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Abstract: With the development of intelligent transportation and the rapid growth of application data,
the tasks of offloading vehicles in vehicle-to-vehicle communication technology are continuously
increasing. To further improve the service efficiency of the computing platform, energy-efficient and
low-latency mobile-edge-computing (MEC) offloading methods are urgently needed, which can solve
the insufficient computing capacity of vehicle terminals. Based on an improved gray-wolf algorithm
designed, an adaptive joint offloading strategy for vehicular edge computing is proposed, which does
not require cloud-computing support. This strategy first establishes an offloading computing model,
which takes task computing delays, computing energy consumption, and MEC server computing
resources as constraints; secondly, a system-utility function is designed to transform the offloading
problem into a constrained system-utility optimization problem; finally, the optimal solution to the
computation offloading problem is obtained based on an improved gray-wolf optimization algorithm.
The simulation results show that the proposed strategy can effectively reduce the system delay and
the total energy consumption.

Keywords: mobile edge computing; vehicular edge computing; offloading strategy; gray-wolf
optimization

1. Introduction

With the growth of consumer services and the progress of science and technology, the
digitalization level of the automotive industry is becoming increasingly high. Multimedia,
assisted driving, and other intelligent options are gradually becoming the new normal of
automotive technology [1]. The Internet of Vehicles is the application of the Internet of
Things in the field of intelligent transportation, and it is also an important component of
intelligent transportation systems [2,3]. In order to achieve the functions of autonomous
driving and the intelligent form of cars, we need to equip various sensors and communica-
tion methods inside and outside the car. However, these growing functional requirements
have approached or even exceeded the computing power limit of the vehicle itself. Vehi-
cles themselves are no longer able to meet the requirements of substantial data volume
and low-latency sensitivity in vehicle-to-vehicle communication technology. Therefore,
edge-computing-based vehicle offloading technology has increasingly become a focus of
research among researchers [4].

Mobile cloud-computing technology [5] is an effective means to solve the limited
resources of vehicle equipment. Although cloud-computing servers have powerful com-
puting capabilities, the transmission delay of large amounts of data is long due to the
distance from the task terminal, and data transmission is greatly affected by environmental
fluctuations, which also consume substantial energy. These factors make it difficult for
cloud computing to be practically applied. In order to solve these problems, mobile edge
computing (MEC) has emerged [6]. Mobile edge computing extends cloud-computing
capabilities to the network edge, enabling it to perform tasks that traditional network in-
frastructure cannot accomplish [7,8]. By installing edge servers or base stations close to the
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terminal devices, MEC reduces the delay and energy consumption caused by transmission,
which can significantly improve user computing power and provide cloud-computing-like
capabilities for end users [9,10].

Compared to resource-rich cloud-computing centers, the computing resources of MEC
servers in MEC are very limited. When an edge-computing offloading platform needs
to offload multiple tasks, the MEC server may not be able to handle all computing tasks
simultaneously, which may result in significant computation latency [11,12]. Therefore,
it is very important to study the decision-making process of computation offloading [13]
and resource allocation [14] in the Internet of Vehicles. Usually, computing offloading
decisions and resource allocation are NP-Hard problems [15], and these problems are
generally solved using swarm-intelligence optimization algorithms. Many scholars have
also conducted research on such problems. Against this backdrop, reference [16] proposed
a convex optimization-based algorithm that can calculate the optimal power allocation
for scenarios where the upload delay and co-channel interference of differentiated users
interact with each other. The authors determined the nonorthogonal multiple-access
user pairing and offloading decision via semidefinite relaxation and convex–concave
iterations, thereby mitigating interference and reducing the average task response delay.
Reference [17] proposed a linearization-based branch-and-bound algorithm that can solve
time-varying spectral-efficiency problems caused by time-varying fading channels without
considering their time-varying characteristics. To address the complexity of the algorithm,
reference [17] proposed an algorithm that is closest to the rounding-integer algorithm.
This algorithm can achieve the maximization of utility under the constraint of task delay
requirements, and it can study the impact of time-varying channels on task offloading
strategies within the task-offloading period. Reference [18] proposed a task-offloading
scheme based only on vehicle-to-vehicle communication, utilizing the gathering period of
vehicles in urban environments induced by traffic signals or areas of interest. The authors
formulated the problem of a single task with multiple collaborative offloading modes as a
minimax problem and further optimized the convergence speed and accuracy using the
particle-swarm optimization (PSO) algorithm. Reference [19] focused on the impact of task-
offloading decisions and edge-server execution orders on computing-offloading services.
The authors investigated the offloading-decision problem for the efficient optimization of
task latency and computation resource consumption in a multiuser, multiserver vehicular-
edge-computing scenario, and they proposed a hybrid intelligent optimization algorithm
based on a single genetic algorithm and heuristic rules. Reference [20] considered using
idle resources in volunteer vehicles to process tasks in a vehicle-mounted edge server and
reduce costs. The authors proposed a fast search algorithm based on a genetic algorithm
to solve the pricing problem, and they observed the optimal offloading strategy based on
the Stackelberg game. Reference [21] proposed a new hybrid metaheuristic algorithm of
genetic simulated annealing and PSO. This algorithm aims to minimize the total energy
consumption of both intelligent mobile devices and edge servers by jointly optimizing
the task-offloading ratio, CPU speed, bandwidth allocation of available channels, and
transmission power of each terminal device in each time slot. Reference [22] proposed a joint
task-offloading and resource-allocation scheme based on V2I and V2V modes to minimize
the total taken processing delay for all vehicles. The scheme takes into account task diversity,
vehicle classification, and task-processing flexibility, and designed an algorithm based
on generalized benders decomposition and reformed linearization method to optimally
solve the optimization problem. Reference [23] proposed a task-offloading and resource-
allocation scheme based on priority clustering to handle heterogeneous tasks and ensure
quality of service. The scheme first assigned priorities to tasks based on their characteristics
and then clustered binary tuples composed of task priorities and vehicle-edge distances to
determine task-offloading strategies. Finally, the scheme utilized Lagrange multipliers to
optimize the resource allocation of explored feasible strategies. Reference [24] proposed a
task-offloading allocation scheme based on the Stackelberg game to improve the efficiency
of vehicle-edge computing. The scheme modeled the competition and cooperation among
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vehicles, edge servers, and the cloud as a Stackelberg game and used backward induction
to transform the game problem into a convex optimization problem. This theoretically
proved that the game had a unique Nash equilibrium, thus obtaining the optimal task
allocation for the requesting vehicles. Additionally, a search algorithm based on genetic
algorithms was proposed to find the optimal pricing scheme for edge servers and the cloud.

The above studies in the literature mostly approached the vehicle offloading problem
of different scenarios and used different algorithms for solving it. Currently, there is limited
research on concurrent offloading of multiple vehicles considering latency and energy
consumption when cloud-computing servers are scarce. Furthermore, the computational
platforms are not fully utilized, and the effectiveness of the proposed algorithms is not sig-
nificantly improved. The gray-wolf optimization (GWO) algorithm is a swarm-intelligence
algorithm inspired by the hunting behavior and social hierarchy of gray wolves. Compared
to other intelligent optimization algorithms, it has the following characteristics: relatively
simple structure, fewer adjustable parameters, and ease of implementation. The algorithm
has a convergence factor and an information feedback mechanism, and it has good perfor-
mance in both solution accuracy and convergence speed. The GWO algorithm has been
applied to solve problems such as array sorting [25], scheduling [26], and load control [27].
However, its application in the field of MEC has not received substantial attention from
scholars. Therefore, the GWO algorithm may provide a new solution approach for the
vehicle task offloading and allocation problem.

Based on the above analysis, this paper proposes an edge-computing offloading
strategy based on an improved GWO. The main arrangement of this paper is as follows.

(1) This paper establishes a model for computing latency and energy consumption in the
context of MEC, and it uses task computing latency, computing energy consumption,
and MEC server-computing resources as constraints. We designed a system-utility
function to evaluate the computing offloading strategy and convert the offloading
problem into a constrained system-utility optimization problem.

(2) Based on the gray-wolf optimizer algorithm, this paper introduces the whale opti-
mization algorithm (WOA) and the levy flight algorithm to improve the population
initialization and alpha-wolf selection steps of the GWO algorithm. Finally, we realize
the optimization solution to the computation-offloading-strategy problem.

(3) This paper designs experiments to verify the effectiveness of the edge computing
offloading strategy based on the hybrid gray-wolf–whale algorithm. We evaluate and
analyze the performance of the designed edge computing offloading strategy from the
aspects of computation delay, computation energy consumption, and convergence.

The remaining chapters of this paper are organized as follows. The second section
introduces the system model, communication model, computing models, etc. The third
section introduces the MEC offloading method on the Internet of Vehicles environment.
Section 5 carries out the simulation experiment design and obtains results from the analysis
of the method in this paper. Section 5 concludes with a comprehensive summary of
this paper.

2. System Model
2.1. Network Model

The deployment scenario of the MEC system studied in this paper is shown in Figure 1.
The system includes multiple mobile vehicles and MEC servers. The computing tasks that
need to be offloaded are initiated by the corresponding mobile vehicles. The computing
methods for tasks include three types, namely, local computing, offloading to idle vehicles
for computing, and offloading to edge servers for computing. After the latter two com-
puting methods are completed, the computing results will be returned to the task vehicle.
Roadside edge servers have abundant computing resources, but the distance between the
vehicles and roadside edge servers is uncertain, resulting in high communication latency
and related energy consumption for the vehicles. In contrast, idle vehicles have relatively
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weak computing capabilities, but the communication latency between the task vehicle and
the constrained vehicle is lower.
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Assuming that multiple vehicles unload tasks at the same time, this paper defines
the set of vehicles unloading computing tasks under the base station coverage, such as
V = {v1, v2, · · · , vn}. Each task vehicle has its task, which is defined as T. The set of idle
computing resource vehicles around the task vehicle is defined as D = {d1, d2, · · · , dx}.
The upload channel model for task vehicles is the Rayleigh channel model [28].

The transmission rates between vehicle vi and idle vehicles or MEC can be shown in
Equation (1):

Ri = B log2

(
1 +

Pup
i hi

BN0

)
(1)

where Pup
i represents the transmission power of vehicle vi, hi represents the channel gain

between the task vehicle and the edge server or idle vehicle, B represents the channel
bandwidth of the vehicle, and N0 represents the background channel noise power.

2.2. Computational Offloading Model

Assuming that the set of tasks to be offloaded by mobile vehicles is defined as
Task = {T1, T2, · · · , Tn}, each task has four properties: Ti = {datai, ρ, fi, tmax.i}. datai
represents the amount of data to be offloaded for task i; ρ represents the computational
intensity of task i, which is the number of CPU cycles required to compute 1 bit of data; fi
represents the computing capability of vehicle vi; and tmax,i represents the maximum delay
time required to complete task i. In addition, the computing power of the edge server is
denoted as fMEC, the allocated computing resource for vehicle vi is denoted as fMEC,i, and
the computing power provided by the surrounding idle vehicles is denoted as fidle.

Assuming that the task is divisible, the task can be offloaded to the edge server, nearby
idle vehicles, and locally for computation. Each task can be partially or completely offloaded
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to any computing device. Therefore, it is necessary to partition the task and determine the
partition size and location. The set of all offloading decisions on task vehicles is denoted as
set X = {x1, x2, · · · , xn}, where xi = [a1

i , a2
i , a3

i ], a1
i , a2

i , a3
i ∈ [0, 1] and a1

i + a2
i + a3

i = 1. a1
i ,

a2
i and a3

i , respectively, represent the proportion of task i that is offloaded to local, nearby
idle vehicles, and edge servers. If the unloading ratio of a certain task is ax

i = 0 (i∈{1, 2, 3}),
this means that the task will not be unloaded to the corresponding computing device. When
the unloading ratio of a task is equal to one, this means that the mobile device performs the
computation entirely on the corresponding computing device.

2.2.1. Local Computing

The amount of computation and time required for task i to be computed on a local
vehicle depends on the computing power of the task vehicle itself. The amount of task data
allocated for computation is denoted as a1

i × datai, and the corresponding execution delay
and energy consumption are tlocal,i and elocal.i, and the corresponding equations are shown
in Equations (2) and (3). Task i does not require data transmission during local vehicle
computing, so there is no transmission delay and only computation delay.

tlocal,i =
a1

i × datai × ρ

fi
(2)

elocal.i = Pi × tlocal
i (3)

where Pi represents the device power of task vehicle vi.

2.2.2. Idle-Vehicle Computing

Task i’s computing-task data size of idle vehicles is represented by a2
i × datai, the time

delay for idle vehicles to perform the unloading task is texe
idle.i, the transmission delay for

the task to be unloaded to idle vehicles is ttrans
idle.i (vehicles may not be able to communicate

directly with each other), and the average delay of relaying between vehicles is tr. λ is
an output data coefficient, representing the relationship between output data volume and
input data volume. The calculation’s resulting data transmission time is tback

idle.i. The total
time delay for the task vehicle to transmit to the idle vehicle is tidle,i, and the total energy
consumption is eidle.i. The corresponding expressions for texe

idle.i, ttrans
idle.i , tback

idle.i, tidle,i, and eidle.i
are shown in Equations (4)–(8).

texe
idle.i =

a2
i × datai × ρ

fidle
(4)

ttrans
idle.i =

a2
i × datai

Ri
+ tr (5)

tback
idle.i =

a2
i × datai × λ

Ri
(6)

tidle,i = ttrans
idle,i + texe

idle,i + tback
idle,i (7)

eidle.i = Pidle × texe
idle,i + Pup

i ×
(

ttrans
idle,i + tback

idle,i

)
(8)

where Pup
i is the upload power of the task vehicle vi, and Pidle represents the device power

of the idle vehicle.

2.2.3. Edge-Server Computing

For task i, the allocation of offloading computing data to the edge server depends
on the busyness of the server. Let the computation data amount on the edge server be
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denoted as a3
i × datai, the offloading task-execution delay on the edge server be texe

MEC.i, the
transmission delay for offloading the task to the edge server be ttrans

MEC.i, the transmission
delay of returning computation results be tback

MEC.i, the total transmission delay from the
task vehicle to the idle vehicle be tMEC,i, and the total energy consumption be eMEC.i.
The corresponding expressions for texe

MEC.i, ttrans
MEC.i, tback

MEC.i, tMEC,i, and eMEC.i are shown in
Equations (9)–(13).

texe
MEC.i =

a3
i × datai × ρ

fMEC,i
(9)

ttrans
MEC.i =

a3
i × datai

Ri
(10)

tback
MEC.i =

a3
i × datai × λ

Ri
(11)

tMEC,i = ttrans
MEC,i + texe

MEC,i + tback
MEC,i (12)

eMEC.i = PMEC × texe
MEC,i + Pup

i ×
(

ttrans
MEC,i + tback

MEC,i

)
(13)

where PMEC represents the device power of the edge server.

3. Improving the Gray-Wolf Algorithm

This article models the task offloading of multiple vehicles and the allocation of MEC
computing resources as a multiconstraint optimization problem. Based on the above mod-
els, total task computation delay tsum and energy consumption esum in the edge computing
system are represented as shown in Equations (14) and (15).

tsum =
n

∑
i=1

tlocal.i + tidle,i + tMEC,i (14)

esum =
n

∑
i=1

elocal.i + eidle,i + eMEC,i (15)

To achieve the joint optimization of computation time and energy consumption in
a collaborative offloading mode between edge servers, idle vehicles, and local devices,
this paper designs a system-utility function Q to evaluate the offloading effectiveness of
tasks. Q represents the total cost of the system. In this case, tsum and esum represent the
total computation time delay and energy consumption when all tasks are completed, and η
and θ (η + θ = 1) represent the weight of computation time delay and energy consumption
in the system’s utility function, respectively. η and θ can be set according to the service
demand and status of the mobile vehicles. Therefore, the offloading optimization model
can be described as shown in Equations (16) and (17).

Q = η × tsum + θ × esum (16)

s.t.



a : a1
i , a2

i , a3
i ∈ [0, 1], ∀i ∈ [1, n]

b : a1
i + a2

i + a3
i = 1, ∀i ∈ [1, n]

c : 0 ≤ fMEC,i ≤ fMEC, ∀i ∈ [1, n]

d :
n
∑

i=1
fMEC,i ≤ fMEC, ∀i ∈ [1, n]

e : fidle,i ≤ fidle, ∀i ∈ [1, n]

(17)

Constraint conditions (17a) and (17b) indicate the sum of computation task data: task
i is offloaded to the local, idle vehicles, and edge servers and equals the entire computation-
task data of the task vehicle. Constraints (17c) and (17d) indicate that the allocated comput-
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ing resources to each task on the edge computing processor do not exceed its upper limit,
and the total allocated resources to all tasks do not exceed the computing resources of the
edge device itself. Constraint (17e) indicates that the computing resources allocated to each
task on the idle vehicle do not exceed its own computing resources.

In order to solve the proposed unloading model and optimization objective function
faster, this paper proposes an algorithm inspired by the gray-wolf optimization algorithm,
improved for its shortcomings. The following content is the improvement steps.

3.1. Gray-Wolf Optimization Algorithm

The gray-wolf optimizer is a swarm-intelligence algorithm inspired by the hunting
behavior and social hierarchy of gray wolves in the natural world. Gray wolves typically
live in a social hierarchy with strict dominance levels. Wolf packs can be divided into
four categories: α, β, δ, and ω. In the GWO algorithm, the best solution is regarded as
α, the second-best and third-best solutions are regarded as β and δ, respectively, and the
rest of the solutions are regarded as ω. The hunting behavior of gray wolves is abstracted
into three stages in the algorithm: searching for prey, surrounding prey, and attacking
prey. However, the basic gray-wolf optimizer algorithm often struggles to escape local
optimal solutions when solving complex problems, resulting in long computation times,
poor convergence, and suboptimal optimization results. Therefore, in this paper, we
adopt an improved GWO algorithm to solve the model. This algorithm can improve the
unloading strategy, accelerate computation time, and reduce task computation delay and
corresponding computing consumption, thereby improving the efficiency and accuracy of
the solution.

3.2. Improved Gray-Wolf Optimization Algorithm

The WOA is a population-based metaheuristic algorithm that mimics the hunting be-
havior of humpback whales for problem optimization. This section introduces an improved
method that incorporates the WOA into the gray-wolf optimization algorithm, called the
hybrid gray-wolf optimization with the whale optimization algorithm (HGWOWOA). This
algorithm can improve the global optimal search ability and avoid becoming trapped in
locally optimal solutions.

3.2.1. Improvements Incorporated into the Whale Algorithm

To prevent the gray-wolf optimization algorithm from becoming trapped in local
optima, we have made the following improvements. First, we introduced the spiral mesh
hunting behavior and random probability factor from the WOA into the GWO algorithm
and compared them for selection. Second, we introduced the Levy flight algorithm to
extend the algorithm’s search range with random step lengths, thereby enhancing the algo-
rithm’s search ability and diversifying the gray-wolf population. The specific improvement
methods are shown as follows.

First, Levy(d) is generated according to the random-step formula proposed by Man-
tegna [29], as shown in Equation (18).

Levy(d) =
u

|v|1/d (18)

Parameter d is usually a constant within the range of [0, 2]; here, we take it as 1.5. u
and v follow the distribution of u ∼ N(0,σ2) and v ∼ N(0, 1), where the expression for σ
is shown in Equation (19).

σ =

[
Γ(1 + d)× sin( d×π

2 )

d× Γ( 1+d
2 )× 2

d−1
2

]1/d

(19)
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The improved gray-wolf optimization algorithm introduces a random probability
factor, denoted as p, p ∈ [0, 1]. When p ≥ 0.5, the wolf population updates their positions
based on the optimal solution’s position, utilizing both the Levy flight algorithm and spiral
bubble-net hunting behavior, as shown in Equation (20).

X′(t) = Xbest(t) + evl × cos(2πl)× |Xbest −X(t)| ⊕ Levy(d) (20)

In the equation, Xbest is the global best solution; X represents the position vector of
the individual gray wolf; Xα, Xβ, and Xδ represent the three types of leading wolves. The
⊕ symbol represents the dot product, and v represents a constant coefficient in the spiral
equation (usually taken as l), and l is a random number within the range of [−1, 1]. In the
improved GWO, when p < 0.5, the individual wolves in the algorithm are surrounded
according to Equations (21)–(24), where n1 and n2 are randomly generated vectors within
the range of [0, 1], m = 2− 2t/T, t is the current iteration number, T is the maximum
iteration number, and m linearly decreases from 2 to 0 as the iteration number increases.{

A = 2×m× n1 −m
C = 2× n2

(21)


Dα = |C1·Xα −X(t)|
Dβ =

∣∣C2·Xβ −X(t)
∣∣

Dδ = |C3·Xδ −X(t)|
(22)


X1(t + 1) = Xα(t)−A1·Da
X2(t + 1) = Xβ(t)−A2·Dβ

X3(t + 1) = Xδ(t)−A3·Dδ

(23)

X(t + 1) =
1
3
(X1(t + 1) + X2(t + 1) + X3(t + 1)) (24)

3.2.2. Location Update Improvements

When searching for the optimal solution, the position corresponding to the α wolf
in the GWO algorithm may not necessarily be the global optimal solution, and other
graded individuals of the gray wolf also have difficulty jumping out of their local opti-
mal solutions. This situation can lead to a significant increase in processing time and a
decrease in the convergence speed of the algorithm. To improve the solution accuracy
and convergence speed of the GWO algorithm, this paper proposes a new proportional
weight. Inspired by the custom weights, different individual gray wolves have different
proportional effects on the optimal solution, and the expression of dynamic weights is
shown in Equations (25) and (26).

W1 = |X1|
|X1|+|X2|+|X3|

W2 = |X2|
|X1|+|X2|+|X3|

W3 = |X3|
|X1|+|X2|+|X3|

(25)

X’(t) = W1 · (X1 −Xα) + W2 ·
(
X1 −Xβ

)
+ W3 · (X1 −Xδ) (26)

3.2.3. Comparing Selection Strategies

To select the better result, the algorithm needs to compare the fitness values of X(t) and
X’(t), keep the corresponding minimum fitness function values as the result of iteration
X(t + 1), and record the position of the minimum fitness function value. The chosen
strategy is shown in Equation (27).{

X(t + 1) = X’(t) if fitness
(

X’(t)
)
< fitness(X(t))

X(t + 1) = X(t) else
(27)
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3.3. Individual Gray-Wolf Amendment

Each vehicle contains four parameters to be optimized, which are a1
i , a2

i , a3
i , and fMEC,i.

Assuming that there are a vehicles that need to be offloaded, the encoding matrix of a gray
wolf is A ∈ Ra×4, where its first three columns represent the offloading ratios of the task
vehicle to the local vehicles, nearby idle vehicles, and edge servers, respectively, and the
fourth column represents the computing resources allocated to the current task vehicle by
the MEC server. The entire wolf pack is stored in matrix B, where each wolf’s encoding
matrix A is first converted into a row and stored in matrix B. Here, B ∈ RC×(a×4), and C
represents the size of the wolf population.

As the randomly initialized values of the gray-wolf population may not necessarily
meet the constraints, corresponding improvements need to be made to the coding of
individual gray wolves. Specifically, the sum of the first three values in each row of matrix
A should be one, the sum of the values in the last column of matrix A should be less
than one, and the number of nonzero values in the second column of matrix A should
not exceed the current set number of idle vehicles b. To this end, we have designed a
gray-wolf-individual correction algorithm to ensure that the encoding matrix satisfies the
constraints. The description of the gray-wolf-individual correction algorithm is shown in
Algorithm 1.

Algorithm 1 Gray-Wolf-Individual Correction Algorithm

Input: Matrix B, number of vehicles on task a, number of idle vehicles b, size of gray-wolf
population C
Output: Gray-wolf-individual correction algorithm corrected calculation matrix B
1 for i = 1, 2, . . . , C do
2 Take the ith row of matrix B and transform it into a matrix A with ax4;
3 for j = 1, 2, . . . , a do
4 if Amount of tasks to offload to free vehicles > Local offload task volume then
5 A(j,3) = A(j,1) × rand(0,1);

/* Perform randomization */
6 end if
7 end for
8 Select the b largest numbers from the 4th column of A and assign the rest to 0;
9 for k = 1, 2, . . . , a do
10 if A(k,1) + A(k,3) > 1 then
11 A(k,1) = (1 − A(k,3) ) × rand(0,1);
12 end if
14 A(k,2) = 1 − A(k,1) − A(k,4);

/* Ensure that the unloading ratio sums to 1*/
15 end for
16 Add the 2nd column of matrix A to get sum
17 for c = 1, 2, . . . , a do
18 A(c, 4) = A(c, 2)/sum;
19 end for
20 Transform the matrix A into 1 row and put it into row i of matrix B;

/* Each line of B is an offloading possibility */
21 end for
22 Return B

3.4. Network Model

Based on the Sections 3.1–3.3, this paper proposes a hybrid algorithm, called the
HGWOWOA. The algorithm is described as follows:

Step 1: Initialize algorithm parameters, including the number of wolves in the wolf
pack, maximum number of iterations, dimension and value ranges of independent variables,
and the generation of random computing-task information and the computing-capacity
information of each device.
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Step 2: Randomly generate the initial positions of the gray-wolf population and
generate probability factors and random numbers. Set parameter b and calculate the
corresponding A and C.

Step 3: Compute the fitness value of each individual in the gray-wolf population based
on the given fitness function and select the three individuals with the lowest fitness values
as the leading three wolves.

Step 4: Depending on different probability factors, determine which search weight
position formula to execute in order to obtain a new position.

Step 5: Calculate the fitness value of the new position, compare it with the fitness
value of the original position, and choose the one with a better fitness value as the position
for the next iteration.

Step 6: Run the gray-wolf-individual correction on its result.
Step 7: Check whether the set number of iterations has been reached. If it has, proceed

to the next step; otherwise, go back to Step 2.
Step 8: Output the optimal offloading strategy.
Further pseudocode descriptions of the HGWOWOA are presented in Algorithm 2.

Algorithm 2 HGWOWOA

Input: Gray-wolf population size C, maximum number of iterations T, number of idle vehicles b,
information on random computing tasks, information on the computing power of the device
Output: Optimal offloading strategy
1 Initialization: gray-wolf population location Xi(0)(i = 1, 2, · · · , N), t←0;
2 for t = 1, 2, . . . , T do
3 a← 2− 2t/T ;
4 A← 2× a× n1 − a ;
5 C← 2× n2 ;
6 if p < 0.5 then
7 Da ← |C1·Xa −X(t)| ;
8 Dβ ←

∣∣∣C2·Xβ −X(t)
∣∣∣ ;

9 Dδ ← |C3·Xδ −X(t)| ;
10 X1(t + 1)← Xα(t)−A1·Da ;
11 X2(t + 1)← Xβ(t)−A2·Dβ ;
12 X3(t + 1)← Xδ(t)−A3·Dδ ;
13 X(t + 1)← 1

3 (X1(t + 1) + X2(t + 1) + X3(t + 1)) ;
14 else
15 Levy(d) = s← u

|v|1/d ;

16 σ←
[

Γ(1+d)×sin( d×π
2 )

d×Γ( 1+d
2 )×2

d−1
2

]1/d
;

17 X’(t)← Xbest(t) + ebl × cos(2πl)× |Xbest −X(t)| ⊕ Levy(d) ;
18 end if
19 if fitness

(
X’(t)

)
< fitness(X(t)) then

20 X(t + 1) = X’(t);
21 else
22 X(t + 1) = X(t);
23 end for
24 Return X

4. Simulation Design and Result Analysis
4.1. Simulation Parameter Settings

Experimental verification was conducted on the MATLAB 2020b simulation platform,
and a vehicle-unloading model was constructed, which included task vehicles, idle vehicles,
and vehicles equipped with edge-server base stations. This section presents a performance
simulation of the HGWOWOA and compares it with the following five unloading strate-
gies: local, MEC, random, PSO, and GWO. The local strategy represents the calculation’s
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unloading only on the task vehicle itself, whereas the MEC strategy represents unloading
only on the base station equipped with MEC. The random strategy selects a random lo-
cation for unloading between the task vehicle itself, nearby idle vehicles, or base stations
with MEC. The PSO strategy is based on the particle-swarm algorithm, and it solves for the
optimal unloading strategy and resource allocation, whereas the GWO strategy is based
on the gray-wolf algorithm, and it solves for the optimal unloading strategy and resource
allocation. The specific simulation parameter settings are shown in Table 1.

Table 1. Simulation parameter settings.

Parameters Value

Number of vehicles offloaded 10~30
Number of idle vehicles 5~10

Task data size datai 10~50 kb
Computational intensity ρ 20~40 cycles/bit

Channel gain between vehicle and MEC/idle vehicle hi 1.3 × 10−4 Hz
Total channel bandwidth between vehicle and MEC/idle vehicle 8 × 104 Hz

Transmission power of vehicle Pup
i 1.5~2 w

Computing capability of vehicle fi 3.2 × 105 cycles/s
Computing capability of idle vehicles fidle 3.2 × 105 cycles/s
Computing capability of edge server fMEC 7~9 × 106 cycles/s

Equipment power of vehicles/idle vehicles Pi/Pidle 4~8 w
Equipment power of edge server PMEC 25 w
Background channel noise power N0 5 × 10−14 w

Allocation of bandwidth 3.2~8 × 104 Hz
Maximum tolerated delay for tasks 400~500 ms

Average delay of relaying between vehicles tr 4~6 ms
Output data coefficient λ 0.01~0.3

4.2. Analysis of Simulation Results
4.2.1. Experiments on the Values of η and θ

Figure 2 shows the impact of delay weight factor η on the total cost of the system when
there are ten task vehicles and two idle vehicles in the system. It can be observed from
Figure 2 that the total cost of the system decreases as η increases. Among all algorithms,
the HGWOWOA obtains the minimum total cost; therefore, the HGWOWOA has the best
performance. In addition, when the delay weight coefficient η is within the range from 0.8
to 0.9, the total cost of the six unloading strategies is relatively close. Therefore, in order
to reduce the sensitivity of the algorithm itself relative to the delay weight coefficient, we
chose to set the value of η to 0.85 in the subsequent simulation.
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4.2.2. Impact of Factors on System Costs

Figure 3 shows the results of the impact on the number of idle vehicles for the system’s
total cost. As observed in Figure 3, the average system cost per task vehicle decreases with
an increasing number of idle vehicles. Specifically, when the number of idle vehicles is
16, the total system cost decreases most significantly; in contrast, when the number of idle
vehicles is 10, the decreasing trend of the total system cost is the smallest. This is because,
with fewer vehicles at the base station, each task vehicle can obtain more computing
resources from the server; thus, the increase in idle vehicles has less impact on reducing the
system’s cost. However, as the number of task vehicles increases, and each task vehicle can
obtain fewer computing resources from the server, increasing the number of idle vehicles
can significantly reduce the system’s cost.
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Figure 4 shows the impact of task volume per vehicle on the system cost for different
offloading strategies. As the computational task volume per vehicle increases, the system
cost generally increases in all offloading strategies. However, the HGWOWOA has the
smallest increase in system cost, indicating that it has the best offloading performance
among all algorithms. Additionally, overall, the HGWOWOA has the smallest system total
cost of the same conditions. When the task volume was 50 kb, the system total cost of the
HGWOWOA was 66.72% lower than that of local, 41.84% lower than that of MEC, 36.03%
lower than that of random, 16.87% lower than that of PSO, and 11.78% lower than that of
GWO. This demonstrates that the HGWOWOA has the best performance among the six
offloading strategies.
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Figure 5 shows the impact curve of the number of vehicle terminals on the system’s
total cost. It can be observed in Figure 5 that, as the number of task vehicles increases, the
total task volume of the system also increases; therefore, the total system cost also increases.
Among them, the MEC offloading strategy performs most noticeably, and the total cost of
the system increases significantly when the number of task vehicles is greater than 15. This
is because the total amount of MEC computing resources is fixed, and when the number of
offloaded task vehicles gradually increases, the allocated computing resources will decrease.
Overall, the HGWOWOA offloading strategy performs better and has lower costs than
other strategies. When the number of vehicle terminals was 30, the HGWOWOA strategy
reduced the total cost of the system by 85.8% compared to MEC, 51.7% compared to local,
36.08% compared to random, 19.6% compared to GWO, and 19.03% compared to PSO.
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Figure 6 shows the impact of the transmission bandwidth on the total system cost. As
shown in the graph, as the bandwidth allocation increases, the transmission time of task
data decreases, and the energy consumption of task vehicles also decreases, resulting in
a decreasing trend in the total system cost. However, when the transmission bandwidth
increased to around 50 KHz, the downward trend of the system’s total cost was not signifi-
cant, because the 50 KHz bandwidth was already sufficient for meeting the transmission of
the vast majority of task data. Compared with other offloading strategies, the HGWOWOA
strategy has the lowest overall system cost. When the transmission bandwidth was 80 KHz,
compared with the MEC strategy, the HGWOWOA strategy reduced the total system
cost by 30.8%, 28.5% compared with the local strategy, 20.8% compared with the random
strategy, 8.5% compared with the GWO strategy, and 8.2% compared with the PSO strategy.
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Figure 7 displays the impact of the output data coefficient on the system cost. As
shown in the graph, the system cost of the local offloading strategy remains unchanged with
the increase in the output data coefficient, whereas other offloading strategies have a slight
increase. This is because the local offloading strategy does not require data transmission, so
its total cost is independent of the output data coefficient. For other offloading strategies,
the impact of the output data coefficient is very small, so many edge-computing offloading
studies directly omit it [30].
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4.2.3. Convergence Comparison

In order to compare the convergence performance of the three decision-making
methods—GWO, PSO, and HGWOWOA—we set the number of vehicles to ten, the number
of idle vehicles to two, and the computing task to 10 kbit in the experiment. We tested the
convergence of the total system cost under the three methods. The experimental results
are shown in Figure 8. Overall, the GWO algorithm has the fastest convergence speed,
reaching stability after 10 iterations, but with a generally poorer convergence value. The
PSO algorithm has the slowest convergence speed, reaching stability after 25 iterations, but
with a better convergence value. The convergence speed of the HGWOWOA method is
between that of the PSO method and the GWO method, and the convergence value is the
best. Therefore, the proposed HGWOWOA in this paper has excellent performances in
both convergence speed and convergence accuracy; it can converge faster than the PSO
algorithm, and it has a higher convergence accuracy than both the GWO algorithm and the
PSO algorithm.
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5. Conclusions

In this paper, we have presented an adaptive joint offloading strategy for vehicular
edge computing, which does not require cloud-computing support. An offloading com-
puting model has been proposed for computing latency and energy consumption in the
context of MEC, and it uses task computing latency, computing energy consumption, and
MEC server resources as constraints. Further, a system-utility function has been designed
to transform the offloading problem into a constrained system-utility optimization problem.
In addition, an improved gray-wolf optimization algorithm has been proposed to obtain
the optimal solution to the computation offloading problem. Compared with local, MEC,
random, PSO, and GWO offloading strategies, the proposed adaptive joint offloading
strategy can achieve the minimum computation delay and the lowest energy consumption.

In future work, we will design an improved computational offloading model that can
reflect vehicle mobility and the actual connections of vehicles in the real state. Meanwhile,
it would be meaningful to consider the transmission loss due to packet loss in fast-moving
vehicles and MEC devices, which is more similar to the real scene. A practical offloading
strategy must be promising in the field of Internet of Vehicles.
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