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Abstract: With the development of quantum computers, the security of classical cryptosystems
is seriously threatened, and the Saber algorithm has become one of the potential candidates for
post-quantum cryptosystems (PQCs). To address the problems of long delay and the high power
consumption of Saber algorithm hardware implementation, a lightweight Saber algorithm hardware
design scheme based on the joint optimization of data readout and clock (DRC) was proposed. Firstly,
an analysis was carried out on the hardware architecture, timing overhead and power consumption
distribution of the Saber algorithm, and the key circuits that limit the performance of the algorithm
were identified; secondly, a dual-port SRAM parallel reading method was adopted to improve the
data reading efficiency and reduce the timing overhead of double data reading in the multiplier
module. Then, a clock gating technology was used to reduce the dynamic flipping probability
of internal registers and reduce the hardware power consumption of the Saber algorithm; finally,
data reading and clock gating were jointly optimized to design a high-speed and low-power Saber
algorithm hardware IP core. Lightweight IP cores were integrated into RISC-V SoC systems via APB
bus in a TSMC 65 nm process to complete the digital back-end design. The experimental results
show an IP core area of 0.99 mm2 and power consumption of 8.49 mW, which is 33% lower than
that reported in the related literature. Under 72 MHz & 1 V operating conditions, the number of
clock cycles for the Saber algorithm’s key generation, encryption and decryption are 3315, 9204 and
1420, respectively.

Keywords: post-quantum cryptographic algorithms; Saber algorithm; IP hardware implementation;
low overhead

1. Introduction

Quantum computing breaks through existing computing architectures and uses the
principle of state superposition to make quantum computers a research hotspot. For exam-
ple, in 2019, Google developed a superconducting quantum chip [1] circuit that samples
a billion times faster than conventional computers; in 2020, the University of Science
and Technology of China built a photonic quantum computing prototype, “Jiuzhang” [2],
which is trillions of times faster than existing supercomputers; in 2022, the Institute for
Molecular Science in Japan announced that its quantum research has produced the world’s
highest speed in the quantum computer “2-bit quantum gate”. With the development
of quantum computers, the number of quantum bits has increased dramatically, and the
security of cryptosystems based on mathematical puzzles such as classical large integer
decomposition and discrete logarithms has been greatly challenged. In classical computer
architecture, the underlying mathematical problems on which traditional cryptography
relies are extremely difficult to solve in an efficient time. However, in the face of quantum
computers, mathematical difficulties based on public-key cryptosystems will no longer be
secure [3], so the information security systems and various applications built by relying
on cryptosystems will face serious security problems, and there is an urgent need for
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research on cryptosystems and chip implementation technologies to resist quantum attacks.
Given the extensive applications of public key cryptography, such as network security,
data storage, and autonomous driving, the development of ciphers resistant to quantum
attacks poses significant technical challenges. Specifically, it involves the task of effectively
unifying security with the efficiency and flexibility required for hardware implementation.

The National Institute of Standards and Technology (NIST) announced a call for
Post-Quantum Cryptosystem (PQC) standards in February 2016, with plans to formally
complete the standardization of PQC by 2024. The first round of the competition screened
69 candidate algorithms, and 26 candidate algorithms were retained in the second round.
After three rounds of screening, seven PQC solutions, including Saber, Kyber, and Falcon,
entered the final evaluation. Among them, the Saber [4] algorithm is a lattice-based key
encapsulation mechanism (KEM) that works against chosen ciphertext attack (CCA), and
its security depends on the difficulty of the module learning with rounding (MLWR) prob-
lem. Lattice-based cryptographic problems, such as the shortest vector problem (SVP) and
closest vector problem (CVP), are not susceptible to quantum computing. Among various
quantum-resistant cryptographic schemes, lattice-based approaches are particularly promis-
ing due to their robust security against quantum attacks, higher computational efficiency,
and flexible applications. This is why the lattice-based grid code scheme occupied five out
of the seven candidates selected by NIST for the third round of standardization. The Saber
algorithm differs from other lattice-based schemes in that it is modulo 2 to the power of 2,
which eliminates the need for additional overhead in modulo operations and the rejection of
sampling operations. Consequently, the research focus in cryptography revolves around the
theoretical study and efficient hardware implementation of Saber’s algorithm. The Saber
algorithm mainly involves three steps: key generation, encryption, and decryption, and
the security core lies in the random number expansion and large matrix product module,
which has the characteristics of fast computing speed and functional diversity, compared
with other algorithms [5–7]. To reduce the operation overhead of the Saber algorithm,
Knuth et al. [8], a team of algorithm proposers, constructed a fast polynomial computation
method for the multiplier module in conjunction with the Toom–Cook general algorithm,
which effectively improved the operational efficiency of the large matrix product module
of the Saber algorithm. To further optimize the Saber algorithm, Sujoy et al. [9] used vector
processing instructions to process the algorithm operations in parallel, resulting in a nearly
1.5-fold increase in throughput, while increasing the latency of individual operations by
a factor of about 3. In terms of hardware–software co-design, Mera et al. [10] and Dang
et al. [11] used a hardware–software co-design strategy to allocate hardware–software
resources for cryptographic algorithms through software algorithms, which can achieve
high-speed and flexible cryptographic algorithms. Although hardware–software co-design
has obvious advantages in terms of flexibility in algorithm implementation, there are still
shortcomings in terms of latency and throughput, so hardware implementation of algo-
rithms has become a research trend. Roy et al. [12] implemented a high-speed dot matrix
Saber algorithm on FPGA, with a running time of 61.4 µs at a clock frequency of 250 MHz.
To meet the requirements of the Saber algorithm in resource-constrained situations, and to
reduce the running time and power consumption of the algorithm hardware [13–17], there
is an urgent need to study lightweight cryptographic algorithms. Based on this, this design
constructs the algorithm model based on the official documentation [18] of the algorithm,
and thus completes the full hardware implementation of Saber’s algorithm.

This paper proposes a lightweight Saber algorithm hardware internet protocol (IP)
core based on joint optimization of data readout and clock (DRC). First, to solve the timing
overhead problem caused by the dual data reading of the Saber algorithm multiplier
module, the memory module was optimized using a dual-port SRAM technology to
improve the operation speed of the multiplier module. Then, the probability of dynamic
flip-flop power consumption was reduced by adding a clock gating unit circuit and a clock
reset hosting signal. IP cores were integrated into the RISC-V SoC using an advanced
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peripheral bus (APB) approach. Finally, a TSMC 65 nm digital back-end based design
was completed.

2. Introduction to the Saber Algorithm
2.1. Symbolic Representation

This section introduces some preparatory knowledge, including basic definitions
and symbols. We use bold lowercase letters to represent vectors, such as a, and use bold
uppercase letters to represent matrices, such as A. For a polynomial f, we write fi for the ith
coefficient of xi. p and q are integer powers of 2, p = 2εp and q = 2εq . We use Zq to denote the
ring of integers modulo integer q with representants in [0, q), and for an integer z, z mod
q denotes the mode approximate reduction of z in the interval [0, q). Rq = Zq[x]/(xn + 1)
denotes the ring of integer polynomials modulo (xn + 1), where n is a power of 2 and each
coefficient of the ring is in [0, q). For any ring R, RL × K denotes the ring on the matrix
L × K. βµ denotes the central binomial distribution, with µ being an even number and a
distribution ranging from [−µ/2, µ/2]. The l-value represents the matrix dimension in
the Saber algorithm, and the value of l in Saber is 3. The l-value in LightSaber is 2 and in
FireSaber is 4, where l = 2 means lightweight encryption, l = 3 means standard security
level encryption, and l = 4 means high-security level encryption.

2.2. Saber Algorithm Process

The Saber algorithm is a lattice-based encryption and decryption mechanism that re-
sists selective ciphertext attacks. Lattice-based cryptographic algorithms can be constructed
from two different problems, namely, the lattice-based shortest vector problem and the
lattice-based nearest vector problem. The learning with error (LWE) problem is based on
the nearest vector problem on a general lattice, and the learning with rounding (LWR)
problem can be reduced to the shortest vector problem on a lattice. In contrast to the LWE
problem, the noise of the LWR is generated deterministically, avoiding the randomness
attached to the noise. Mod-LWE replaces a single ring element with modulo element on the
same ring, and is an improved version of LWE. Similarly, Mod-LWR is an improved version
of Mod-LWE with smaller ciphertext bandwidth compared to Mod-LWE. The security
of Saber algorithm depends on Mod-LWR and has the advantage of being lightweight.
The Saber algorithm implementation includes public key encryption (PKE) and the key
encapsulation mechanism (KEM). PKE is an IND-CPA secure encryption scheme, and
KEM is an IND-CCA secure key encapsulation mechanism, with both implementations
consisting of key generation, encryption and decryption algorithms.

The Saber algorithm PKE key generation pseudo-code is shown in Algorithm 1. PKE
key generation starts by reading seedA, which is a key seed signal, through a register, and
using the random number expansion module SHAKE128 function to process the seed signal
for randomness. The random number matrix A is generated by the gen function based
on the seed signal seedA. The matrix A is an l × l matrix and the key s is an l × 1 matrix,
where the individual matrix elements are polynomials of order 256. In the hardware
implementation of the Saber algorithm, the l value is 3, and the individual elements of s
take the value interval [−4: 4]. In Algorithm 1, the random number matrix is transposed
and multiplied by the key matrix. The matrix transposition operation, vector-to-string
operation, and public key splicing operation can be carried out in hardware by changing
the read address bits, which improves the efficiency of the algorithm compared to the
software implementation of these operations. The secret key generation phase of PKE
generates public key pk and private key sk, matrix b and seedA are stitched to obtain public
key pk, and matrix S is assigned to sk after vector-to-string operation.

PKE encryption is shown in Algorithm 2. Firstly, a random number matrix A is
generated by the gen function, and a new key matrix s’ is generated in the encryption
algorithm. The product of matrix A and s’ is rounded and shifted to produce b as the
[0: 512] bits of the ciphertext, and the [513: 1024] bits of the ciphertext cm are generated by
the shift algorithm module and the encryption module.
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Algorithm 1 Saber.PKE.KeyGen()

seedA ← µ({0, 1}256)

A = gen(seedA) ∈ Rl×l
q

r = µ({0, 1}256)

s = βµ(Rl×1
q ; r)

b = ((ATs + h)modq)� (εq − εp) ∈ Rl×1
p

return (pk := (seedA, b), sk := (s))

Algorithm 2 Saber.PKE.Enc (pk = (seedA, b), m ∈ R2; r)

if r is not speci f ied then r = µ({0, 1}256)

s′ = βµ(Rl×1
q ; r)

b′ = ((As′ + h)modq)� (εq − εp) ∈ Rl×1
p

v′ = bT(s′modp) ∈ Rp
cm = (v′ + h1 − 2εp−1mmodp)� (εq − εT) ∈ RT

return c := (cm, b′) = (seedA, b), sk := (s))

PKE decryption is shown in Algorithm 3, the received encrypted data are first modulo
approximately subtracted and then transposed, and the value after the operation enters
the product module. The decryption data are given after the shift operation to realize the
operation of extracting the plaintext from the ciphertext.

Algorithm 3 Saber.PKE.Dec (sk = s, c = (cm, b’))

v = b′T(smodp) ∈ Rp
m′ = ((v− 2εq−εT cm + h2)modp)� (εp − 1) ∈ R2

return m′

The above is the IND-CPA encryption process, and the CPA security component
can be constructed using the Fujisaki–Okamoto transformation for the IND-CCA security
KEM. IND-CCA contains three steps: key generation, encryption and decryption. The
algorithm achieves encryption and decryption by invoking the key generation, encryption
and decryption operations in IND-CPA. The difference between the KEM algorithm and
the PKE encryption algorithm is that the former returns a randomly generated string
when the public key decapsulation fails, making the algorithm more secure. The KEM
key generation calls the PKE key generation process to obtain the public and private keys
through numerical stitching and assignment, which is a non-clock consuming operation in
the hardware implementation, and is implemented directly through address bit calls.

KEM key generation, KEM encapsulation and decapsulation are shown in Algorithms 4–6.
The plaintext m and the public key pk are randomized in KEM encryption by the SHA3-256
function in the random number expansion module to obtain the processed m and HASH-pk,
and kr’ is obtained by the data bit splicing operation. The kr’ is processed by the SHA3-
256 function to obtain the upper half of the session key returned by the KEM encryption
operation, and the lower half of the session key returned by the KEM operation is the
plaintext generated in the PKE.

The ciphertext is obtained by calling the PKE decryption algorithm in KEM decap-
sulation, and a verification module is added to the algorithm to verify the correctness of
the plaintext. If the public key decapsulation fails, a randomly generated string will be
returned to improve the resistance to attacks.
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Algorithm 4 Saber.KEM.KeyGen()

(seedA, b, s) = Saber.PKE.KeyGen()
pk = (seedA, b)

pkh = F (pk)
z = µ({0, 1}256)

return (pk := (seedA, b), sk := (s, z, pkh, pk))

Algorithm 5 Saber.KEM.Encps(pk = (seedA, b))

m← µ({0, 1}256)
(K̂′, r) = G(F (pk), m)

c = Saber.PKE.Enc(pk, m; r)
K = H(K̂′, c)
return (c, K)

Algorithm 6 Saber.KEM.Decaps(sk = (z, pkh, pk, s)

m′ = Saber.PKE.Dec(s, c)
(K̂′, r′) = G(pkh, m′)

c′ = Saber.PKE.Enc(pk, m′; r′)
if c = c′ then return K = H(K̂′, c);

else return K = H(z, c)

3. Hardware Implementation of Saber Algorithm

The previous section introduced the Saber algorithm key generation and encryp-
tion/decryption algorithm. The algorithm computation module consists of a hash function,
a polynomial product function, and a shift function. Since p and q are powers of 2 in
the Saber algorithm, the hardware implementation does not require modulo reduction
operations, and the Keccak core gas pedal is designed to be low-power and fast in hardware.
The algorithm hardware IP core implementation is described as follows, and the design of
each module of Saber algorithm is specified as follows.

3.1. Saber Algorithm Hardware Architecture

The overall hardware IP architecture of the Saber algorithm is shown in Figure 1. The
hardware IP architecture of the Saber algorithm encompasses several key components,
including a random number expansion module, a binomial sampling module, a multiplier
module, a shift module, a string conversion module, an encryption module, a decryption
module, a signal control module, a communication control module, and a memory module.
The signal control unit module ensures a uniform distribution of input and output data
flow for each module. It connects the enable signal, data signal, and address signal of
each module, while intermediate data generated during the algorithm execution are stored
in the memory module. When integrating the IP through the APB bus, the external port
includes various signals, such as the reset signal, enable signal, write data signal, read
data signal, write enable signal, address signal, clock signal, chip select signal, and off-chip
output signal. The off-chip output signal is specifically designed to output the encrypted
ciphertext. According to the Saber algorithm flow, the hardware data flow state machine
is designed.

The hardware IP structure of the low-power Saber algorithm is shown in Figure 2.
First, a memory module composed of eight SRAMs is used, and the external circuits include
a multiplier module, a sampling module, a SHA-3 random number expansion module, an
encryption module, a decryption module, a multiplier module, and a string conversion
module. The read/write signals and input/output data of each module are connected to
the register control module. According to the algorithm principle, Seed is used as the input
signal to the IP core, then the data are processed by each module, and the intermediate
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data are stored in the register module. The algorithm is created based on the data flow of
the algorithm and the input/output port control of the memory module.
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3.2. Single-Cycle Double Data Reading and Storage Module Design

The data storage module is the intermediate value reading/writing unit, which is the
hardware core module of the IP core. The algorithm involves performing multiple matrix
multiplications with large random number matrices, such as matrix AT*s in Algorithm 1
and A*s in Algorithm 2. Consequently, the storage module of the algorithm’s IP core incurs
significant overhead in terms of read clock cycles during the data reading process. The
conventional memory module is a single-port memory module which has the problem of
excessive timing overhead, incurred by reading a set of data per clock. This paper proposes
a dual-port memory module design; by using a dual-port SRAM memory module, two sets
of coefficients can be read out in one clock cycle, which results in a two-fold increase in
overall performance at the cost of a small area. In practice, the storage and recall of data is
controlled by the write address and the read address. The data are processed by different
modules, such as multiplier module, and random number expansion to complete the data
processing in three modes of key generation, encryption and decryption. Data reading and
writing is performed in memory through 64-bit transfer operations. This data selection
method facilitates integration with the processor (32-bit or 64-bit).

The memory structure is shown in Figure 3. The whole memory module is divided
into four SRAMA and four SRAMB, and the size of an individual SRAM is 1024 × 16 bits.
Each SRAMA single clock output has 16 bits, the four SRAMA output values are stitched
together, and the overall output is a single clock output of 64 bits. SRAMB operates on the
same principle.
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SRAMA and SRAMB enable control signals, read/write control signals and read/write
address signals to be input to the memory module through the signal control module. The
off-chip output of the cipher text is accomplished by locating the fixed storage cells of the
memory module.



Electronics 2023, 12, 2525 8 of 15

The plaintext of the encrypted data is generated by the random number expansion
module and entered into a predetermined unit of the memory module. The encrypted
and decrypted data will be input to the fixed storage unit of the memory module. For
the IP core, the top-level encryption and decryption can be used as the encryption IP or
decryption IP separately, and both share the random number expansion module, binomial
sampling module, polynomial multiplication module, and string steering module, which
can effectively reduce the hardware overhead of the Saber algorithm IP core.

3.3. High-Speed Random Number Expansion Module Circuit Design

The implementation of the Saber algorithm involves SHAKE-128, SHA3-256 and
SHA3-512 functions, and a random number function selector is used in the random number
module for different computational function selections. The random number generation
hardware circuit structure is shown in Figure 4. The random number module is controlled
by the data control module, and the control port occupies 6 data bits of control signal,
which is the total control signal of Saber IP. These 6 bits of data are used to control the
random number generation function type and data length, respectively, where the control
signal is customized by the initial module. In the random number module, the Keccak core
acceleration module is instantiated with 1600 data bits.
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The core acceleration module has five steps: θ, ρ, ∏, χ, ι. The input and output arrays
of the module are states A and B, with a width of 1600 bits, respectively. The states can
be represented by a three-dimensional array containing 25 words, each with a length of
64 bits. Words can constitute a cube with x, y and z coordinates. Each bit of the cube can
be addressed by [x, y, z]. The states are specified as follows: the state of a word is called a
“Lane”, the two-dimensional part with a concrete coordinate having a fixed z-value state is
called a “Slice”, and all “Lanes” with the same x-coordinates are called “Sheets” [19].

Step θ: This step first calculates the state C[x] = A[X, 0] ⊕ [x, 1] ⊕ A[x, 2] ⊕ A[x, 3]
⊕ A[x, 4], where x takes values in the range [0, 4], and the output of the θ step can be
expressed as B[x, y] = A[x, y] ⊕ (C[x − 1] ⊕ rot(C(x + 1) + 1). Step ρ rotates Lane by an
offset r[x, y], which depends on the values of x, y. Thus, the equation for this step can be
expressed as B[x, y] = rot(A[x, y], r[x, y]), Step ∏ can be expressed as B[y, 2x + 3y] = A[x, y],
and this step is equivalent to swapping the states of the Lane. Steps χ and ι: Step χ can
be expressed using the formula B[x, y] = A[x, y] ⊕ (A[x + 1, y) & (A[x + 2, y). In step ι, the
constant Rc is anisotropic with Lane, and this step can be expressed as B [0, 0] = A[0, 0] ⊕
Rc[i], with the constant value depending on the current number of rounds i.
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The multiplier module mainly implements the multiplication of matrix A and key
matrix S. In the Saber algorithm, the l-value is 3, so matrix A is a 3 × 3 matrix, and
matrix S is a 3 × 1 matrix. The mode selection side was added to the product module
to support polynomial coefficients of both 13-bit and 10-bit bit widths, as defined by the
Saber algorithm. The dual-port SRAM can read multipliers simultaneously in a single cycle,
which can further increase the multiplication speed and complete the IP core design for the
high-speed Saber algorithm.

3.4. Lightweight Encryption and Decryption Hardware Module Design

In algorithm encryption and decryption operations, a mode control signal was added
to the IP top layer to control the IP core for encryption and decryption by assigning values
to the mode console and the enable side. The IP performs key generation operation when
the mode console is 01, encryption operation when the value is 10, and decryption operation
when it is 11. The processing data was fed to different units to complete the multiplexing
of multiplication modules, random numbers, and other modules in the encryption and
decryption process, thus reducing the hardware area of the IP core. The intermediate data
will be stored in SRAM after being processed by different modules, and the bit splicing
operation will be completed by changing the initial bit of the read address.

The output timing of the encrypted IP core is shown in Figure 5. During the encryption
of the IP core, the off-chip port provides the ciphertext data, and the mode value is at this
point 01. When the encryption module enable signal jumps from high to low, it indicates
that the encryption is complete. When the encryption module enable signal jumps from
high to low, it indicates that the encryption is complete. The write enable signal jumps from
low to high and begins to read the ciphertext data. The output cipher text of the encryption
module is 16 × 64 bits, with 64 bits of data being output in each clock, and after 16 clocks,
the off_chip_done signal jumps to a high level, at which point the cipher text is all output.
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3.5. Processor-Level Low-Power Implementation of the Saber Algorithm IP Core

The hardware IP core of the Saber algorithm is integrated into the System on Chip
(SoC) system via the APB bus, and the clock, reset and enable signals of the IP core are
given by the SoC, as shown in Figure 6. The design uses the Hummingbird e203 processor.
The reduction of dynamic flip power consumption is particularly important in IP core
integration. This integration includes a clock gating circuit that connects to the bus, which
reduces the dynamic flip power consumption of the entire IP core. The clock gating circuit
uses clock and reset hosting signals to control the signal flipping of the Saber algorithm
IP core. In the gated clock output timing, the system clock and reset signals are fed into
the Saber algorithm IP core when the clock and reset signal register signals jump high,
inserting a simultaneous global clock gating in the back-end design.

The memory module register addresses assignments when the Saber algorithm IP
core is mounted via APB bus, as shown in Table 1. The table gives the offset addresses for
different ports, their read/write permissions and register definitions. When the processor
reads the off_chip_done signal indicating that encrypted data is output, the processor
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hands over other signals, such as the clk signal and Start signal, to the IP core. The segment
base address of the APB bus is 0x10007000. With bit 0 of the SABER_CLK_ADDR register
being 1, there would be a clock for the IP core, and with bit 0 being 0, there would be no
clock. A system reset is used when bit 0 of the SABER_RESETN_ADDR register is 1, and a
clock is used when bit 0 is 0. Bit 0 of the START_ADDR register is used to receive the Start
signal, and bits [1: 0] of the MODE_ADDR register are used to receive the mode signal.
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Table 1. Memory module register address allocation table.

Register Definition Offset Address Read and Write Permissions

SABER_CLK_ADDR 00 Only write
SABER_RESETN_ADDR 04 Only write

START_ADDR 08 Only write
MODE_ADDR 0C Only write

OFF_CHIP_DONE_ADDR 10 Only read

4. Experimental Results and Analysis

This section presents the experimental results of the Saber algorithm. The co-processor
is described in Verilog language, and the algorithm consists of a data control module
and a calculation module. The experimental process uses the EDA simulation tool VCS,
a logic synthesis tool design compiler, a physical layout tool IC compiler, the Cadence
layout design tool IC5141 and the Mentor graphical interface Calibre to complete the
back-end design of this IP based on the TSMC 65 nm process under the standard process
tcbn65gplustc, where the IP core storage module consumes eight 1024 × 16 SRAMs.

4.1. Algorithm Performance Results

The number of execution cycles and time for the Saber algorithm KEM back-end design
in different modes of key generation, encryption, and decryption are shown in Table 2. The
key generation phase consumes 3304 clock cycles, the encryption phase consumes 4704
clock cycles, and the decryption consumes 1420 clock cycles. For high-performance data
reading, the memory module consists of 8 × 1024 × 16 SRAMs.

Table 2. Number of cycles and time of execution of Saber back-end design.

Instruction Keygen Encapsulation Decapsulation

Cycle (ns) 3304 4702 1240

Times (us) 44.09 122.41 19.89
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The proposed IP core was implemented under the operating conditions of 72 MHz
clock frequency and 1 V supply voltage. The IP core area is 0.65 mm2, and the chip layout
is shown in Figure 7. The design of the dual-port SRAM and the clock gating circuitry does
not provide a distinct advantage in terms of the area of the IP core compared to existing
implementations. However, this design primarily focuses on optimizing the timing and
power consumption. The back-end design of this IP core is based on the TSMC 65 nm
process, and the equivalent logic gate count of the IP core after conversion is 45 K. The
power consumption shares of the multiplier module, register module, random number
expansion module, encryption and decryption module, string conversion module, and
main control module of the Saber algorithm hardware IP are shown in Figure 7.
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The power consumption shows that by adding the gated clock unit circuit, the power
consumption of the IP core at different frequencies can be reduced by 50%, as shown in
Figure 8. Using different process corners to complete the back-end design, the power
consumption of the IP core at different frequencies with supply voltages of 1.1 V, 1 V, 0.9 V
and 0.8 V is shown in Figure 8. The power consumption of the IP core decreases with
a reduction in supply voltage. According to the power consumption report, the power
consumption of the IP core does not change much when the supply voltage varies from 1 V
to 0.9 V; therefore, this design is chosen to complete the backend design under the standard
process tcbn65gplustc, with a voltage of 1 V.
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When the plaintext data are shown on the left side of Table 3, the ciphertext data
generated by the encryption module are shown on the right side of Table 3. The bit width
of the plaintext data is 256, and the bit width of the ciphertext data is 1024. The ciphertext
output is achieved by reading the fixed memory cell of SRAM.

Table 3. The plaintext data and the corresponding ciphertext data.

Plaintext [0,255] Ciphertext [0,511] Ciphertext [512,1024]

[0] 8016_8f9b_2748_fb2f [0] a49c_7f6f_c0e7_6e42 [8] 2228_ef65_aeb3_2aac

[1] 929d_ef22_2b56_9fda [1] 2700_7850_7870_3409 [9] f603_fd1b_12d6_104e

[2] 4e91_9dab_35c4_0884 [2] 1f7a_caa5_c53e_1659 [10] 8ff8_4044_277e_d3f7

[3] baf4_f48b_4929_b385 [3] 9066_2771_c1e3_5f47 [11] a632_b681_316d_3b42

[4] 4f1a_1573_b02f_fb4c [12] dea4_d1b2_9047_f26d

[5] 8ea5_ffbe_c8a5_1d19 [13] 00a5_9136_fedc_c541

[6] 0004_0fe3_34e1_2f4b [14] d24f_2810_29a0_2c61

[7] c134_797a_646f_deb5 [15] 701c_41a4_727e_dc1a

4.2. Power Area Analysis of IP Cores

The back-end design is completed using different process corners at 72 MHz op-
erating frequency with the various processes of tcbn65gplustc0d8, tcbn65gpluswc, and
tcbn65gplustc at supply voltages of 0.8 V, 0.9 V, and 1 V, respectively. Within this design, we
have analyzed the area and power consumption values for multiple modules, such as Mul
(multiplier), SHA (random number expansion), Dpram (memory), Addh (shift), Bol2pol
(string conversion), Bin (binomial sampling), Pack (encryption), and Unpack (decryption).
These analyses were conducted at different supply voltages of 1 V, 0.9 V, and 0.8 V for
various processes. The trends of area and power consumption values of each module of
the IP core are shown in Figure 9. Due to the hardware adaptability of the random number
expansion module, its power consumption and area consumption are at a low level. The
power consumption of multiplier module is the primary concern for the IP core. Our next
objective is to decrease the power consumption of the multiplier module.

Electronics 2023, 12, x FOR PEER REVIEW 13 of 15 
 

 

low level. The power consumption of multiplier module is the primary concern for the IP 
core. Our next objective is to decrease the power consumption of the multiplier module. 

 
Figure 9. Power consumption area curves: (a) power consumption curves for each module of the IP 
core, (b) area curves for each module of the IP core. 

4.3. Comparison with Related Literature 
A comparison of the hardware implementation of this design with other post-quan-

tum cryptographic algorithms is shown in Table 4. The comparison involves different 
post-quantum cryptographic algorithms, including different implementation methods 
such as hardware–software co-implementation and hardware implementation, as well as 
involving different implementation platforms and different operating frequencies. For the 
different schemes using different platforms and different implementations, the relevant 
data show that the proposed scheme has significant advantages in terms of speed and 
power consumption. The all-hardware implementation [20,21] was faster than the hard-
ware–software collaborative design, and the random number acceleration core module, 
Keccak, ran slower when implemented on a software platform, with the timing overhead 
being higher when implemented using software code on Keccak. A comparison of the time 
and power consumption of the back-end design completed using the TSMC 65 nm process 
with other post-quantum cryptographic algorithm hardware implementations is shown 
in Table 4. Study [10], study [11], and the current design all involve software/hardware 
implementations of the Saber algorithm. With the same flow of the algorithm, the com-
parison focuses on the power consumption and area of the algorithm implementation. 
While the study referenced in [11] achieves lower running time, it does not hold an ad-
vantage in hardware consumption compared to the study referenced in [10]. In contrast, 
this design leverages ASIC implementation, which offers advantages in terms of the over-
all running time for secret key generation, encryption, and decryption. Furthermore, it 
increases the size of the IP chip to some extent, thereby enhancing the algorithm’s speed. 
In terms of experimental environment, the comparison with study [21] is more similar, 
and the running time of the secret key generation, encryption, and decryption modes is 
significantly reduced during the double data reading session due to the presence of mul-
tiple sizeable random number matrix products in the algorithm process. Including the 
clock gating unit circuit in the bus integration and the insertion of the global clock gating 
in the back-end design reduces the power consumption of the IP core significantly, and 
this design still dominates at 72 MHz operating frequency. The global clock insertion has 
reduced the dominance of equivalent logic gates, but the algorithm’s runtime and power 
consumption are significantly optimized. In terms of runtime, the overall architecture of 
this design is nearly 100 times faster compared to the other two design solutions. The 
results show that this design has a faster speed and relatively lower power consumption. 

  

Figure 9. Power consumption area curves: (a) power consumption curves for each module of the IP
core, (b) area curves for each module of the IP core.

4.3. Comparison with Related Literature

A comparison of the hardware implementation of this design with other post-quantum
cryptographic algorithms is shown in Table 4. The comparison involves different post-
quantum cryptographic algorithms, including different implementation methods such as
hardware–software co-implementation and hardware implementation, as well as involving
different implementation platforms and different operating frequencies. For the different
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schemes using different platforms and different implementations, the relevant data show
that the proposed scheme has significant advantages in terms of speed and power con-
sumption. The all-hardware implementation [20,21] was faster than the hardware–software
collaborative design, and the random number acceleration core module, Keccak, ran slower
when implemented on a software platform, with the timing overhead being higher when
implemented using software code on Keccak. A comparison of the time and power con-
sumption of the back-end design completed using the TSMC 65 nm process with other
post-quantum cryptographic algorithm hardware implementations is shown in Table 4.
Study [10], study [11], and the current design all involve software/hardware implementa-
tions of the Saber algorithm. With the same flow of the algorithm, the comparison focuses
on the power consumption and area of the algorithm implementation. While the study
referenced in [11] achieves lower running time, it does not hold an advantage in hardware
consumption compared to the study referenced in [10]. In contrast, this design leverages
ASIC implementation, which offers advantages in terms of the overall running time for
secret key generation, encryption, and decryption. Furthermore, it increases the size of the
IP chip to some extent, thereby enhancing the algorithm’s speed. In terms of experimental
environment, the comparison with study [21] is more similar, and the running time of the
secret key generation, encryption, and decryption modes is significantly reduced during
the double data reading session due to the presence of multiple sizeable random number
matrix products in the algorithm process. Including the clock gating unit circuit in the bus
integration and the insertion of the global clock gating in the back-end design reduces the
power consumption of the IP core significantly, and this design still dominates at 72 MHz
operating frequency. The global clock insertion has reduced the dominance of equivalent
logic gates, but the algorithm’s runtime and power consumption are significantly opti-
mized. In terms of runtime, the overall architecture of this design is nearly 100 times faster
compared to the other two design solutions. The results show that this design has a faster
speed and relatively lower power consumption.

Table 4. Comparison with existing post-quantum cryptographic schemes.

Paper Saber [10] Saber [11] Frodo [20] NewHope
[21] Kyber [22] NewHope

[23]
Dilithium-II

[24] This Work

Technology Artix-7
(HW/SW)

UltraScale+
(HW/SW) Artix-7 Artix-7

ASIC
[TSMC
40 nm]

Artix-7 ASIC
[TSMC 65 nm]

ASIC
[TSMC
65 nm]

Times
in us

Keygen 3273 - 45,454 988 1548 51.9

980.6

44.1

Encaps 4147 60 45,454 1413 2456 78.6 122.4

Decaps 3844 65 47,619 473 1646 21.1 18.8

Frequency
(MHz) 125 322 167 167 72 131 158 72

LUT 7.4 K 12.5 K 7.7 K 5.1 K - 20 K - -

FF 7.3 K 11.6 K 3.5 K 4.4 K - 9.9 K - -

DSP 28 256 1 2 - 8 - -

BRAM 2 4 24 4 - 14 - -

Area (mm2) - - - - 0.28 - 4.7 0.99

VDD (V) - - - - 1.1 - 1.2 1

Area (K GATE) - - - - 106 - 1603 451

Power (mW) - - - - 12.8 - 50.42 8.4

5. Conclusions

This study completes the design of a hardware IP core for Saber algorithm. Based on
the analysis of the Saber algorithm structure, the data reading efficiency was improved
by using a dual-port SRAM parallel reading method for the timing overhead problem
caused by the data reading of the multiplier module. To address the problem of the
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clock dynamic power consumption of the IP core, the clock gating technique was used to
reduce the probability of internal register dynamic flipping, thus reducing the hardware
power consumption of the IP core. Finally, the digital back-end design was completed
by integrating lightweight IP cores into the RISC-V SoC system via the APB bus within
the TSMC 65 nm process. The Saber algorithm is a strong contender as a post-quantum
cryptographic algorithm due to its omission of the mode about subtraction operation,
which means it has a better prospect of achieving lightweight post-quantum cryptographic
encryption. In our future work, we plan to conduct a more comprehensive analysis of the
application’s resistance to known attacks and potential vulnerabilities. This analysis aims
to enhance the algorithm’s overall resilience against attacks by addressing any identified
vulnerabilities from an application perspective.
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