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Abstract: Artificial intelligence technology in the context of smart manufacturing uses manufacturing
data to enable the automatic detection, classification, and identification of products in the production
process, reducing production costs and human consumption, thereby improving production efficiency
and product quality. Federated learning enables the distributed implementation of AI technologies,
keeping data local to avoid privacy leaks. However, data heterogeneity factors have an impact on
federated learning in a manufacturing context, and this paper proposes a customer degree selection
method based on model parameter variation. The method relies on transmitting the local model
changes in the participants to reflect the data characteristics, calculates the model similarity of the
participants using graph theory and similarity, and uses the Top-K mechanism to filter the original
participant set through the similarity scores of graph nodes to reduce the influence of heterogeneity
factors in the participant set and maximize the training effect and accuracy of federated learning. The
effectiveness of this method was verified by using the Dirichlet distribution to perform non-IID data
partitioning on the power system attack dataset and the hard disk fault detection dataset.

Keywords: intelligent manufacturing; federated learning; data heterogeneity; client selection

1. Introduction

As manufacturing becomes an increasingly significant part of economic impact, mod-
ern manufacturing is creating new products or services with characteristics such as cus-
tomization, adaptability, and reliability at an unprecedented scale. These new products
or services have become an integral part of our daily lives through the transformation of
fixed and cumbersome traditional manufacturing into rapid, customized additive manu-
facturing [1] and digital and intelligent smart manufacturing. While the functional and
scalable nature of the product or service makes manufacturing systems increasingly com-
plex, Industry 4.0 is driving manufacturing to become a new generation of cyber-physical
systems, moving towards enabling cyber-enabled smart manufacturing [2]. Industrial
infrastructure, smart manufacturing technologies, and the large-scale digitization of as-
sets and processes across industries are driving manufacturing into a new era. The drive
and construction of smart manufacturing systems requires the digitization of modern
manufacturing through data-driven analytics tools such as artificial intelligence, machine
learning, digital twins, cloud computing, and big data analytics [3–5]. These rapidly
evolving technologies, coupled with the exponential growth of manufacturing data, have
enabled data-hungry artificial intelligence and machine learning to develop at an unprece-
dented scale [6]. The distributed nature of modern industrial IoT systems and traditional
centralized machine learning techniques pose a direct threat to data sharing. Take, for
example, the task of target identification and classification in smart manufacturing, which
requires the upload of raw data collected by different cameras to a centralized server (e.g.,
a cloud server), which can lead to the potential leakage of confidential information (e.g.,
the product being manufactured or personal information collected) during transmission.
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The concept of federated learning has recently been introduced to facilitate knowledge
sharing between multiple smart end devices while protecting data privacy by avoiding
the sharing of raw data between the end devices and the central server. In a federated
learning-based smart manufacturing system, multiple cameras can collect product images
and train a local model individually. By not transferring the raw data, only the local model
parameters are encrypted and uploaded to a central server to form a global model. By
combining multiple local models, the global model is expected to provide more generalized
and accurate predictions.

Unlike general distributed collaborative modelling scenarios in data center-based
environments, federated learning in smart manufacturing scenarios usually faces complex
computing environments with heterogeneity, whose heterogeneity can adversely affect the
effectiveness of models in federated scenarios. The existing approaches to deal with data
heterogeneity factors often have many constraints and limitations or lack certain generality
for complex smart manufacturing scenarios that cannot balance computational overhead,
accuracy assurance, etc. For example, the FedAvg algorithm uses a random selection
strategy to filter clients in order to reduce the computational overhead, but this random
selection of clients can exacerbate the adverse effects of data heterogeneity [7]. Therefore,
this paper considers the industrial environment oriented towards smart manufacturing
and federated learning to face the problem of data heterogeneity according to the business
scenario and proposes a novel client selection method based on the variation in model
parameters to filter the initial client set; in summary, the contributions of this paper are
as follows:

The impact of manufacturing data on the performance of federated learning is verified
through experimental analysis.

To reduce the impact of data heterogeneity, a client selection method based on model
parameter variation is designed to select a more similar set of clients using graph theory
and similarity calculations to reduce the model differences between clients and each other.

Experiments are conducted to classify different manufacturing data using Dirichlet
distribution to verify the effectiveness of the method used in this paper.

2. Related Work

Since its introduction, federated learning has gained widespread interest and has been
used in many scenarios. A major advantage of federated learning is that it addresses the
problem of data aggregation and therefore enables the design and training of cross-device
machine learning models and algorithms across different industries and sectors. In partic-
ular, applying machine learning models to mobile, federated learning has demonstrated
excellent training capabilities and robustness [8]. In addition, federated learning can greatly
improve the performance of machine learning models and algorithms for some users, who
often cannot provide enough personal data to build accurate local models. However, feder-
ated learning focuses on learning the local data of all participating users (devices) through
a distributed architecture to obtain high-quality global models, and device performance
differences do not capture the personal information of each device, resulting in degraded in-
ference or classification performance [9]. In addition, traditional federated learning requires
all participating devices to agree on a common model for collaborative training, which is
impractical in the context of real, complex IoT applications. The FedAvg algorithm [10]
demonstrates that random customer selection is effective when all customers are available
and adequately trained, but is not optimized for the non-IID problem, resulting in low
model accuracy. To improve the performance when federated with heterogeneous data,
Li et al. [11] proposed FedProx, which introduces a proximal term to restrict local updates
to more closely resemble the global model. Traditional federated learning requires all
participating devices to agree on a common model for collaborative training, which is
impractical in realistic and complex IoT application environments. Nishio et al. [12] first
proposed a FedCS federated learning client selection algorithm for edge devices based
on system heterogeneity, the main idea of which is that the client sends its resource infor-



Electronics 2023, 12, 2532 3 of 15

mation (communication status, computing power and resource size, etc.) to the server,
which estimates the time required for the update and upload steps based on the received
information and determines which users participate in the training. However, this method
ignores the effect of data heterogeneity and cannot be optimized by selection methods for
data heterogeneity. In the FedSim algorithm [13], pairs of client similarities are used for
clustering, but it makes full use of the algorithm’s local model parameters’ client and uses
clustering as a post-federated learning processing technique, whereas we only use some of
the local model parameters for client selection at one time. Wang et al. [14] proposed a new
federated learning scheme that uses cosine similarity to remove invalid models and clusters
devices by vectorizing local and global model parameters. Our proposed method makes it
simple to compute similarity using local model parameters and requires less computational
and communication power.

In summary, the research and analysis verifies that random client selection can have
an impact on federated learning, and that studies that generally address a particular
aspect ignore information about the impact of the relationships between clients. This
paper therefore focuses on client selection methods that consider the similarities between
all clients and methods that improve the efficiency and accuracy of federated learning
convergence in non-IID scenarios.

3. Background
3.1. FL Optimization Objectives

Federated learning is a distributed machine learning framework that enables partici-
pating users to collaboratively train a shared global model on a virtual collection of local
data, without having to move the data out of the local environment.

Federated learning can be defined as follows. Assume that there are N data holders
in the federated learning process; all of the data holders can be represented by
C = {c1, c2, . . . , cN}(‖C‖ = N). Before they are federated for modelling, the total set of
data in the system is defined as S, i.e., S = (s1, s2, . . . , sN}, which contains a total data
size of D = ∑N

n=1 Dn. After these data holders have been federated, with each holding
a local dataset sn(n ∈ [1, N]) of size Dn, the resulting model can be defined as Modelfed,
and the performance of the model can then be expressed in terms of model accuracy
Per f ormance f ed, and throughout the federated learning process. Each data holder ci does
not share its data directly with other holders. Federated learning overcomes the privacy
and communication challenges compared to centralized learning by eliminating the need
to aggregate all datasets and only using local machine learning or deep learning models
to learn from the dispersed data. The model obtained by aggregating data for centralized
learning, as opposed to federated learning, can be defined as Modelcent, and the perfor-
mance accuracy of the same obtained model is Per f ormancecent. Making the gap between
the Per f ormance f ed of Model f ed and the Per f ormancecent of the model Modelcent sufficiently
small is the optimization goal of federated learning, as shown in Equation (1):∣∣∣Per f ormance f ed − Per f ormancecent

∣∣∣ < δ (1)

δ is an arbitrarily small positive number. Because of the different data distributions
held by data owners in real-world scenarios and the errors that arise from many calculations
for communication problems or to ensure model efficiency, this is the difference between
federated and centralized learning, and minimizing errors and improving accuracy is
where federated learning algorithms excel.

The main steps in federated learning can be divided into four parts: local training,
passing updates, model aggregation, and gaining benefits. Figure 1 shows the structure of
a federated learning framework in which multiple data-holding users are trained locally
by holding data to obtain a local model. The function of the central server in federated
learning is to coordinate a federated learning process consisting of multiple training rounds,
and the server passes the current global model to the data holders at the beginning of each
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training round. Therefore, after receiving the passed updates, the central server aggregates
the trained local models and updates them to the local models of each data-holding user to
gain a better global model.

Figure 1. Federated learning framework.

For local model training, the weights ω of the model obey a certain real number space
and the loss error obtained when fitting to the i− th data sample point

(
Xi, Yj

)
is shown in

Equation (2):
fi(ω) = `

(
Xi, Yj; ω

)
(2)

When training the model, an optimal algorithm is used to continuously optimize this
loss function in order to obtain the best model parameters, and the model training, as an
optimization problem, is defined by the optimization objective, as shown in Equation (3):

min
w

f (ω) =
1
D

D

∑
n=1

fi(ω) (3)

Thus, for each federated learning client, the data it holds can be viewed as a subset of
the overall dataset, and the loss it causes is shown in Equation (4):

Fn(ω) =
1

Dn
∑

i∈Sn

fi(ω) (4)

Thus, the federated learning global optimization objective in Equation (3) can be
rewritten using Equation (5), as follows:

min
ω

f (ω) =
N

∑
n=1

Dn

D
· Fn(ω) (5)

3.2. Design Motivation

The federated training of clients leads to biased aggregation models due to the dif-
ferences between local models caused by the heterogeneous data in the manufacturing
industry. In order to obtain better aggregation models, a combination of clients with high
data correlation and low variability between clients needs to be constructed; this will result
in a better similarity between the trained models, and the resulting federated learning ag-
gregation models will be less affected by bias in the data distribution. Since the assumption
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in federated learning is that the data are not local, only the model information and parame-
ters can be passed on. Client-side local model training yields iterative parameter changes
that reflect the impact of the data characteristics on model performance. Compared to
Euclidean distance, which has the problem of dimensional catastrophe in high-dimensional
space, cosine similarity is more applicable than Euclidean distance when dealing with
high-dimensional data; thus, calculating the similarity between federated learning clients
through cosine similarity has lower computational complexity. The relationship between
nodes and edges in graph theory can be mapped to the connection between all clients of
federated learning, and the graph model built by using clients as nodes can effectively
associate the clients and facilitate the relational operation between them.

4. Algorithm Design

This section first presents an analytical introduction to the impact of manufacturing
data heterogeneity on federated learning and then describes the client selection method
designed in this paper.

4.1. Data Heterogeneity Analysis

Previously, both machine learning and deep learning held the fundamental assump-
tion that data were uniformly and homogeneously distributed. In contrast, actual industrial
scenarios produce data that are often heterogeneous and uneven. In the context of smart
manufacturing, there are two main factors of data heterogeneity that affect the performance
of federated learning models: heterogeneity due to differences in the distribution of client
data and unevenness in the number of samples. The impact in terms of their data hetero-
geneity is mainly due to the local data distribution bias caused by differences in the amount
of sample data in certain categories. Figure 2 illustrates the distribution differences due to
the data heterogeneity factors of participants in federated learning.

Figure 2. Distribution of client-side data heterogeneity in federated learning.

In federated learning in the context of smart manufacturing, the distribution of training
datasets kept by each computing node usually does not satisfy the assumption of indepen-
dent homogeneous distribution, which is very different from the traditional distributed
machine learning environment. In fact, the heterogeneity of data distribution in federated
learning can be seen as a situation where the distribution of data across clients does not
meet the independent homogeneous distribution condition. FedAvg, a classical algorithm
in federated learning, presents a key problem when faced with data heterogeneity: when
the global model is optimized using different local objectives, the average of the generated
client updates (server updates) will be far from the true global optimum. The cause of this
inconsistency is known as client drift [15] and is shown in Figure 3.
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Figure 3. Federated learning of update directions for global and client-side models on different
structured data.

4.2. Client Selection Method Based on Variations in Model Parameters

The key to the client selection algorithm based on model parameter changes is similar-
ity calculation and graph theory. This section establishes a clear client selection algorithm
based on cosine similarity and graph theory. The basic idea of this algorithm is that, in
compliance with the setting that federated learning only passes parameters but not data, the
data characteristics are reflected by passing the client model parameter changes, and a more
accurate similarity calculation is performed by the server on the parameter information
using graph theory and similarity, allowing for each client to search for other clients that
are more similar in terms of data distribution and to interact with each client more, helping
to filter for a larger and more similar form of training. This helps to filter larger and more
similar training data to avoid skewing the model, thus improving the training effectiveness
of the model.

The client selection algorithm based on the variation in model parameters is divided
into a total of four steps, as shown in Figure 4, as follows:

Step 1: Server information collection. In order to assess the similarities between clients,
it is intuitive to collect data information from each client; however, subject to the constraint
that federated learning only passes parameters and not data, relying on the collection of
model parameter changes to reflect data information naturally incorporates our solution for
client similarity measurements. The process of picking a collection of clients first requires
the collection of client information, and at this stage, the aggregation server must obtain
information on the model transformations of the clients. The client’s local model is iterated
locally via Equation (6), and the difference in model parameters between the first and last
local iteration of client c’s model parameter ωc is denoted as ω̂c , which represents the
parameter change in client c’s model parameter ωc that occurs between e epochs. The model
parameter changes

{
ω̂1, ω̂2, ω̂3, . . . , ω̂n

}
for N clients are obtained through local training,

performed by the clients in parallel, and the aggregation server collects this information.

ωk
t = ωt−1 − η · ∇L(ωt−1) (6)

Step 2: Client-side construction of the undirected graph. Since similarity calculations
can only reflect the relationship of a given vector, but clients in the manufacturing industry
have complex associations, direct similarity calculations regarding the changes in client
model parameters collected in Step 1 cannot take more complex relationships into account.
The relationship between nodes and edges in graph theory can help to uncover more
complex connections, so this paper uses the construction of undirected graphs with clients



Electronics 2023, 12, 2532 7 of 15

as nodes, combined with similarity calculations to improve the accuracy and interpretability
of the calculations. The graph is constructed using the total number of clients, N, as
the number of nodes in the undirected graph, with each node representing each client
C = {c1, c2, . . . , cn} in federated learning. A complete graph G is constructed, with edges
corresponding to different nodes in the graph. The aggregation server processes the
information that was collected about the changes in the model parameters ω̂. The parameter
changes represent the node values of each client separately in the undirected graph.

Step 3: Similarity and graph node degree calculation. The node values derived from
Step 2 for each client are used to calculate the weights cos θij(i 6= j, i, j ∈ n) of the edges
between the client nodes using the multi-dimensional cosine similarity in Formula (7),
which maps the model similarity between two nodes, i.e., two clients, and can be stored
in the adjacency matrix, as shown in Equation (8). The undirected complete graph G
generated by Step 2 is formed into a weighted undirected complete graph G̃ based on the
weights cos θij between each node, and the weights between the node and all its connected
nodes are calculated using Equation (9) to obtain the degree di of the node and indicate the
strength or importance of the connection between the node and other nodes.

cos θ =
Σn

1 (Ai × Bi)√
Σn

1 A2
i +

√
Σn

1 B2
i

(7)

 0 . . . cos θ1n
...

...
...

cos θn1 . . . 0

 (8)

di = (cos θi1 + . . . + cos θin) (9)

Step 4: Top-K output client set. Statistics of the degree of each node in the weighted
undirected complete graph, according to the weights of the degree, as in Step 4 in Figure 4.
Apply the Top-K selection mechanism, set the size of the number of output sets according
to the hyperparameters β ∈ (0, 1) to filter the original client, and select the client set
CK(CK ⊂ C) with closer similarity, where K indicates the number of sets CK, with K = β ·N,
which can be realized according to Formula (10) in the original client set C for selection.

Ck
K,G̃← C (10)

Figure 4. Process of client selection methods based on model parameter changes.

5. Experimental Setup and Results
5.1. Data Acquisition

A total of two means of manufacturing classified data were used for the experiments
in this paper, as follows. The power system attack dataset [16] was provided by Mississippi
State University, which was generated by simulating a power system with complex elec-
tronic equipment and monitoring system interaction. The power system structure is shown
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in Figure 5. G1 and G2 are power generators, IED1 through IED4 are Intelligent Electronic
Devices (IEDs) that can switch the breakers (R1 through R4) on or off, and the substation
network is responsible for controlling the relays and transmitting information. The IEDs
use a distance protection scheme, which trips the breaker on detected faults, regardless
of whether they are valid or faked, since they have no internal validation to detect the
difference. The monitoring system records not only the physical information about the
operation of each of the four relays, but also the panel, alarm, and relay log information of
the corresponding relays. In addition to the normal operating outage events of this power
system, as the substation is connected via the network, attackers can rely on the network
to inject attack commands and disguise the system outage, thus disrupting the staff and
ensuring that they are not able to identify the state of the outage event being attacked,
which disrupts the normal operation of the system and causes the industrial data records
to be untrue. The dataset contains 37 power system event scenarios, and the dichotomous
dataset is a classification of the 37 event scenarios into attack scenarios (28) and normal
events (9). Each data sample contains 128 feature messages, of which 116 feature messages
consist of four phasor measurement units (PMUs); each PMU contains 29 types of mea-
surement. The index of each column is in the form of ‘R#-Signal Reference’ that indicates a
type of measurement from a PMU, specified by ‘R#’. For example, ‘R1-PA1:VH’ means the
Phase A voltage phase angle measured by PMU IED1. After that, there are 12 columns for
control panel information, Snort alerts, and relay logs of the 4 PMU/relay.

Figure 5. An intelligent power system framework for power system attack datasets.

The Hard Drive Failure Detection Dataset [17] is available in BackBlaze’s data center
and the data collect the S.M.A.R.T. attributes of the ST4000DM000 model hard drive, a
self-diagnostic technique that can be used to predict hard drive failures. This dataset
contains information including the drive’s SMART attributes, as well as characteristics
such as model, serial number, date, and capacity. After the dataset has been filtered and
processed for valid information, the hard drive failure detection dataset has a feature count
of 11, with two states of “normal” and “failed” hard drives.

5.2. Dirichlet Divides Heterogeneous Data

The Dirichlet distribution is a common multidimensional continuous distribution
that plays an important role in probability statistics and is usually denoted by Dir(α). Its
parameters are controlled by the positive real vector α, and the distribution of this vector is
also a probability distribution, so the term “distribution of probability distributions” can
also be used to describe the Dirichlet distribution. For the federated learning experimental
scenario, the IID dataset is sampled according to the Dirichlet distribution to obtain the
non-IID dataset. If there are N category labels and K clients, the samples of each category
label need to be divided on different clients in different proportions. Let matrix X ∈ RK∗N

be the category label distribution matrix, whose row vector XN ∈ RK represents the
probability distribution vector of category N on different clients (each dimension represents
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the proportion of samples of category N divided on different clients), and this random
vector is sampled from the Dirichlet distribution. Therefore, the local training datasets held
by each participant can be obtained as non-IID datasets by sampling the source datasets
with the same probability as the probability of the parameter vector q(qi ≥ 0, i ∈ [1, N]). A
sample of participant non-IID data can be generated by sampling the probabilities of the
Dirichlet distribution corresponding to Equation (11):

q ∼ Dir(αp) (11)

By varying the values of the parameters, different participant local datasets can be
sampled according to the probability distribution of Equation (11). At α→ 0, the local data
sample set for each participant is simply a random sample from a class of samples. At
α→ ∞, the prior distribution of the source dataset coincides with the distribution of the
local data generated by each participant. That is, the smaller the α, the more dispersed the
distribution; the larger the α, the more that distribution tends to be uniformly distributed.
Therefore, if the prior distribution is IID, the distribution q becomes increasingly different
as α becomes smaller; as α increases, the distribution q becomes increasingly similar.

The parameter α can have an impact on the range of bias in data generation. Taking
the manufacturing data power system attack dataset [15] as an example, the client_id
axis in Figure 6 indicates the ID of each participant in federated learning, the label axis
indicates the label type of each participant’s sample set, and the number indicates the
number of data samples in the corresponding category for each participant. In Figure 6a,
when α is set to 1, the data distribution of each participant is heavily skewed, with large
differences in the number of samples for different participants in the same category, and
the distribution of categories among different participants is also different. When α is taken
as 10 in Figure 6c, the data distribution across participants is skewed, but the variation is
small and participants still hold different numbers of category labels. For α value of 50 in
Figure 6d, the data distribution across participants in this scenario is slightly skewed and
the variation between participants is small, close to the distribution state of the IID dataset.

Figure 6. Data distribution of parameter α at different settings.
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5.3. Experimental Configuration and Evaluation Indicators

For the experimental environment, a mobile workstation was used to simulate the
experiments, which was configured with a 7th generation Intel processor i7-11850H at
2.5 GHz, a graphics card of Nvidia GTX 3080, and an operating system of Windows 10
64-bit. The development tools used were Python 3.7, the neural network library Keras,
and the experiments were programmed using a single machine system model federated
learning training process. For evaluation metrics, the models are evaluated in this paper on
both datasets using Accuracy, which is calculated as follows:

Accuracy =
TP + TN

TP + FP + TN + FN
(12)

where TP, TN, FP, and FN denote true examples, true counterexamples, false positive
examples, and false counterexamples, respectively.

5.4. Experimenting with Data Heterogeneity in Smart Manufacturing

In this section, two separate experiments are conducted to better explore the effect of
manufacturing data on FedAvg. Firstly, an experimental analysis of the effect of IID and
non-IID data on FedAvg under different parameters is presented, and then the effect of
different degrees of distribution on FedAvg under the non-IID setting is verified.

(1) Effect of IID and Non-IID data on FedAvg
IID data are a strong assumption in machine learning, especially since manufacturing

data tend to exist as non-independent identical distributions. To verify the fact that the
federated learning algorithm has significant accuracy degradation on non-IID manufac-
turing data, this section conducts comparative experiments on the power system attack
dataset [15], which is described in detail in Section 4. The experiments are set up with five
federated learning clients, and non-IID is partitioned according to a Dirichlet distribution
with hyperparameter α = 1. The number of federated global communications was set
to 50, the classical FedAvg algorithm was used as the federated learning algorithm, and
the MLP model was chosen for the network model. Three parameter settings were used
experimentally for non-IID, as shown in Table 1.

Table 1. Experimental setup for IID and non-IID.

Set Number Data Distribution BatchSize (B) Epoch (E)

0 IID 10 1
1 Non-IID 10 1
2 Non-IID 10 5
3 Non-IID 20 1

The specific experimental results are shown in Figure 7, where Figure 7a shows the
accuracy variation graphs based on FedAvg using the MLP local model on the power
system attack dataset, and Figure 7b shows its loss degradation variation. There are three
different non-IID parameter settings in Figure 7a, with both ordinal numbers 1 and 3
showing some reduction in accuracy compared to the independent identically distributed
setting of ordinal number 0, with an average drop in accuracy of 6.12% and 5.98% in the
global iteration, respectively. Although the accuracy of ordinal number 2 is higher than
the IID data in some of the communication rounds, its training process becomes more
oscillating, with an average reduction in accuracy of 6.03% compared to the IID setting in
the global iteration. The non-IID data in Figure 7b showed a higher rate of decline than
the IID data setting for all three parameter settings. Observing the curve changes, it can
be seen that the IID data with the ordinal number 0 setting showed a stable loss decline
with little fluctuation. For the non-IID data, the loss variation curves for each parameter
setting fluctuated to varying degrees, with the largest oscillation in loss decline being
noted for the No. 2 setting. The above experimental results can be interpreted as follows.
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Due to the different distributions of the non-IID data samples, the increased dispersion of
data features may cause some samples to appear more frequently and some samples to
appear less frequently. The model does not balance the contribution of each sample well
during training and the features are not sufficiently learned, resulting in overfitting of the
model to the samples that occur more frequently and large differences between local model
parameters, causing large fluctuations in accuracy and loss variation.

(a) (b)

Figure 7. Performance of FedAvg’s algorithms for different sampling methods (IID and non-IID) on
power system attack datasets.

(2) Effect of different degrees of Non-IID data on FedAvg
In addition, we also verified the effect of different degrees of non-independent identi-

cally distributed data on FedAvg by varying the hyperparameters α dividing different non-
IID data experiments with Dirichlet. A total of four different degrees of non-independent
identically distributed data were set up for the experiments, i.e., the hyperparameters α
were set to 1, 5, 10, and 50, respectively, and the data distribution is illustrated in Figure 6,
where BatchSize was set to 10 and epoch to 1.

The performance of the FedAvg algorithm for different data distributions under the
power system attack dataset is shown in Figure 8. The rising variation in the accuracy
of FedAvg is illustrated in Figure 8a. As the parameter α becomes larger, the more ho-
mogeneously the data tend to become distributed and the better the model it obtains.
This phenomenon can be interpreted as follows. As the data become more correlated, the
relationships between them become more complex and subtle. The model can gain more
information from these small differences, and this information can help the model to better
capture the relationships between the data, and thus improve the algorithm performance.
As can be seen in Figure 8b, as the loss decreases as the parameter α changes, the smaller
the α value, the more the data tend to be non-independently and identically distributed,
and the larger the loss value obtained from training based on the data. This result can be
explained by the fact that when the data are non-independently and identically distributed,
the correlation between them may change, leading to larger errors in the model during
training; therefore, the training loss increases. For example, when α = 1, these data tend to
be non-independently and identically distributed to a large extent, and it is difficult for the
model to capture the correlation between the complex data; therefore, the model has large
fluctuations in loss during training.

The FedAvg algorithm uses a gradient descent machine learning optimization algo-
rithm, where each sample of data in the stochastic gradient descent algorithm represents
the entire data distribution; because the training set for each client is IID, the gradient
information calculated from the training set can also represent the gradient values of all the
data. However, for non-independently distributed data, the gradients cannot be derived
without error for all the data. In the FedAvg algorithm, each client performs the gradient
descent algorithm based on the held data only, and the direction of parameter updates
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for each client will be skewed under non-independently and identically distributed data,
leading to a reduction in model training efficiency.

(a) (b)

Figure 8. Algorithmic performance of FedAvg using power system attack datasets in different
non-IID.

5.5. Experiments Comparing Client Selection Methods

This section tests the training effectiveness and convergence of the methods in this
chapter by comparing the random selection strategy of the FedAvg algorithm. To fairly ver-
ify the differences between this paper’s method and FedAvg, we set the parameter β of this
paper’s method FedMPCCS and the corresponding parameter C of FedAvg separately to
ensure that the number of clients being selected was the same. The local model was chosen
as MLP, consisting of an input layer, two implicit layers (containing 256 and 128 neurons,
respectively), a dropout layer (where half of the neurons are inactivated), and an output
layer. The training parameters were the same for each client, with LearningRate = 0.001,
BatchSize = 100, Epoch = 10. Five federated learning clients were set up, and the data
heterogeneity of each client was divided by Dirichlet distribution according to α = 10 to
construct a local dataset with uneven label categories. Since different datasets have differ-
ent communication rounds for convergence in federated learning, global communication
rounds of 200 and 50 were set on the power system attack dataset and the hard disk failure
detection dataset, respectively.

Figure 9 shows the loss drop curves of FedMPCCS and FedAvg for the same number
of clients on the power system attack datasets. In Figure 9a, FedMPCCS suffered from a
faster loss drop rate than FedAvg from Round = 0 to Round = 50, and in Figure 9b with
parameter setting C = 0.6, β = 0.6; after Round = 25, the rate of loss decline is significantly
better for FedMPCCS than for FedAvg, and FedAvg declines slowly after Round = 100. In
Figure 9c, FedMPCCS loss is shown to decrease faster than FedAvg after Round = 50.

(a) (b) (c)

Figure 9. Changes in loss reduction for FedMPCCS and FedAvg on power system attack dataset.
(a) C, β = 0.4, (b) C, β = 0.6, (c) C, β = 0.8.

Again, the performance on the hard disk failure detection dataset is shown in Figure 10,
and it collectively appears that FedMPCCS with all three parameter settings outperforms
FedAvg to varying degrees in terms of loss reduction rate.
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(a) (b) (c)

Figure 10. Change in loss reduction for FedMPCCS and FedAvg on hard disk failure detection
datasets. (a) C, β = 0.4, (b) C, β = 0.6, (c) C, β = 0.8.

Figure 11 shows the change in model accuracy for the same number of clients on
the power system attack dataset for FedMPCCS and FedAvg. In Figure 11a, the rate of
improvement in accuracy between Round = 0 and Round = 100 is significantly higher
for FedMPCCS than for the hyperparameter FedAvg. In Figure 11b, FedMPCCS shows a
significant improvement in accuracy after Round = 75 compared to FedAvg in terms of
change in accuracy, while FedAvg’s change in accuracy tends to fit.

(a) (b) (c)

Figure 11. Rising variability in accuracy of FedMPCCS and FedAvg on power system attack datasets.
(a) C, β = 0.4, (b) C, β = 0.6, (c) C, β = 0.8.

Figure 12 shows the variation in model accuracy for the same number of clients on the
hard disk failure detection dataset for FedMPCCS and FedAvg. FedMPCCS in Figure 12a
shows a faster accuracy improvement than FedAvg up to Round = 20, and the accuracy
improvement of both algorithms plateaus after Round = 20. In Figure 12b, FedMPCCS has
a significantly higher accuracy than FedAvg up to Round = 40. FedMPCCS in Figure 12c
outperforms FedAvg for the vast majority of global communication rounds.

(a) (b) (c)

Figure 12. Rising variation in the accuracy of FedMPCCS and FedAvg on hard disk failure detection
datasets. (a) C, β = 0.4, (b) C, β = 0.6, (c) C, β = 0.8.

To compare the magnitude of the improvement in FedMPCCS with FedAvg on the two
datasets, we counted and compared the average improvement in global communication
rounds in accuracy of FedMPCCS over FedAvg, and the results are shown in Table 2:
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Table 2. Global average improvements in the accuracy of FedMPCCS over FedAvg on two differ-
ent datasets.

Dataset C, β = 0.4 C, β = 0.6 C, β = 0.8

Power system attack 1.74% 1.01% 0.93%
Hard drive failure detection 2.50% 2.65% 1.90%

6. Conclusions

Federated learning for smart manufacturing often suffers from data heterogeneity
factors, and these problems seriously affect the effectiveness and accuracy of federated
learning algorithms. This paper innovatively proposes a participant selection algorithm
based on the variation in model parameters, applying similarity calculations and graph
theory to calculate the multi-party similarity between clients to accurately measure the
similarity between participants. By pre-selecting the initial set of participants, the data
differences between devices can be effectively reduced and the federated learning training
efficiency can be improved. Experimental results show that manufacturing data hetero-
geneity negatively affects the federated learning algorithm, the average accuracy of the
comparison is reduced by up to 6.12% with IID data, and the approach described in this
paper outperforms the baseline approach in terms of convergence and accuracy improve-
ments, with a global average improvement in accuracy between 0.93% and 2.65% for
different data and different parameter settings, reducing the impact of the heterogeneity
factor. Future work will investigate composite methods for collecting client resource com-
munication states combined with similarity calculations, which are geared towards more
complex manufacturing federated learning application scenarios.
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