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Abstract: Image aesthetic assessment (IAA) with neural attention has made significant progress due
to its effectiveness in object recognition. Current studies have shown that the features learned by
convolutional neural networks (CNN) at different learning stages indicate meaningful information.
The shallow feature contains the low-level information of images, and the deep feature perceives
the image semantics and themes. Inspired by this, we propose a visual enhancement network with
feature fusion (FF-VEN). It consists of two sub-modules, the visual enhancement module (VE module)
and the shallow and deep feature fusion module (SDFF module). The former uses an adaptive filter
in the spatial domain to simulate human eyes according to the region of interest (ROI) extracted by
neural feedback. The latter not only extracts the shallow feature and the deep feature via transverse
connection, but also uses a feature fusion unit (FFU) to fuse the pooled features together with the
aim of information contribution maximization. Experiments on standard AVA dataset and Photo.net
dataset show the effectiveness of FF-VEN.

Keywords: deep learning; image aesthetics assessment; image enhancement

1. Introduction

Image aesthetic assessment (IAA) and image quality assessment (IQA) are popular
image evaluation methods from two different directions. Usually, IAA focuses on graphic
aesthetics and IQA focuses on the degree of distortion in a series of images. With the increas-
ing application of digital images, the studies of IAA have made significant development.
IAA has favorable commercial application value and potential. Images with high scores are
considered better, which can be used in application scenarios such as recommendations and
searches. Undeniably, several works on IQA achieve great results, including GraphIQA [1]
and metaIQA [2]. Feature extraction has long been a question of great interest in IAA [3–5].
Early studies focused on photographic methods and human perception. Deng et al. [4]
summarized the manual production features and the deep features, indicating the limita-
tions of machine learning. Among the early efforts, the diversity of aesthetic features and
the complexity of photographic methods resulted in the poor performance of the models
with manual extraction.

Recently, deep learning has become a hot topic for IAA [5], which overcomes the limi-
tation of hand-crafted feature extraction. Neural networks have shown good advantages
for image analysis and processing [6–8]. Dai et al. [9] introduced the existing research in the
field of intelligent media. Pooling layers were utilized to increase the speed of processing
the low-level features [10]. Talebi et al. [11] modified the last layer of convolutional neural
networks (CNN), directly predicting the aesthetic score distribution. This transforms the
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classification model into a distributed task, increasing the training speed and improving the
performance of neural networks. In [12], VGGNet stacks the convolutional layers, pushing
the network depth to more than 16 weight layers. Ref. [13] showed that the intermediate
convolution layers of CNN contain meaningful information about the complexity of images.
Thus, we analyze the network structure and try to fuse the features of CNN, aiming to
combine the low-level information and the abstract image semantics.

Neural attention is a major area of interest within the field of IAA. The question of how
to assess digital images based on human visual characteristics is challenging for researchers.
The deep model (TDM) was designed to perceive image scenes with the advantages of
peripheral vision and central vision [14]. Ma et al. [15] introduced A-Lamp, which can
learn the detailed and overall information of images. The details of images are retained
via dynamically selecting image blocks. The overall information is extracted from the
attribute graphs of the image blocks. Zhang et al. [16] combined the spatial layout and the
details of images on the basis of top-down neural feedback. Inspired by TDM [14], they
also proposed GLFN-Net [17]. It calculates the image blocks of region of interest (ROI) and
simulates the fovea vision. However, human observation of images is flexible, not in the
fixed shape of a rectangle. We attempt to dynamically process the digital images according
to ROI.

In this paper, we propose a visual enhancement network with feature fusion (FF-
VEN). It is divided into two sub-modules: the visual enhancement module (VE module)
and the shallow and the deep feature fusion module (SDFF module). The VE module
simulates the human eyes based on the fovea visual characteristics. It adaptively filters
the images according to ROI obtained by neural feedback. The SDFF module consists
of feature extraction and feature fusion. The shallow feature and the deep feature are
extracted via the method of transverse connection. We design a feature fusion unit (FFU)
that performs weighted fusion to maximize the contribution to information. The aesthetic
score distribution is learned by minimizing squared earth mover’s distance (EMD) loss.
Further, FF-VEN is evaluated in the classification task and the regression task. Therefore,
the contributions made by this paper are as follows:

(1) We propose an end-to-end training network, consisting of two sub-modules. The for-
mer module considers top-down neural attention and fovea visual characteristics. The
latter module extracts and integrates the features learned by CNN at different stages.

(2) An adaptive filter is designed to select the filters in the spatial domain. Specifically,
each pixel in the images adjusts the parameters of filters according to the normalized
interest matrix extracted by neural feedback.

(3) We optimize a feature fusion unit to combine the low-level information and image
semantics. The added pooling layers deal with the corresponding features, increasing
the training speed and improving the precision of the predicted score prediction.
Moreover, it fuses the features for contribution maximization.

The rest of the article is structured as follows. Section 2 introduces the relevant work
briefly and Section 3 describes the proposed FF-VEN. Section 4 evaluates the performance
of the network and compares it with other models. In Section 5, we summarize the paper.

2. Related Work

There are two basic approaches currently being adopted in research into IAA. One is
extracting the image features manually and the other is based on deep learning. On the one
hand, hand-crafted feature extraction means designing the aesthetic attributes of digital
images on a computer based on photography, psychology, aesthetics, and other subjects.
Datta et al. [18] defined the aesthetic image features, including color, structure, and image
content, aiming to explore the relationship between human emotions and the low-level
features. Reference [19] depended on the global saliency map of images and located the
region of visual attention. From a photographer’s point of view, Dhar et al. [20] analyzed
image layout, sky lighting, and other image attributes. The relative foreground position
and visual weight ratio are combined to enhance the visual image features [21]. Tang
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et al. [22] integrated the regional and global features according to the eye-catching areas.
They used a support vector machine (SVM) model for the classification task. However,
the methods of hand-crafted feature extraction are unsuitable for all images. It creates a
bottleneck, because aesthetics are abstract and the photographic methods are diverse.

On the other hand, deep learning has significant advantages for IAA [4]. For multi-
scale image processing, Szegedy et al. [23] proposed GoogLeNet, increasing the width of
the network via sparse connections. Because of its great performance on ImageNet, they
developed InceptionNet, using optimization algorithms to improve the performance of
the model [9]. DMA-NET [24] performed random image clipping and extracted local fine-
grained information. A-Lamp learned the detailed information and the overall attributes
of the input images [15]. Based on GoogLeNet [23], Jin et al. [25] considered the local
and global views of images. They proposed ILG-NET, combing the InceptionNet and the
connected layer. Yan et al. [26] obtained the aesthetic image features, including semantics,
texture, and color. They weighted points of interest (POI) and segmented the image pixels.
They proposed a circular attention network, which ignores irrelevant information and
focuses on the attention region when extracting visual features [27]. From the gray value,
contrast and spatial position relationships of pixels in color channels, the shallow feature
perceives the image attributes, such as light, tone, clarity, and composition. The semantic
information contains image object, theme, context, etc.

At present, the multi-channel frameworks have been widely used for IAA. She et al. [28]
captured the image layout, using a special neural network composed of two sub-networks.
A pooling layer of the multimodal factorized bilinear (MFB) was used to combine the
features [27]. Based on [28], the GIF module integrated the weight generator into the
feature fusion part [17]. They down-sampled the images to simulate peripheral vision,
which missed the details and failed to assess the high-variance images. A gating unit (GU)
performs dynamic weighted combination [29]. GU adds two fully connected layers and
a Tanh layer, improving the effectiveness of the networks. It calculates the contribution
of features to the result via analyzing the statistical characteristics. Inspired by this, we
propose FFU, adding pooling layers for corresponding features based on GU. Ma et al. [15]
showed that the ROI captured the spatial layout information of images and calculated
the attention area of CNN. Zhang et al. [16] simulated fovea vision by generating image
blocks via top-down neural feedback. Similarly, we use the incentive support method [30]
to extract the interest matrix of images. However, the area of visual interest is not in the
shape of a rectangle when humans assess images. We develop an adaptive filter, which is a
pixel-based approach that captures the fine-grained details of an image in any shape.

Early studies treated IAA as a task of aesthetic classification [15,31]. According to the
aesthetic score distribution, the average of scores is compared with the threshold value,
aiming to divide the images into the high quality images and the low quality images. The
aesthetic score distribution is ordered in IAA. Cross-entropy loss in the classification ignores
the relationships between scores. The regression model was utilized to assess images [4].
For ordered classes, Zhang et al. [32] showed that models with the classification task can
outperform regression networks. Due to the cultural background, the emotion states, the
physiological condition, and other factors of the assessors, the aesthetic scores are highly
subjective. At present, the research mainly focuses on the direct prediction of the aesthetic
score distribution. Cumulative distribution function with Jensen–Shannon divergence (CJS)
loss was proposed to boost the performance of models [33]. Talebi et al. [10] regarded the
score distribution as an ordered class. They used squared EMD loss to predict the score
distribution. In this paper, we minimize EMD loss to make the results more accurate.

3. Proposed Method

Figure 1 shows the overall framework of the FF-VEN proposed in this paper. The VE
module uses the excitation support method to extract ROI from images, aiming to obtain
top-down neural attention of ResNet50. Based on ROI, the adaptive filter selects either
a Laplace filter or Gaussian filter. It also adjusts the parameters of filters depending on
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the degree of visual interest. SDFF module dynamically fuses the shallow feature and
the deep feature of VGG16 [12], extracted via transverse connection. In FFU, the pooling
layers are used for the corresponding features. FFU calculates the weights of contribution
to information by analyzing the statistical characteristics of the features. Next, the pooled
features are dotted with their contribution weights, and then put into fusion. Finally, EMD
loss is selected to predict the score distribution.
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Figure 1. The overall framework of FF-VEN. VE module filters images adaptively based on ROI.
SDFF module uses FFU to fuse the shallow feature and the deep feature extracted by the method of
transverse connection. Finally, the score distribution is directly predicted.

3.1. Top-Down Neural Attention

In this paper, ROI represents the level of interest of all pixels in the form of a two-
dimensional matrix. The interest degree is calculated via top-down neural feedback from
the decisive pixels to all pixels of the original image. For the computer, the interest
matrix shows the region with the prominent feature that the CNN pays attention to when
predicting. For humans, the value of the interest matrix represents the degree of attraction
to the pixel by human eyes. On the basis of the probabilistic winner-take-all (WTA) model,
the incentive support method [30] can calculate the interest matrix with the same size as
the input image. In statistical concepts, the marginal winning probability P(oi) represents
the attention rate transmitted from the decisive pixels, i.e.,

P(oi) =
N

∑
j=1

P
(
oi
∣∣oj
)

(1)

where oi is a pixel of the overall pixel set in the input image, N is the number of the decisive
pixels in the upper layer generated by oi. In (1), P(oi) sums the pixel’s effect degree after
quantization between the two layers. In the excitation backprop algorithm, neurons trans-
mit signals through the excitation propagation. The marginal winning probability P(oi)
is obtained via the top-down connections based on the conditional winning probability
P(oi

∣∣oj ). If the excitation connection mi,j exists, P(oi
∣∣oj ) is defined as:

P
(
oi
∣∣oj
)
= mi,j ôicj (2)

where mi,j represents the connection weight between oi and oj, ôi means the response of oi,
and cj is the normalization factor. According to (1) and (2), the recursive propagation of
top-down signals can calculate the interest matrix of images layer by layer. The interest
matrix represents ROI in pixels when the CNN makes decisions. In this paper, pre-trained
ResNet50 is used to extract the interest matrix. Some examples are shown in Figure 2.
ROI of images is highlighted by the pseudo-color technique. In Figure 2, ROI not only
distinguishes between the foreground and the background, but also displays the degree of
neural attention.
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Figure 2. Examples of images with ROI. We apply pseudo-color technique to the interest matrix (JET
mapping). The colors are red, orange, yellow, green, blue, and purple in turn. Red indicates the
highest degree of interest and purple represents the lowest degree of interest.

3.2. Adaptive Filtering

An adaptive filter is designed to simulate human eyes based on the fovea visual
characteristics. The spatial domain filters conform to the convolution process of the CNN,
so the adaptive filter uses Laplace and Gaussian filters. The outermost edge of the image
is retained to keep the image size unchanged. As shown in Figure 3, adaptive filtering is
carried out on the basis of the interest matrix extracted in Section 3.1. First, the interest
matrix is processed via the min-max normalization method. The value of the threshold is
set as the average of the interest matrix. Experiments show that the average value accounts
for about 60% of the maximum value. Next, the interest degree of each pixel is compared
to the value of the threshold, selecting to sharpen or to blur.
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On the one hand, for the process of sharpening, the Laplace operator is used to
calculate the details of the images. The Laplace operator of 4 neighborhood pixels is
defined as:

gL4(x, y) = f (x, y− 1) + f (x, y + 1) + f (x− 1, y) + f (x + 1, y)− 4 f (x, y) (3)

where f (x, y) is the pixel located at coordinates (x, y). There is another kind of expression
of a Laplace operator. Its definition is shown below:

gL8(x, y) =
1

∑
i=−1

1

∑
j=−1

f (x + i, y + j)− 9 f (x, y) (4)

where gL8(x, y) means the Laplace operator with diagonal distribution. gL8(x, y) detects
more details and texture, combining fine-grained attributes of 8 neighborhood pixels. In
addition, irregular noise belongs to fine-grained information in the spatial domain. Due
to the noise’s impact on image assessment, the high-pass filter processes images directly.
The high-boost filtering combines the original images and the weighted results of Laplace
filtering. It linearly enhances the texture and the details of images, i.e.,

g(x, y, k, b) = f (x, y) + k·gL(x, y) + b (5)

where gL(x, y) represents the pixel after Laplace filtering and f (x, y) means a pixel of
the input images. b and k are coefficients of the high-boost filtering, and their values
depend on the degree of the neural attention. In (5), the high-boost filtering adds the
fine-grained texture (obtained by the Laplace operator) to the original pixel. The greater
interest degree causes the greater enhancement of texture and details. On the other hand, a
two-dimensional Gaussian low-pass filter (GIPF) is utilized for the blurring process:

G(x, y, σ) =
1

2πσ2 e
(x2+y2)

2σ2 (6)

where x and y are the coordinates of pixels, σ is the standard deviation of GIPF and its
value is determined by the interest matrix. According to (6), the smaller the value of σ, the
severer the peak’s change in Gaussian function, and the lower the degree of blurring. On
the contrary, a larger value of σ results a the higher degree of blurring. Table 1 shows the
specific parameters of the filters. Max is the highest interest degree of the input image and
threshold is set to choose the corresponding filter.

Table 1. The parameters in the adaptive filter.

Filter Size k b σ

The high-boost filter (including Laplace filter) 9 × 9 i−threshold
Max−threshold 2·(i− threshold) -

Gaussian filter 9 × 9 - - threshold−i
threshold−Min

As mentioned above, the adaptive filter in the spatial domain with contrast processing
achieves the goal of visual enhancement. Figure 4 shows some examples of this step.
Column 2 shows the quadrupling of the results. In Figure 4, the adaptive filter sharpens or
blurs the images to different degrees based on ROI. The process of sharpening leads to a
brighter foreground and sharper details. The result of blurring is weakening the presence
of the background. For computer vision, the adaptive filter increases the difference between
pixels of different interest levels based on the feedback after identifying the object. The
cooperation of neural attention in Section 3.1 and the adaptive filtering in Section 3.2
takes advantage of the underlying physiological responses that drive behavior in the
human consciousness.
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3.3. Features at Different Stages

Current studies have found that there are different meanings of features learned
by a CNN at different learning stages [13]. The shallow feature contains the low-level
information of images, such as color, edge, and texture. The deep feature perceives abstract
semantic information. Zhang et al. fuse an SPP layer and sobel-based attention layer. The
output of the SPP layer is the result of down sampling the input image [16]. Moreover,
they fuse the output of the feed-forward peripheral subnet and the output of the foveal
subnet [17]. The output of the feed-forward peripheral subnet is low-resolution, and it
goes through several convolution layers. The output of the SPP layer and the output of the
feed-forward peripheral subnet are shallow features with a few convolution layers [16,17].
Similar to InceptionNet [9], the SDFF module broadens the network structure, aiming
to improve the performance of models. In CNNs, VGGNet is a neural network stacked
with convolutional layers. VGGNet has a relatively simple network structure. We use
VGG16 [12] as the baseline and extract the shallow feature and the deep feature from
different convolution layers. Figure 5 shows an example of the results. The main parameters
of VGG16 are listed in Table 2. The max pooling layer after each convolution layer is omitted.
From the Conv3-256* layer, we extract the shallow feature, whose size is 28× 28× 256 after
passing through the max pooling layer. The deep feature is taken from the Conv3-512*
layer. Its size is 7× 7× 512. The above process is mathematically expressed as:{

I′1 = Pl1(ψ(W1·I0))
I′2 = Pl2(ψ(W2·I1))

(7)

where I0 represents an input image, I′1 and I′2 are the output of the transverse connection,
ψ(Wi·Ii−1) is the state function of VGG16, and Pli(Ii−1) is the feature pooling function with
i = 0, 1, 2. In (7), I1 is taken out when VGG16 is the state function ψ(W1·I0). Via the feature
pooling function Pl1(I1), the shallow feature I′1 is obtained. Similarly, the deep feature I′2 is
extracted using the method of transverse connection. Adding the shallow feature reduces
the influence of the deep feature on the results. In this way, the low-level and semantic
information of the images can be integrated to improve the network performance.
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Figure 5. The feature’s understanding of an image in VGG16. The information contained in the
features is attached to the original image with the incentive support method. It is confident for the
deep feature to recognize objects. The shallow feature captures the foreground by learning low-level
information. The asterisk * represents the layer that we take out the feature from.

Table 2. The main parameters of VGG16.

Layer a The Size of Input Data The Number of the Layer

Conv3-64 224 × 224 × 3 2
Conv3-128 112 × 112 × 64 2

Conv3-256 * 56 × 56 × 128 3
Conv3-512 28 × 28 × 256 3

Conv3-512 * 14 × 14 × 512 3
a The layers from Line 1 to Line 5 are the convolution layer of VGG16. The asterisk * represents the layer that we
take out the feature from.

3.4. Feature Fusion Unit

After extracting the features, SDFF module needs a feature fusion mechanism to
combine the shallow feature and the deep feature. Figure 6 shows FFU after fine-tuning.
PCFS means a pooling layer, a catenation layer, a fully connected layer, and a sigmoid layer
in turn. The pooling layer analyzes the statistical characteristics of the features. The next
layers calculate the weights (denoted by kx with x = s or d in Figure 6) of the pooled features.
s means the shallow feature and d is the deep feature. kx represents the contribution weight
of the feature to the information. Then, the shallow feature and the deep feature pass
through the max pooling layer and the average pooling layer, respectively. Max pooling
not only selects the data with higher recognition but also provides the nonlinearity factor
for FFU. The deep feature is the result that the CNN learns in the later stage, so it influences
the CNN greatly. Average pooling considers all of the deep information. Because the sizes
of the two pooling layers are 7× 7, the shallow feature and the deep feature are rescaled to
7× 7× 256 and 7× 7× 512. Afterwards, we take the dot product of each pooled feature
and its kx. Finally, the results are fused by the catenation layer. The main parameters of
FFU are showed in Table 3.
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Figure 6. The framework of FFU. PCFS analyzes the contribution of features. Meanwhile, features
pass through the max pooling layer and the average pooling layer, respectively. FFU dot pooled
features with their weights and then fuse the results via the catenation layer. The gray dotted box
represents the process of analyzing the contribution without changing the features numerically.

Table 3. The main parameters of FFU.

Layer The Size of Input Data The Number of the Layer

PCFS 28 × 28 × 256, 7 × 7 × 512 1
FC 7 × 7 × 256 + 7 × 7 × 512 1

3.5. EMD Loss

In the AVA dataset and Photo.net dataset, the score distribution is intrinsically ordered.
For ordered classes, the performance of classification models is better than regression
frameworks. However, the classification task ignores the relationships between classes of
score distribution. EMD loss penalizes misclassifications according to class distances. In
this paper, EMD loss is minimized to predict the score distribution directly. Because of
the impact of the number of assessors on credibility, the distribution is normalized. The
definition of EMD loss is shown below:

EMD(l, p) =

(
1
N

N

∑
i=1

∣∣CDFl(i)− CDFp(i)
∣∣r) 1

r

(8)

where CDFx(i) represents the cumulative distribution function as
i

∑
n=1

edn(1 ≤ i ≤ N). dn

means the nth normalized number of assessors. x = l, p (l is the label distribution and p is
the predicted distribution). In (8), EMD is the minimum distance between the mass of two
score distributions. We set r as 2 to punish the Euclidean distance between CDFs, aiming to
optimize the network.

4. Experiments

In this section, the performance of FF-VEN is evaluated on AVA dataset and Photo.net
dataset. Compared with previous studies, FF-VEN is a promising model for IAA.
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4.1. Datasets

AVA dataset [34]: the AVA dataset is a popular dataset for IAA because of the large
number of images, the diversity of content, and the consistency of data. It can be seen at
http://www.dpchallenge.com/ (accessed on 11 December 2021). For an image, there are
66 semantic labels, 14 style labels, and a label distribution with 10 scores (from 1 to 10). In
the AVA dataset, higher scores mean higher quality. For an image with the average score
in a certain interval, its score distribution tends to be Gamma or Gaussian [34]. Figure 7
shows some examples from the AVA dataset. On average, each image is assessed by
about 200 people, including professional image workers, photographers, and photography
enthusiasts. The AVA dataset contains more than 250,000 images. We removed the images
whose variance is high or whose average score is 5. Thus, 235,086 images were used for
training, 18,987 for verification, and 1000 for testing.
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Photo.net dataset [35]: the Photo.net dataset contains about 20,000 images. We col-
lected them from https://www.photo.net/ (accessed on 11 December 2021), a platform for
photography enthusiasts to share images. This website offers discussion forums, image
reviews, galleries, etc. People assess images based on aesthetics and creativity, with a
score between 1 and 7 for each. Photo.net explains that 1 means low quality and 7 means
high quality. Reasons for a high score include rich colors, interesting composition, and
eye-catching content. In the Photo.net dataset, the images are diverse, which is a challenge
for deep learning. Excluding invalid images and lost images, 16,663 images were obtained
by crawlers. 14,000 images were used for training, 1000 for verification, and the remaining
1663 images were used for testing.

4.2. Details of the Experiment

The size of the input images is 224 × 224 × 3. The images are resampled by the
ANTIALIAS algorithm of PIL package in PYTHON library. Batch size is 16, initial learning
rate is 1 × 10−3, momentum is 0.9, learning decay rate is 0.0002, and epoch is 10. The
number of iterations of the AVA dataset is 14,693 and that of the Photo.net dataset is 1042.
Our network is based on the open source TorhchRay, Caffe, and PyTorch frameworks. We
use a single NVIDIA GeForce GTX 1650 GPU.

Based on the direct prediction of the score distribution, we evaluate FF-VEN in the
classification task and the regression task. In the regression task, we use these indicators:
Pearson linear correlation coefficient (LCC), Spearman rank-order correlation coefficient

http://www.dpchallenge.com/
https://www.photo.net/


Electronics 2023, 12, 2526 11 of 18

(SRCC), mean absolute error (MAE), and root mean square error (RMSE). The evaluation
index formulas are shown as:

LCC = 1
N−1

N
∑

i=1

(
li−l
σl

)(
pi−p

σp

)
SRCC =

N
∑

i=1
(li−l)(pi−p)√

N
∑

i=1
(li−l)

2 N
∑

i=1
(pi−p)2

MAE =

N
∑

i=1
|pi−li |

N

RMSE =

√
N
∑

i=1
(pi−li)

2

N

(9)

where l is the label distribution and p is the predicted distribution, l is the average of l,
σl is the standard deviation of l, p is the average of p, σp is the standard deviation of p.
LCC applies to normally distributed data to predict the accuracy of the model. SRCC is
suitable for nonlinear data. It calculates the correlation of the scores in the corresponding
position in arrays between the prediction distribution and the label distribution. The
values of SRCC and LCC vary between 0 and 1. The larger value means the better model
performance. RMSE measures the deviation between the predicted results and the labels.
MAE calculates the average of residuals directly. MAE and RMSE are expected to be smaller.
In the classification task, we calculate Mean of the score distribution and compare it with
the value of the threshold. We define Mean as:

Mean =
N

∑
i=1

si × i (10)

where si is the score when the class of the distribution is i. N is 10 when AVA dataset and
7 when Photo.net dataset. The value of the threshold is set as 5, as Ma et al. did in [15].
Images with the value of Mean above 5 are regarded as high quality. Otherwise, they are
classified as low quality images. In the classification task, the selected index is Accuracy, i.e.,

Accuracy =
TP + TN

P + N
(11)

where P is positive cases, N is negative cases, TP is true and positive cases, and TN is true
and negative cases.

4.3. Comparison on AVA Dataset

We compare FF-NET with other models on AVA dataset. The results are shown
in Table 4. SPP-Net is a network with spatial pyramid pooling for the pretreatment
of images [36]. AA-Net is a cropping model with attention box prediction (ABP) [37].
Zhang et al. [17] recorded the evaluation results of SPP-NET based on VGG16 [12]. In the
classification task, the accuracy of FF-VEN is 83.64%, 9.23% higher than that of SPP-Net,
6.64% higher than that of AA-Net. Compared with SPP-Net, the LCC of FF-VEN is 31.7%
larger, the SRCC is 25.7% larger, and the EMD is 23.9% smaller. The MAE and RMSE
are slightly better than SPP-Net and AA-Net. The contrast between them suggests the
superiority of our network. We list three advanced methods: NIMA [10], ResNet [37],
and InceptionNet [9]. In their experiments, the network on the basis of InceptionNet
performed best, with an accuracy more than 2% greater than InceptionNet. Specifically,
NIMA outperforms InceptionNet by 2.08%, demonstrating that it is helpful to broaden the
network structure of CNN. The LCC and SRCC of GPF-CNN [17] are 2.6% higher and 2.1%
higher, which reveals that neural attention benefits the computer in assessing images from
the perspective of human eyes. For ReLIC++ [29], accuracy, LCC and SRCC are 82.35%,
0.76 and 0.748, respectively. This indicates the advantages of FFU. In addition, ReLIC++
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has a deeper understanding of the features of images. These successful cases verified
the rationality of FF-VEN. The accuracy of FF-VEN is 4.21% higher than InceptionNet.
Additionally, our network is superior to previous studies in the regression task. This shows
the effectiveness of FF-VEN.

Table 4. The results of comparison on AVA dataset.

Network Architecture Accuracy
(%) LCC SRCC MAE RMSE EMD

SPP-Net [36] 74.41 0.5869 0.6007 0.4611 0.5878 0.0539
AA-Net [37] 77.00 - - - - -

InceptionNet [9] 79.43 0.6865 0.6756 0.4154 0.5359 0.0466
NIMA [10] 81.51 0.636 0.612 - - 0.050

GPF-CNN [17] 81.81 0.7042 0.6900 0.4072 0.5246 0.045
ReLIC++ [29] 82.35 0.760 0.748 - - -

FF-VEN 83.64 0.773 0.755 0.4011 0.5109 0.044

4.4. Comparison on Photo.net Dataset

On the Photo.net dataset, FF-VEN is compared with GIST-SVM [38], FV-SIFT-SVM [38],
MRTLCNN [39], and GLFN [16]. The results are shown in Table 5. Marchesotti et al. [38]
used the generic image descriptors to assess images and treated IAA as a classification
problem. However, the indices of two kinds of SVM are around 60% for the classification
task. The accuracy of FF-VEN is 78.1%, which is obviously better than the networks based
on SVM. For the deep learning networks (MRTLCNN, GLFN), we all chose VGG16 [12] as
the baseline, similar to [16]. MRTLCNN is a multi-task framework that combines aesthetic
labels and semantic labels [39]. The accuracy of FF-VEN is 12.9% higher than that of
MRTLCNN and 2.5% higher than that of GLFN. In the regression task, LCC is 16.7% better
and SRCC is 18.3% better. This indicates that FF-VEN outperforms GLFN on small-scale
datasets such as the Photo.net dataset.

Table 5. The results of comparison on Photo.net dataset.

Network Architecture Accuracy
(%) LCC SRCC MAE RMSE EMD

GIST-SVM [38] 59.9 - - - - -
FV-SIFT-SVM [38] 60.8 - - - - -
MRTLCNN [39] 65.2 - - - - -

GLFN [16] 75.6 0.5464 0.5217 0.4242 0.5211 0.070
FF-VEN 78.1 0.6381 0.6175 0.4278 0.5285 0.062

4.5. Evaluation of Two Sub-Modules

The adaptive filter in 3.2 and feature fusion unit in 3.4 correspond to the VE module
and SDFF module, respectively. VE-CNN (VGG16) adds the VE module on the basis of
the original VGG16. It means that VE-CNN (VGG16) is the result of FF-VEN without the
adaptive filter. SDFF (VGG16) takes out the features in VGG16 and then fuses them. It
means that SDFF (VGG16) is the result of FF-VEN without feature fusion unit. We compare
two sub-modules with VGG16 [40], Random-VGG16 [22], Saliency-VGG [41], and GPF-
CNN (VGG16) [17]. The results on the AVA dataset are shown in Table 6. Saliency-VGG16
combined the global and local information according to the saliency map [40]. In Table 6,
Random-VGG16 outperforms VGG16, indicating randomness improves the performance
of models. In accuracy, Saliency-VGG16 is 79.19% and GPF-CNN is 80.70%. This shows
the importance of neural attention. VE-CNN (VGG16) is superior to previous studies
in the regression task. LCC is 7.5% higher than GPF-CNN (VGG16) and SRCC is 6.25%
higher. This suggests that adaptive filtering based on ROI helps FF-VEN to process the
details of images. We use ResNet50 to extract ROI from images. The neural attention of
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ResNet50 benefits the network performance of VGG16. SDFF (VGG16) performs slightly
better than GPF-CNN (VGG16) in the classification task. Additionally, accuracy is 7.06%
better. However, it does not perform as well as VE-CNN for LCC and others. This indicates
that SDFF module broadens the network structure of VGG16, deepening the memory of
FF-VEN and reducing the number of required samples.

Table 6. The experimental results of sub-modules on AVA dataset.

Network Architecture Accuracy
(%) LCC SRCC MAE RMSE EMD

VGG16 [40] 74.41 0.5869 0.6007 0.4611 0.5878 0.0539
Random-VGG16 [22] 78.54 0.6382 0.6274 0.4410 0.5660 0.0510
Saliency-VGG16 [40] 79.19 0.6711 0.6601 0.4228 0.5430 0.0475

GPF-VGG16 [17] 80.70 0.6868 0.6762 0.4144 0.5347 0.0460
VE-CNN (VGG16) 81.03 0.7395 0.7185 0.4073 0.5279 0.0441

SDFF (VGG16) 81.47 0.7119 0.7021 0.4103 0.5317 0.0462

4.6. Quality-Based Comparison

As mentioned in [34], the score distribution of images with Mean in the range of
[0, 4) or [7, 10] tends to be Gamma. The number of those images account for 4.5% of all
images. If Mean in the range [4, 7), the score distribution of the corresponding image is
largely Gaussian. Inspired by this, we divide AVA dataset into three parts depending
on Mean and conduct the experiments respectively. The results are shown in Table 7. In
the interest of fairness, we adopt VGG16 as the basic model. For Mean of [4, 7), MAE of
FF-VEN is 0.3748 and LCC is 0.8945. It indicates that the larger the number of images, the
more consistent the scores predicted by CNN with the labels. As the score distribution
of most images is Gaussian, the prediction of CNN tends to be Gaussian. As a result, the
performance of CNN is poor in assessing images with Gamma distribution. It is worth
noting that the accuracy of the three models is greater than 90% for images with Mean in
[7, 10]. Because professional images are excellent in composition, tone, and other aspects,
CNN is more likely to distinguish them. The accuracy of FF-VEN is 3.78% higher than
NIMA [10] and 2.07% higher than ReLIC++ [29]. For professional images, this suggests
that FF-VEN captures the object’s contour and increases the gap between the foreground
and the background effectively.

Table 7. Evaluation results for images with Mean in different intervals.

Mean Network Architecture Accuracy
(%) LCC SRCC MAE RMSE EMD

NIMA [10] 78.46 0.6265 0.6043 0.5577 0.6897 0.067
[0, 4) ReLIC++ [29] 80.02 0.6887 0.6765 - - -

FF-VEN 80.59 0.7095 0.6971 0.5037 0.6139 0.059

NIMA [10] 80.43 0.7271 0.7028 0.4037 0.5256 0.048
[4, 7) ReLIC++ [29] 81.15 0.8733 0.8547 - - -

FF-VEN 81.33 0.8945 0.8831 0.3748 0.4851 0.039

NIMA [10] 94.93 0.5936 0.5645 0.5927 0.7314 0.073
[7, 10] ReLIC++ [29] 96.64 0.6223 0.6084 - - -

FF-VEN 98.71 0.6113 0.6492 0.5343 0.6457 0.061

Figure 8 shows some examples of images with Mean in different intervals for com-
parison. It can be seen that the difference between the distribution predicted by FF-VEN
and that of the labels is smaller than the other two. Images with Mean in [7, 10] are less
controversial. Most people give these images high scores. The composition of professional
images is abstract and artistic, which is difficult for CNN to learn. From the above exper-
iments, it seems that the VE module enhances the features of images based on human
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visual characteristics, leading to improving the prediction confidence of FF-VEN. Figure 9
shows some failure cases of FF-VEN. The network we trained does not perform well on
images with very non-Gaussian distributions, such as bimodal or very skewed distributions.
However, the Gaussian functions perform adequately for 99.77% of all the images in the
AVA dataset [17].
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4.7. Different Shallow Features

We conducted ablation studies on other layers in VGG16. According to the network
characteristics of VGG16 in Table 2, the deep feature is the final output of VGG16, that is,
without considering the layer Conv3-512 which input size is 14 × 14 × 512. For the other
four network layers, the output data are assumed to be shallow features. We keep the other
network structures of FF-VEN unchanged and fuse these shallow features and the deep
feature separately. The experimental results on AVA dataset are shown in Table 8. It shows
that the output of the two specific layers, Conv3-256 with input size 56 × 56 × 128 and
Conv3-512 with input size 14 × 14 × 512, can give the FF-VEN the optimal performance.
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Table 8. Experiments in the shallow features in other layers of VGG16.

Layer Accuracy
(%) LCC SRCC MAE RMSE EMD

Conv3-64 80.21 0.692 0.682 0.4163 0.5376 0.046
Conv3-128 81.47 0.716 0.691 0.4025 0.5284 0.045
Conv3-256 83.64 0.773 0.755 0.4011 0.5109 0.044
Conv3-512 82.34 0.751 0.737 0.4047 0.5201 0.044

4.8. Model Size Comparison

Timings of one pass of NIMA (VGG16) [10] models on an image of size 224 × 224 × 3
are 150.34 ms (CPU) and 85.76 ms (GPU). Additionally, it has 134.3 million parameters.
In ReLIC++ [29], the attention map is of size 49 × 49. The training time cost of Full
GoogLeNetV1-BN [23] is 16 days. The model size is 82.56 million. Training ILGNet-Inc.V1-
BN [25] costs 4 days. In manuscripts, the model size of FF-VEN is 14.7 Million. Evidently,
FF-VEN is significantly lighter than ReLIC++. The SDFF module improves the model size
by about 119.6 M, compared to NIMA (VGG16). Training FF-VEN costs 4 days, which
is faster than Full GoogLeNetV1-BN. In general, FF-VEN is light-weight and achieves
inspiring aesthetic prediction accuracy, as reported in Table 9.

Table 9. Comparison of model size.

Model Size

NIMA (VGG16) [10] 134.3 M
GoogLeNet [23] 82.36 M

ReLIC++ [29] 17.51 M
FF-VEN 14.7 M
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5. Conclusions

FF-VEN proposed in this paper considers neural attention, human visual characteris-
tics, and image understanding. It consists of a VE module and SDFF module. According
to ROI extracted by neural feedback, the VE module not only selects the Laplace filter
or GLPF but also adjusts the parameters of filters. It enables the computer to simulate
human eyes when assessing digital images. The SDFF module takes out the shallow
feature and the deep feature via transverse connection and fuses them on the basis of
information contribution maximization. The results of comparison on the AVA dataset and
Photo.net dataset demonstrate the superiority of FF-VEN. In the future, we aim to analyze
the network structure of ResNet, InceptionNet, and other CNN. To make the method more
comprehensive, we intend to focus on more factors, such as image themes, photography
aesthetics, and human emotions.
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