) in the spectral range. We concluded that the energy amplitude
of PVC plastic demonstrated an Emax of 0.00532 and a Pmax of 0.965. PVC plastic exhibits
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a clear response to electromagnetic signals. The energy amplitude for dry hard stone is
an Emax of 0.0009 and a Pmax of 0.0602. Dry hard stone has a relatively high magnetic
loss, and its water content in farmland soil is almost zero, resulting in weak echo wave
reflections due to its conductivity properties. The energy amplitude for wood is an Emax of
0.00462 and Pmax of 1.180. In the cube model, the wood block is a non-conductive material
and contains some water in the farmland soil. Compared to stone, the surface of the
wooden block shows stronger echo reflections. Glass is an amorphous, inorganic mineral
consisting of Na2SiO3, CaSiO3, and SiO2. The electrical conductivity of glass is generally
low but it can cause a more pronounced oscillation of the electromagnetic signal in the soil
layer. Finally, conclusions can be drawn regarding the changes in energy amplitude for
the metal block. Its Emax was 0.0178 and Pmax was 1.190. Metal’s conductivity was strong
and could produce a strong reflection. In summary, each material differs in the change of
energy amplitude. It is feasible to use the energy intensity of the object in the excitation
source at different frequencies to distinguish their material, but it is not certain whether the
difference in soil type will affect the spectral distribution of electromagnetic signals.

According to the USDA classification criteria, the soils were classified by the percentage
of sand, clay, and silt content. The accuracy of two kernel functions for known targets
which were under soil types Ta, Tb and Tc are shown in Table 3. The number of classifier-
training samples were between 20 and 200. When the soil type was Ta, the average accuracy
rate reached 88.15% as the number of training samples increased. Similarly, the average
accuracy of Tb was 83.16%, and the average accuracy of Tc was 86.94%; thus, the model
performance was Ta > Tc > Tb. Obviously, the RBF model is better than POLY. When the soil
type was Ta, the average model accuracy rate can reach to 91.70%. Similarly, the accuracy
of the Tb model is 90.28% and the accuracy of the Tc model is 86.04%. Overall, the model
takes its performance as Ta > Tb > Tc.

Table 3. Accuracy rates of different soil types.

Soil Type OT

ParaView (FDTD) Hough Accuracy (%) Accuracy (%)

Zm (m) Zt (m) Z’m (m) Z’t (m) Point A
(a1,b1)

Point B
(a2,b2)

Ta
(sand:98.9%)
(clay:9.53%)

P 0.005 0.148 0.004 0.146 87.82% 85.83%
S 0.006 0.156 0.005 0.153 96.01% 85.84%
W 0.007 0.089 0.0067 0.084 82.66% 86.59%
G 0.002 0.149 0.002 0.147 92.28% 93.54%
I 0.002 0.062 0.003 0.064 94.52% 94.08%

Tb
(silt:23.40%)
(clay:80.0%)

P 0.003 0.145 0.004 0.142 85.09% 89.45%
S 0.006 0.098 0.004 0.101 89.68% 89.89%
W 0.003 0.160 0.004 0.14 96.71% 87.62%
G 0.005 0.127 0.006 0.127 94.11% 92.50%
I 0.002 0.162 0.002 0.161 95.72% 97.62%

Tc
(silt:70%)

(sand:17.0%)

P 0.004 0.137 0.003 0.135 98.44% 86.67%
S 0.007 0.152 0.006 0.148 94.63% 89.12%
W 0.003 0.075 0.002 0.074 85.70% 91.43%
G 0.008 0.120 0.006 0.115 91.03% 88.55%
I 0.005 0.119 0.003 0.117 91.17% 97.54%

3.3. Performance and Evaluation of Material Recognition

For the vertex positions P (C0, 0.17m − Zt + Zm) of the five kinds of objects, the
distance between the two points on the hyperbola and echo signal amplitude had been
classified depending on the FDTD simulated results. Here, the “decision function” module
in SK-learn was proposed to perform the scores and probabilities evaluation. This starting
purpose for evaluation is to find some functions that are distinct between those five objects’
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materials. We adopted the root mean square (RMS) to evaluate the SVM algorithm’s
performance. RMS can be represented by:

RMS =

√√√√ ∑
i=1,2...N

(
Mb

a(x)
)2

N
(17)

N is the number of samples and Mb
a represents the matrix of the input vectors. The

kernel functions in this procedure include: Linear, POLY (degree = 4), and RBF. Table 4
shows the material test results under three MSVM trainers with different kernel functions.
In the linear model, the correct detection rate (CDR) of DAG was 92.04%. In the POLY
model, the CDR of the OVA and DAG were relatively high: 90.11% and 92.94%, respectively.
Obviously, in all MSVM models of the RBF kernel, the CDR of OVO, OVA, and DAG were
90.175, 94.73%, and 93.70%, respectively. As shown in the data analysis of training and
decision time, it is obvious that DAG was more efficient than another kernel functions. For
the identification of object materials, the RMS of DAG in the three kernel models were 0.13,
0.21, and 0.34. Compared with the OVO and OVA models, the DAG model has a stable
recognition rate and can maintain a certain accuracy. The classification or recognition rate
of OVO and OVA models fluctuated greatly.

Table 4. MSVM performance of different kernel functions.

Kernel
Functions MSVM CDR 1 Training

Time (s)
Decision
Time (s) SVN 2 RMS

Linear
OVO 79.89% 0.134 0.0072 132 0.21
OVA 82.56% 0.263 0.0133 67 0.34
DAG 92.04% 0.184 0.0089 89 0.13

POLY
OVO 82.23% 0.181 0.0084 120 0.28
OVA 90.11% 0.090 0.0067 96 0.25
DAG 92.94% 0.108 0.0074 107 0.21

RBF
OVO 90.17% 0.155 0.0055 77 0.21
OVA 94.73% 0.218 0.0103 69 0.16
DAG 93.70% 0.170 0.0029 152 0.34

1 Correct Detection Rate (CDR), 2 Support Vector Number (SVN).

We experimented with various SVM algorithms using kernels. The linear kernel
SVM is a linear classifier that can effectively identify linear features in object materials.
However, overfitting can occur when the classifier considers noise data points as features,
which disrupts the predefined classification rules. The linear SVM divides data into three
categories, but the scalable linear classifier only divides data into one category in the
area of empty values. On the other hand, the SVM with an RBF kernel demonstrated
the best classification performance. The RBF kernel can classify different types of data
nonlinearly and maximize classification accuracy. Additionally, the performance of SVM
with polynomial kernel classification was also promising, but the appropriate “degree”
needs to be adjusted. This algorithm can identify categories to the maximum extent but
may not be able to classify them completely. The polynomial kernel functions with kernel
functions of d = 3 and d = 5 were considered. Obviously, when d = 4, the classification
performance was better than when d was 3 or 5. Linear was similar to RBF for classifying
data in the case of linear separability. However, in the case of linear inseparability, the
RBF model was significantly better than the linear and POLY models. For the classification
of GPR signals constructed by FDTD, the RBF and POLY-MSVM classifier are the best
in the nonlinear classification. Neural network with RBF as the kernel has no weight
connection from the input layer to hidden layer, and only the weighted connection from
the hidden layer to the output layer. Therefore, RBF was clearly better than POLY in their
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computational efficiency. On the other hand, the soils type of GPR is an important indicator
that influences the difference of GPR signals in identifying the type of objects.

Table 5 shows the results of tests based on RBF kernel function trainer, where NCC
stands for the number of correct classifications and NIC stands for the number of incorrect
classifications. The testing samples consisted of 200 real GPR images. The number of
correctly classified samples was 170 and the number of incorrect classified samples was 30.
The highest recognition rate of object material is iron, because iron has a stronger reflection
intensity of electromagnetic waves. Obviously, the dielectric constant and conductivity of
plastic were similar, but when the object material is plastic, the recognition rate can still
reach 89.58%. The recognition rate of glass was the lowest, which is related to the grid
structure of the FDTD forward simulation. The recognition accuracy of stone was 81.81%.
Dry hard stone was not obvious for electromagnetic wave absorption. Therefore, it is
easily affected by the boundary signal noise in the RBF-SVMs model and can be predicted
by classifier as other materials. Regarding the overall analysis for all models, the total
recognition rate can reach 86.4%. This illustrates the superiority of the RBF-SVM model
proposed in this paper.

Table 5. The RBF-SVM recognition results.

Material Number of Images NCC NIC Rate of Classification

Wood 31 27 4 87.09%
Plastic 48 43 5 89.58%

Iron 36 34 2 94.44%
Stone 55 45 10 81.81%
Glass 30 21 9 70.00%
Total 200 170 30 85.00%

3.4. ROC Curve and AUC Value

The electromagnetic wave signal is not readily observable in the soil surface layer.
In this study, the signal in the Z section is marked, and sampling statistics are conducted
on the electromagnetic wave amplitude data. For instance, data statistics of DAG-SVMs,
OVA-SVMs, and OVO-SVMs are performed. To evaluate the performance indicators of
the two-category machine learning model, we employ the receiver operating characteristic
(ROC) and area under curve (AUC). The false positive rate (FPR) and true positive rate
(TPR) are area values used to measure the model index performance in an algorithm.
A perfect classifier exhibits TPR = 1 and FPR = 0 simultaneously. The value of AUC
corresponds to the area covered by the ROC curve with the coordinate axis. A larger AUC
indicates better classifier performance. Figure 9 illustrates the ROC curves of the three
MSVM classifiers with RBF as the kernel function. The diagonal line in the middle of the
coordinate system represents the prediction curve for “random guess”. Curve 1 denotes the
ROC curve of the OVO model. It can be observed that curve 1 ranges from 0.5 < AUC < 1,
but this ROC curve is still suboptimal. Compared to curve 2 and curve 3, it is apparent that
the classifier performance of DAG-SVMs is superior to OVA and OVO. Furthermore, the
AUC values of DAG-SVMs are also superior to OVA-SVMs and OVO-SVMs.



Electronics 2023, 12, 2447 15 of 18Electronics 2023, 12, x FOR PEER REVIEW 15 of 18 
 

 

 
Figure 9. ROC curve for RBF-SVMs: OVO, OVA and DAG. 

4. Conclusions 
This research paper proposes a method of using multi-class support vector machines 

with artificial intelligence to identify and categorize objects beneath agricultural soil. The 
study introduces the FDTD model to generate the training data for the MSVM classifier, 
which ensures that the training results are applicable to actual agricultural soil and its 
layers. Furthermore, the model also includes dielectric objects commonly found in re-
al-world agricultural settings. The study evaluates the MSVM classifier’s performance 
metrics using various kernel functions. In conclusion, the research findings highlight that 
the proposed method can effectively detect and classify underground objects in agricul-
tural soils with satisfactory performance, as demonstrated by the experimental results: 
1. The FDTD-Yee method can improve the precision of simulating soil layers and their 

properties in real farmland. Detecting the position and material of unknown un-
derground objects is made easier, with an average recognition rate of 91.13% for the 
hyperbola position formed by GPR echo signals. 

2. Our proposed method for recognizing GPR images is a DAG method that utilizes 
the MSVM and RBF kernel. The effectiveness and superiority of this method have 
been demonstrated. 

3. The FDTD simulation results reveal that the RBF-SVM model provides superior 
performance in handling linear inseparability compared to all other real soil layers. 
This demonstrates that the RBF-MSVM artificial intelligence algorithm can effec-
tively classify and analyze electromagnetic wave signals in farmland soil.  

Author Contributions: Conceptualization, Y.L. (Yuanhong Li) and Y.L. (Yangfan Luo); methodol-
ogy, Y.L. (Yuanhong Li); software, Y.L. (Yangfan Luo); validation, C.W. (Congyue Wang); data cu-
ration, C.W. (Chaofeng Wang); writing—original draft preparation, Y.L. (Yuanhong Li); funding 
acquisition, Y.L. (Yuanhong Li). Supervision, Y.L. (Yubin Lan). All authors have read and agreed to 
the published version of the manuscript. 

Funding: This work was financially supported by the Laboratory of Lingnan Modern Agriculture 
Project (Grant No. NT2021009); The Open Competition Program of the Top Ten Critical Priorities of 
Agricultural Science and Technology Innovation for the 14th Five-Year Plan of Guangdong Prov-
ince (No. 2022SDZG03);Guangdong Basic and Applied Basic Research Foundation (Grant No. 
2021A1515110554); China Postdoctoral Science Foundation (Grant No. 2022M721201); Guangdong 

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0.2 0.4 0.6 0.8 1

ROC curve for RBF-SVMs: OVO, OVA and DAG

False positive rate

Tr
ue

 p
os

iti
ve

 ra
te

CURVE1:OVO

CURVE2:OVA

CURVE3:DAG

Random Guess

Figure 9. ROC curve for RBF-SVMs: OVO, OVA and DAG.

4. Conclusions

This research paper proposes a method of using multi-class support vector machines
with artificial intelligence to identify and categorize objects beneath agricultural soil. The
study introduces the FDTD model to generate the training data for the MSVM classifier,
which ensures that the training results are applicable to actual agricultural soil and its layers.
Furthermore, the model also includes dielectric objects commonly found in real-world
agricultural settings. The study evaluates the MSVM classifier’s performance metrics using
various kernel functions. In conclusion, the research findings highlight that the proposed
method can effectively detect and classify underground objects in agricultural soils with
satisfactory performance, as demonstrated by the experimental results:

The FDTD-Yee method can improve the precision of simulating soil layers and their
properties in real farmland. Detecting the position and material of unknown underground
objects is made easier, with an average recognition rate of 91.13% for the hyperbola position
formed by GPR echo signals.

Our proposed method for recognizing GPR images is a DAG method that utilizes
the MSVM and RBF kernel. The effectiveness and superiority of this method have been
demonstrated.

The FDTD simulation results reveal that the RBF-SVM model provides superior per-
formance in handling linear inseparability compared to all other real soil layers. This
demonstrates that the RBF-MSVM artificial intelligence algorithm can effectively classify
and analyze electromagnetic wave signals in farmland soil.
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