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Abstract: A critic-only learning-based tracking control with prescribed performance was proposed
for a class of uncertain nonlinear systems. Based on an estimator and an optimal controller, a
novel controller was designed to make tracking errors uniformly ultimately bounded and limited
in a prescribed region. First, an unknown system dynamic estimator was employed online to
approximate the uncertainty with an invariant manifold. Subsequently, by running a novel cost
function, an optimal controller was derived by online learning with a critic-only neural network,
which ensured that tracking errors can evolve within a prescribed area while minimizing the cost
function. Specifically, weight update can be driven by weight estimation error, avoiding introducing
an actor-critic architecture with a complicated law. At last, the stability of a closed-loop system was
analyzed by Lyapunov theorem, and tracking errors evolved within prescribed performance with the
optimal controller. The effectiveness of the proposed control can be demonstrated by two examples.

Keywords: prescribed performance control; tracking control; adaptive dynamic programming

1. Introduction

Nowadays, many plants in the real word can be formulated as uncertain nonlinear
systems, such as autonomous underwater vehicles [1], mobile robots [2], and quadrotors [3].
Thus, tracking problems for uncertain nonlinear systems have become one of the issues,
and various control methods have been developed and employed in many physical systems
to achieve tracking performance.

To deal with the impact induced by uncertainties during controller design, there
emerge a large amount of tools to approximate uncertainties and combined with other
controllers, e.g., neural networks (NNs) [4,5], fuzzy logic systems [6–8], and disturbance
observers [9–11]. For example, by integrating with a backstepping control, an adaptive
tracking controller is designed in [5] for uncertain nonlinear systems, where an NN is
utilized to estimate the uncertain term of the model. Due to an uncertain dynamical
model in surface vessels, proportional derivative feedback combined with a fuzzy logic
system is proposed in [7] with satisfying tracking performance and theoretical results.
Taking the disturbance ability of an observer-based controller into consideration, the
tracking performance can be guaranteed. For manipulators, a sliding-mode controller is
investigated for tracking problems, where a nonlinear disturbance observer is implemented
to predict and remove the effect of disturbance [10]. However, manually tunned parameters
limit above controllers applied in practical applications. Recently, the unknown system
dynamics estimator (USDE) is a novel estimation method to deal with uncertainty and
disturbance of nonlinear systems [12], where the state can be an added filtered operation
such that invariant manifold is conducted for accurate estimation. Different from NNs and
fuzzy logic systems with repeated tuning, the estimator only uses the system state and the
control input and can achieve rapid convergence of disturbance estimation by adjusting a
parameter. For the motion control of robot systems, lumped disturbances are estimated
through an improved unknown disturbance estimator [13]. In [14], by implementing a
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USDE to compensate the disturbance, a sliding-mode control is designed to obtain the
performance with fast convergence and strong robustness. Since USDEs in the above
literature are aimed at integral series systems, it is difficult to solve the strong coupling and
multivariable functions of nonlinear systems. Moreover, it is worth mentioning that the
above control methods with an inherent structure do not discuss the output constraints
such as the convergence rate and the maximum steady-state error, which are important
in engineering.

Combined with reinforcement learning (RL), which is a branch of machine learning,
a mass of adaptive controllers for stability of closed-loop systems have been developed.
By integrating it with dynamic programming, there emerge an optimal controller with
a learning ability and the balancing between the tracking performance and the control
cost, which are generalized as adaptive dynamic programming (ADP) without dimension-
ality. One of prevalent structures is actor-critic ADP to pursue the optimal control and
the optimal value function [15–17]. However, tracking error may satisfy the preassigned
convergence in practical engineering applications. To address this issue, the introduc-
tion of the RL algorithm into the prescribed performance control (PPC) has attracted
attention [18], which significantly reduces tracking error and control input and improves
performance [19–21]. In [19], a data-driven RL algorithm for performance specification
was proposed to simultaneously pursue control methods for satisfying optimality and
tracking errors to meet output constraints. Combined with the fault-tolerant control (FTC),
nonlinear systems with output constraints are considered by RL algorithms [22–24]. It
is noted that it is difficult to achieve the fault tolerant control by RL alone. In [23], for
nonlinear systems with actuator faults, a model-free adaptive optimal control method with
specified performance was designed, where an adaptive observer is employed to estimate
faults, and the incremental system parameters are estimated by the recursive least squares
identification method. By combining the PPC with ADP, the optimal control strategy is
obtained, such that tracking error satisfies the specified performance. By introducing an
intermediate controller, a controller, and a fault tolerant controller based on RL algorithms,
a fault-tolerant dynamic surface control algorithm based on actor-critic ADP was proposed
in [24] for nonlinear systems with unknown parameters and actuator faults, which avoids
the difficulty of RL in fault tolerant control. For the manipulator, a robust motion control
method with specified performance based on reinforcement learning was proposed in [25].
The measurement noise is eliminated by carefully adding an integral term and adopting a
robust generalized proportional integral observer, and an optimal control strategy based on
error transformation was designed with the actor-critic ADP method to ensure the stability
of the system. For the high-order nonlinear multi-agent system containing uncertainty,
the optimal consistency control problem with specified performance is considered in [26],
where the stability of a closed-loop system and the convergence of consensus errors within
a certain range are proved. Based on an actor-critic network, the optimal control is investi-
gated for robot [27] and pure feedback system [28] separately. It is noted that the above
controllers rely on multiple neural networks to ensure the stability and optimality of the
system. The weight of the neural network is complicated due to the increasing number
of nodes, and many parameters are difficult to adjust. In order to satisfy the optimal
predetermined performance, the main idea is to transform the constrained tracking error
into an unconstrained variable by constructing transformation function, and approximate
optimal control is designed within actor-actor NN by minimizing the value function related
to the unconstrained variable. Noting that the Hamilton-Jacobi-Isaacs (HJI) equation can
be solved for deriving the optimal control in [29,30], it is deemed to be conservative for
the worst case of disturbance with massive control inputs. Moreover, existing design and
theoretical analysis of the preset performance optimal control are mostly combined with
fault-tolerant control, robust control, and adaptive control. There is no relevant research for
the USDE-based optimal control to assure the preassigned convergence rate.
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Motivated by the above statements, we proposed an optimal control with asymmetric
performance constraints under the framework of critic-only ADP by constructing a new
value function. The highlights in this article can be expressed as follows:

(1) Compared with the existing observer-based controllers [9–11], where the distur-
bance is estimated with observers by adjusting manually multiple parameters, the USDE
was employed to approximate the lumped disturbance of nonlinear uncertain systems with
an invariant manifold principle. Moreover, differing from previous function approximator-
based control schemes [12–14], by combining the RL technique into the optimal control
design, the precise tracking performance and the low control cost can be achieved.

(2) Different from the optimal control derived by the actor-critic ADP framework
in [24,26–28], a critic-only NN was designed for online learn optimal control without
constructing an actor NN. In addition, to achieve the convergence rate with a preassigned
region, a novel value function was minimized, such that tracking errors can evolve within
the prescribed region with low control consumption. In contrast to the traditional gradient
descent for weight update in actor-critic ADP, the weight law was designed ingeniously to
update the weight of a critic NN, reduce the online training computation and accelerate the
weight convergence.

The outline of the article is organized as follows. We first gave the definition of the
optimal tracking control problem with prescribed performance in Section 2. In Section 3,
the main result of the control design was discussed, in which a feedback controller and an
optimal controller were proposed. The stability analysis is illustrated in Section 4. Section 5
provides the effectiveness of the proposed controller on two examples.

Throughout this paper, the vector or matrix is represented by bold fonts, which is
different from the scalar. 0 represents the zero matrix and I denotes the identity matrix.
diag(x) is the diagonal matrix conducted with vector x. λmin(·) is the minimized eigenvalue
of the corresponding matrix.

2. Preliminaries

The following multiple-input-multiple-output system with disturbance is considered:

.
x = f(x) + g(x)u + d(t) (1)

where x = [x1, x2, . . . , xn]
T denotes the measurable state vector and u = [u1, u2, . . . , um]

T

represents the control input vectors; f(x) and d(t) are uncertain due to modelling errors and
disturbance caused by the environment; matrix g(x) is precisely known, which represents
the input dynamics. Given bounded reference command xd, the dynamic system of tracking
errors can be derived from System (1) as:

.
e =

.
x− .

xd = f(x) + g(x)u + d(t)− .
xd (2)

Due to the Lipschitz continuity of f(x), g(x), and d(t), System (2) can be stabilizable
from [31].

The goal of the paper is to conduct the optimal tracking control, such that tracking
errors are limited within a prescribed region while minimizing the novel value function.
Specifically, the prescribed region is denoted by the following equality:

−ϑli(t) < ei(t) < ϑui(t), for i = 1, . . . , n (3)

where ϑli(t) > 0 and ϑui(t) > 0(i = 1, 2, . . . , n) are predefined envelope functions with
specific expressions:

ϑli(t) = lϑi(t) = l[(ϑi0 − ϑi∞)e−ait
i + ϑi∞] (4)

ϑui(t) = lϑi(t) = l[(ϑi0 − ϑi∞)e−ait
i + ϑi∞] (5)

with ai > 0 representing the lower bound on the rate of convergence and ϑi0 � ϑi∞ > 0,
l > 0, l > 0. It should be noted that uncertain f(x) and d(t) can be considered as lumped
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disturbances δ = f(x) + d(t). On account of the initial state x(0) = x0, the following
assumptions are necessary to achieve the controller design.

Assumption 1. There exists the positive constant ∆ satisfying
.
δ ≤ ∆.

Assumption 2. The ϑli(0) and ϑui(0) are chosen such that (3) holds.

Remark 1. There exist many plants, such as autonomous underwater vehicles [1] and quadrotors [3],
which can be modeled as System (1) with disturbance. Unlike the investigated controllers in [1]
and [3] regardless of control consumption, the proposed optimal tracking controller was designed to
achieve the stability of a closed-loop system with an adequate control input.

3. Results

In this section, the whole controller consisting of a feedback controller with an esti-
mator and an optimal controller is given. Firstly, the feedback controller is derived by a
USDE, which is employed for estimating lumped disturbances. Based on it, the optimal
tracking controller is designed within critic-only ADP while minimizing the novel value
function considering prescribed functions (4) and (5). Therefore, the whole controller is
constructed as:

u = ud + u∗ (6)

with ud is the feedback controller and u∗ is the optimal controller. The specific diagram of
the whole controller is detailed in Figure 1.
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3.1. Feedback Controller Design

Inspired by [12], a USDE is employed on System (2) to approximate δ. By importing it
into the filter operation of tracking error and control input, the following equations can
be obtained: {

k
.
x f

+ x f = x,
.
x f
(0) = 0

k
.
uf

+ uf = u, uf(0) = 0
(7)

where k is positive and can be adjusted to generate filter variables x f and uf.

Lemma 1. The vector χ = k−1(x− xf)− (guf + δ) is bounded such that:

lim
k→0

{
lim
t→∞

[
1
k
(x− xf)− (guf + δ)

]}
= 0 (8)

Noting that χ represents the map form filtered variables and lumped disturbances,
there exists an invariant manifold χ, which further derives:

δ̂ =
1
k
(x− xf)− guf (9)

where δ̂ is the estimation of δ. The estimation error can converge to the neighborhood
of zero.
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Theorem 1. For nonlinear system (1) with uncertainty, by virtue of estimation from Equation (9),
the estimation errors δ̃ = δ− δ̂ can converge to the following region:

‖δ̃‖ ≤
√
‖δ̃(0)‖2

e−t/k + k2∆2 (10)

Proof of Theorem 1. By importing the first-order filter operation on nonlinear system (3),
we can derive the following form with the Laplace operator:

1
ks + 1

.
x =

1
ks + 1

g(x)u +
1

ks + 1
δ (11)

Based on nonlinear system (1) and filter operation (7), it can be induced that:

.
xf

=
1
k
(x− xf) = g(x)uf + δf (12)

where δf = δ/(ks + 1).
From Equation (9), one has δf = δ̂. Therefore, the estimation error can be expressed as:

δ̃ = δ− δf =
ks

ks + 1
δ (13)

Combined with Equations (7) and (13), we deduce the time derivative of the estimation
error as: .

δ̃ =
.
δ−

.
δ

f

=
.
δ−

.
x− .

xf
+k

.
uf

k

=
.
δ−

.
x−(x−xf)/k+k

.
uf

k

=
.
δ− g(x)u+∆−(x−xf)/k+k

.
uf

k
=

.
δ− δ−δf

k

(14)

Then, the estimator errors can be analyzed by the following candidate function:

V1 =
1
2

δ̃T δ̃ (15)

Taking the derivative respect to time and following (), one can have:

.
V1 = δ̃T

.

δ̃ = δ̃T
( .

δ− δ−δf

k

)
= δ̃T

.
δ− 1

k δ̃T(δ− δf) = δ̃T
.
δ− 1

k δ̃T δ̃
(16)

There exist the positive constant α and Young’s inequality such that:

.
V1 ≤ 1

2k‖δ̃‖
2
+ k∆2

2 −
1
k δ̃T δ̃

= − 1
k V1 +

k∆2

2

(17)

which can further obtain:

V1(t) ≤ −
1
k

V1(0)e−t/k +
k2∆2

2
(18)

Thus, the estimation error can converge the following region:

‖δ̃‖ =
√

2V1(t) ≤
√
‖δ̃(0)‖2

e−t/k + k2∆2 (19)

According to above discussion, the estimation error can converge to zero with given
positive k, when time goes to infinity. �
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For eliminating the impression of lumped disturbances, the feedback controller is
constructed as:

ud = G[
.
xd − δ̂−Ke] (20)

where G is a generalized inverse matrix and K is a positive control gain. G = (gTg)Tg
induces the tracking errors as:

.
e = −Ke + g(x)u∗ + δ̂ (21)

In the next section, we will consider designing the controller by defining a novel value
function that balances control consumption and tracking performance.

3.2. Optimal Controller Design

To stabilize Equation (21), a value function is predefined for balancing control cost
and tracking performance. In addition, the tracking error should be required to satisfy the
predefined function, namely prescribed performance control. The PPC can be regarded
as the constraint of the asymptotic rate and the overshoot of the tracking error. Generally,
by introducing an error transformation function, the constrained dynamic of the tracking
error can be converted to an equivalent unconstrained model. Different from introducing a
transformation function, we first consider the tracking error directly:

rs = eTQe (22)

which Q ∈ Rn×n is a positive definite matrix. Noting that it incorporates an actual tracking
error, it depicts the distance from a desired trajectory.

In addition, the corresponding term related to control u∗ is added to the value func-
tion to achieve a tradeoff between tracking performance and control consumption in a
quadratic form:

ru = u∗TRu∗ (23)

where positive definite matrix R ∈ Rm×m denotes the weight of control expanse. It is
common that Equations (22) and (23) are constructed in the utility function for controller
design, which can be find in [15–17].

Last but not least, we take the PPC into consideration in the value function design.
With prescribed performance, the evolvement of tracking error e must be within the range
of predefined behavior. Furthermore, the maximum overshoot should be kept away from
exceeding the predetermined performance, which may cause the damage to facilities. Thus,
the tracking error can be constrained within the predetermined region and satisfy:

rc = −eTQcCe (24)

where Qc ∈ Rn×n is a positive definite matrix and matrix C is denoted as:

C = diag
(

ln
ϑui(t)− ei(t)
ϑli(t) + ei(t)

)
, i = 1, 2, . . . , n (25)

In view of the above analysis, the value function is predefined by Equation (25),
consisting of the corresponding characterizations of the tracking error, the control, and the
PPC as:

r = rs + ru + rc (26)

The optimal control is designed by minimizing the following value function:

V(e) =
∫ ∞

t
r(e(τ), u∗(τ))dτ (27)
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where r is defined in Equation (26). On the basis of Equation (27), the Hamilton function
can be derived as:

H(e, u∗, V) = VT
e

[
−Ke + gu∗ + δ̃

]
+ rs + ru + rc (28)

where Ve is a partial derivative of V. By taking the derivatives of Equations (27) and (21),
the HJB equation can be derived as:

H(e, u, V) = V∗e
T [−Ke + gu∗ + δ̃] + rs + u∗TRu∗ + rc = 0 (29)

In order to learn an optimal control strategy, one can derive the following equation from
∂H/∂u∗ = 0:

u∗ = −1
2

R−1gTV∗e (30)

By substituting Equation (30) into Equation (29), the Hamilton-Jacobian-Bellman (HJB)
equation can be rewritten as:

V∗Te [−Ke + δ̃] + rc + rs −
1
4

V∗Te gRgTV∗e = 0 (31)

Since Equation (31) is a nonlinear equation of the optimal value function, the optimal
control cannot be obtained directly by Equation (30). Referring to the core of ADP, an NN
can be introduced to approximate the optimal value function and its derivative:

V∗(e) = WTσ(e) + ε (32)

Ve
∗(e) = ∇σ(e)TW +∇ε (33)

where W and σ are the ideal weight and the activation function;ε is the estimation error;
∇σ(e) and ∇ε are gradients of the activation function and the estimation error.

Noting that the ideal weight is unknown, the approximate optimal value function can
be estimated by:

V̂ = ŴT
σ(e) + ε (34)

In addition, the optimal control can be derived as:

û = −1
2

R−1gT∇σ(e)TŴ (35)

Supposing ψ = rs + ru + rc and Φ = ∇σ(−Ke + gue), one can yield:

ψ = −ΦTW− εHJB (36)

By denoting the matrices: { .
N = −`N + ΦΦT , N(0) = 0
.
S = −`S + Φψ, S(0) = 0

(37)

the auxiliary matrix is introduced for designing the weight law:

P = NŴ + S (38)

From Equation (37), there holds:{
N(t) =

∫ t
0 e−`(t−r)ΦΦTdr, N(0) = 0

S(t) =
∫ t

0 e−`(t−r)Φψdr, S(0) = 0
(39)
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Then, we can derive the following equations with Equation (36):

S = −NW + ς = −NW−
∫ t

0
e−c(t−r)ΦεHJBdr (40)

Thus, one has:
P = NŴ + S = −NW̃ + ς (41)

where W̃ is the weight estimation error, inducing the weight law:
.

Ŵ = −
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where γ = λmin(N) and ‖ς‖ ≤ ες.

4. Stability Analysis

Due to the above-mentioned theoretical result of the disturbance approximation error and
weight error, the stability of the closed-loop system can be proven with prescribed performance.

Theorem 2. For nonlinear uncertain system (1) with constraint (3), the optimal control is designed
with weight update (42), the tracking error is uniform ultimate boundedness and evolves within
predefined region.

Proof of Theorem 2. According to Equations (21) and (35), the system of the tracking error
can be obtained:

.
e = −Ke + gû + δ̃

= −Ke− 1
2 gR−1gT∇σTŴ + 1

2 gR−1gT(∇σTW +∇ε
)
+ gu∗ + δ̃

= −Ke + 1
2 gR−1gT∇σTW̃ + 1

2 gR−1gT∇ε + gu∗ + δ̃

(45)

L = 1
2 W̃

T
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Firstly, due to the weight convergence of the critic NN, one has:

.
L1 = W̃

T
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(
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Then,

.
L2 = 2Γ1eT .

e + Γ2
.

V
∗

= 2Γ1eT .
e + Γ2(−eTQe− u∗TRu∗ − rc)

= 2Γ1eT
[
−Ke + 1

2 gR−1gT∇σTW̃ + 1
2 gR−1gT∇ε + gu∗ + δ̃

]
+Γ2(−eTQe− u∗TRu∗ − rc)

≤ −
[
2λmin(K)Γ1 + Γ2λmin(Q)−

(
‖gR−1gT∇σT‖+ ‖gR−1gT‖+ 2

)
Γ1
]
‖e‖2

+ 1
4 Γ1‖gR−1gT‖‖∇ε‖2 + 1

4 Γ1‖gR−1gT∇σT‖‖W̃‖2
+ Γ1‖δ̃‖

2 − Γ2rc

−
(

Γ2λmin(R)− Γ1‖g‖2
)
‖u∗‖2

(48)

In addition,
.
L3 = 2Γ3ςT .

ς

= 2Γ3ςT(−`ς + ΦεHJB
)

= 2Γ3ςT
{
−`ς + Φ

[(
WT∇σ +∇ε

)T
δ̃ +∇εT

(
− 1

2 gR−1gT∇σTŴ
)
−∇εTKe

]}
= −Γ3(2`− 3τ)‖ς‖2 + Γ3

τ ‖Φ
(
∇σTW +∇ε

)T‖
2
‖δ̃‖2

+ Γ3
τ ‖Φ∇εTK‖2‖e‖2

+ Γ3
4τ ‖Φ∇εTgR−1gT∇σTŴ‖2

(49)

Lastly, the stability of the whole system can be derived as:
.
L =

.
L1 +

.
L2 +

.
L3

≤ −
[(

γ− 1
2τΓ3

)
− 1

4 Γ1‖gR−1gT∇σT‖
]
‖W̃‖2 −

(
Γ2λmin(R)− Γ1‖g‖2

)
‖u∗e‖

2

−
[
2λmin(K)Γ1 + Γ2λmin(Q)−

(
‖gR−1gT∇σT‖+ ‖gR−1gT‖+ 2

)
Γ1 − Γ3

τ ‖Φ∇εTK‖2
]
‖e‖2

−Γ3
(
2`− 7

2 τ
)
‖ς‖2 + 1

4 Γ1‖gR−1gT‖‖∇ε‖2 + Γ3
4τ ‖Φ∇εTgR−1gT∇σTŴ‖2

+

(
Γ1 +

Γ3
τ ‖Φ

(
WT∇σ +∇ε

)T‖
2
)
‖δ̃‖2 − Γ2rc

(50)

If Γ2λmin(R)− Γ1‖g‖2 > 0, Equation (50) can be written in the following form:

.
L ≤ −c1‖W̃‖

2 − c2‖e‖2 − c3‖ς‖2 + ρ (51)

where
c1 = γ− 1

2τΓ3
− 1

4
Γ1‖gR−1gT∇σT‖

c2 = 2λmin(K)Γ1 + Γ2λmin(Q)−
(
‖gR−1gT∇σT‖+ ‖gR−1gT‖+ 2

)
Γ1 −

Γ3

τ
‖Φ∇εTK‖2

c3 = Γ3

(
2`− 7

2
τ

)
ρ =

1
4

Γ1‖gR−1gT‖‖∇ε‖2 +
Γ3

4τ
‖Φ∇εTgR−1gT∇σTŴ‖2

+

(
Γ1 +

Γ3

τ
‖Φ(∇σTW +∇ε)‖2

)
‖δ̃‖2 − Γ2rc

Noting that rc is bounded, the boundedness of ρ can be derived along the boundness
of disturbance estimation errors, the weight estimation error, and the HJB error. Thus, the
parameters of the controller design should satisfy:

Γ1 <
4γ

‖gR−1gT∇σT‖

τ > max

(
1

Γ3
(
2γ− (1/2)Γ2‖gR−1gT∇σT‖

) ,
Γ3‖Φ∇εTK‖2

2λmin(K)Γ2

)

Γ2 > max

(
−2λmin(K)Γ1 + (Γ3/τ)‖Φ∇εK‖2 −

(
‖gR−1gT∇σT‖+ ‖gR−1gT‖+ 2

)
Γ1

λmin(Q)
,

Γ1‖g‖2

λmin(R)

)
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λmin(K) >
‖gR−1gT‖+ ‖gR−1gT∇σT‖+ 2

2

` >
7
4

τ, Γ3 > 0

such that c1, c2, c3 > 0, resulting in the uniform ultimate boundedness of the tracking error.
For arbitrary |rc| ≤ εr(εr > 0), there exists:∣∣∣∣ln ϑui(t)− ei(t)

ϑli(t) + ei(t)

∣∣∣∣ ≤ εr
′ (52)

which can indicate the PPC is be violated.

5. Simulations
In this section, we implemented the following examples to demonstrate the effectiveness and

superiority of the investigated controller scheme. Without loss of generality, the sampling period was
5 ms, and solver ode4 was selected during the simulations.

Example 1. In order to verify the design of the optimal tracking controller with preset performance, a
second-order nonlinear system is considered as:{ .

x1 = −x1 + x2
.
x2 = −0.5x1 − 0.5x2(1− (cos(2x1) + 2)2) + (cos(2x1) + 2)u

(53)

The given track commands are xd
1 = sin(t) and xd

2 = cos(t) + sin(t), and the tracking error should meet the
following constraints:

−ϑli(t) < ei(t) < ϑui(t), for i = 1, 2 (54)

where l1 = 2, l
1
= 3, ϑ10 = 3, ϑ1∞ = 0.2, a1 = 3 and l2 = 1.8, l

2
= 1.5, ϑ20 = 3, ϑ2∞ = 0.25, a2 = 2.

The initial state is x = [3,−1]T . For verifying the devised controller, we assume that:

f =
[

f1
f2

]
=

[
−x1 + x2

−0.5x1 − 0.5x2(1− (cos(2x1) + 2)2)

]
(55)

which is uncertain, and disturbance d(t) = [0; sin(2t)]T is added.

In order to achieve the control objective, the proposed optimal tracking controller is realized
based on a feedback control and an optimal control. The feedback control is based on a USDE to
compensate the influence of disturbance on the system. The optimal regulation law is to minimize
value function (26) under the ADP framework, where Q, R, and Qc are the identity matrices of the
respective dimensions. In order to approximate the optimal value function, the activation function
was selected as σ = [e2

1, e1e2, e2
2]

T , and other simulation parameters were selected as K = diag[0.5, 0.5],
Γ = 2I, l = 5, and k = 0.01. The initial weight was W0 = [0, 0, 0]T .

The simulation results for a period of 20 s are shown from Figures 2–8. Figure 2 gives the
simulation results of the system state and the reference command, which indicates that the state can
accurately track the reference command within 4 s. The tracking errors enter the steady state quickly,
which can be due to the estimation from the USDE, as shown in Figure 3. Lumped disturbances can
be approximated precisely within 0.1 s.

The control inputs of the proposed controller are described in Figure 4, which include the
feedback control and the optimal control. Figure 5 describes the simulation results of the tracking
error and asymmetric output performance constraints. It can be found that the tracking errors
converged to a specified asymmetric envelope, which indicated that the designed controller with
an optimal preset performance can make tracking errors converge to zero within a predetermined
convergence rate. The stability of the closed-loop system hinged on the weight of the critic NN, as
illustrated in Figure 6, which showed the approximation of weight can converge to the ideal weight
within 2 s.
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In order to illustrate the superiority of the proposed controller in achieving preset performance,
it was compared with the optimal controller based on the traditional value function in [32], which is
named WPPC. Noting that the controller in [32] is based on a fixed-time disturbance observer, we
set the feedback controller based on a USDE for the sake of fair comparison. Figure 7 shows the
simulation results of the tracking error and the PPC envelope. Although the system state tracked the
reference command successfully, the tracking errors could not evolve within the envelope, and the
transient performance could not be guaranteed to meet the output constraints. This indicates that the
convergence rate of the tracking error was slower than that of the specified convergence rate and
the predetermined performance could not be guaranteed. Figure 8 compares the value functions of
the two controllers for 20 s. In contrast, the value function of the new controller decreased by 6%
compared to the optimal controller without taking into preset performance account. Therefore, the
new controller can ensure that the tracking error meets the output performance constraints while its
value function is smaller.

Example 2. Noting that the trajectory tracking problem of the quadrotor can be affected by uncertain dynamic
drift and disturbance induced by wind, the effectiveness of the proposed control is carried on a quadrotor [3,31].
Noting that position and attitude loops are considered in [3,31], the position dynamic of the quadrotor is
considered as: { .

p = v
.
v = (−gh3 −∏v)/m + u + dv

(56)

where parameters of the model are listed in Table 1. The given reference trajectory is
pd = [10(1− cos(0.1πt)), 5 sin(0.2πt), 9(1− e−0.3t)]

T . To carry out the proposed controller on Equa-
tion (53), we reformulate it as:

.
x = f(x) + g(x)u + d(t) (57)

where

x =

[
p
v

]
, f(x) =

[
v

(−gh3 −∏v)/m

]
, g(x) =

[
0
I

]
(58)

For approximating the optimal control, the critic NN is structured with 15 neurons with [−5,5]. For
the initial position and weight, we choose the following parameters: p(0) = [−5, 3, 2]T and W0 = 0.
The other controller parameters are listed in Table 2.

Table 1. Parameters of the quadrotor attitude dynamics.

Section Values

Mass 2
Inertia moment matrix diag([ 0.01, 0.01, 0.01])

Disturbances [sin(4t) + cos(2t)− sin(t); cos(4t) + sin(2t)− cos(t); sin(3t) cos(2t)− cos(t)]T
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Table 2. Parameters of the controllers.

Section Values

USDE k = 0.01

PPC

lpx = 2.5, l
px

= 1.5, ϑ
px
0 = 5, ϑpx

∞
= 0.2, apx = 2

lpy = 2.5, l
py

= 3, ϑ
px
0 = 5, ϑpx

∞
= 0.2, apx = 3

lpz = 2.5, l
pz

= 2, ϑ
pz
0 = 5, ϑpz

∞
= 0.2, apz = 3

lvx = 2, l
vx

= 1.5, ϑvx
0

= 8, ϑvx
∞

= 0.2, avx = 3
lvy = 1.3, l

vy
= 1.5, ϑ

vy
0 = 10, ϑvy

∞
= 0.2, avy = 3

lvz = 0.6, l
vz

= 0.8, ϑvz
0

= 8, ϑvz
∞

= 0.2, avz = 3
Control gain K = diag[2, 2, 2, 2, 2, 2]

The performance of the proposed controller was discussed as follows. Figures 9 and 10 show the
tracking performances of the position and the velocity. It can be found that tracking errors evolved
the predefined constraints. By running the novel value function, tracking errors converged to zero
within the convergence rate. During the controller design, the weight of the critic NN is crucial
for solving the HJB equation. Figure 11 gives the convergence of weight, which is essential for the
stability of the closed-loop system. To verify the advantage of the novel value function, the optimal
tracking controller in [32] was executed for System (54). In the position loop, the tracking errors of the
position and the velocity are shown in Figures 12 and 13, which indicates the tracking errors could
not evolve the predefined envelope by minimizing the value function without the PPC constraints.
Therefore, the effectiveness of the proposed optimal control was verified to deal with prescribed
performance. Noting that the proposed controller and the optimal tracking controller in [32] are
based on simulation, we will further consider experimental validation based on physical systems to
verify the feasibility of the proposed method, where complete response associated is impossible.
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6. Conclusions
In this paper, an optimal tracking control with output constraints was proposed to ensure

tracking errors with prescribed performance. The perturbation estimation error was introduced into
critic-only ADP, and the novel value function was run within a critic-only ADP framework to derive
the optimal control. It proved that the tracking error can be realized in the specified envelope of the
PPC. The numerical simulation verified that the designed controller can achieve tracking errors with
prescribed performance on the quadrotor trajectory tracking problem and a class of second-order
nonlinear systems. However, actuator saturation may limit the control input, which makes it difficult
to guarantee prescribed performance. We will focus on the optimal tracking controller for uncertain
nonlinear systems with prescribed performance under actuator saturation.
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