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Abstract: Emotion recognition commonly relies on single-modal recognition methods, such as voice
and video signals, which demonstrate a good practicability and universality in some scenarios.
Nevertheless, as emotion-recognition application scenarios continue to expand and the data volume
surges, single-modal emotion recognition proves insufficient to meet people’s needs for accuracy
and comprehensiveness when the amount of data reaches a certain scale. Thus, this paper proposes
the application of multimodal thought to enhance emotion-recognition accuracy and conducts
corresponding data preprocessing on the selected dataset. Appropriate models are constructed
for both audio and video modalities: for the audio-modality emotion-recognition task, this paper
adopts the “time-distributed CNNs + LSTMs” model construction scheme; for the video-modality
emotion-recognition task, the “DeepID V3 + Xception architecture” model construction scheme is
selected. Furthermore, each model construction scheme undergoes experimental verification and
comparison with existing emotion-recognition algorithms. Finally, this paper attempts late fusion
and proposes and implements a late-fusion method based on the idea of weight adaptation. The
experimental results demonstrate the superiority of the multimodal fusion algorithm proposed in
this paper. When compared to the single-modal emotion-recognition algorithm, the accuracy of
recognition is increased by almost 4%, reaching 84.33%.

Keywords: multimodal; time-distributed CNNs; LSTM; DeepID V3; Xception

1. Introduction

Affective computing is a comprehensive research and technical field that involves
various disciplines and applications, promoting research in the field. It mainly focuses
on human–computer interaction and related issues to achieve emotional communication
between humans and computers in a friendly environment. Affective computing has a
wide range of applications in areas such as art, business, education, finance, medicine, and
security. In 1997, Picard of the MIT Media Lab predicted about 50 possible application
scenarios for affective computing in the book Affective Computing [1], which has significant
research value. Currently, researchers are focused mainly on single-modal emotional com-
puting, such as text semantics and sentiment analysis, speech transcription, and emotion
recognition, and facial expression recognition. However, single-modal analysis has limita-
tions, as many factors affect human emotions, and their internal connections are complex
and changeable. Therefore, unimodal analysis cannot fully reflect human emotions. Conse-
quently, researchers are turning to bimodal and multimodal analysis. Multimodal deep
learning—a model with a high generalization ability and good recognition performance—is
developed from multimodal machine learning, mainly employing deep-learning methods
to address problems in the multimodal field, such as the low recognition rate and poor
robustness of single-modal affective computing. Multimodal analysis can leverage the
correlation and independence between different modalities to fully exploit the potential of
each modality’s information and increase the confidence level in emotion recognition.
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This paper explores the problem of multimodal emotion recognition using deep
learning and proposes two model design schemes for audio and video modalities via
the application of multimodal thought. Moreover, improvements have been made to
multimodal fusion-related technologies, and multimodal fusion has been conducted at the
decision-making level.

The main research work comprises three aspects:
Firstly, for audio-modal emotion recognition, this paper studies audio-signal pre-

processing methods and feature-extraction algorithms. The logarithmic-mel spectrogram
feature [2,3] is used, and the “time-distributed CNNs + LSTMs” network [4,5] is designed
to make full use of the audio time domain information. Compared with other common
network model training datasets, it is found that the algorithm proposed in this paper has
a certain degree of improvement in accuracy compared with existing common algorithms,
and the model training speed is also significantly improved.

Secondly, for video-modal emotion recognition, this paper studies image-preprocessing
methods and feature-extraction algorithms. The HOG feature-extraction technology [6,7]
is used in the image preprocessing, and the main framework of the video-modal emotion
feature-extraction network is constructed by using the optimized Xception system [8,9].
At the same time, the DeepID V3 network [10,11] is introduced to realize the extraction of
facial feature points, so that the extracted video emotion features are more comprehensive
and effective. This paper proves that the proposed algorithm improves the accuracy rate
by 5% compared with the existing common algorithms.

Lastly, for multimodal fusion [12], it is particularly important to choose an appropriate
fusion method. Common fusion methods do not have absolute advantages. In actual tasks,
various factors need to be considered comprehensively. This paper mainly studies the
multimodal deep learning emotion-recognition algorithm and its application. According to
the progress of previous research work and the needs of later system expansion, as well
as considering the asynchronous nature of the dataset used in this study, the late fusion
method—which is more flexible in modality expansion—is chosen to carry out research
on multimodal emotion recognition. The American psychologist Mehrabian proposed a
formula: Emotional information expression during communication = 7% speech + 38%
human voice + 55% facial expression [13]. It can be seen that the information contained
in the voice data and facial-expression data during human communication accounts for
93% of the expression of emotional information in communication. Based on the above
theoretical basis, this paper abandons the poorly performing text mode, comprehensively
considers the emotional expressiveness of each mode and the need for subsequent mode
expansion, and finally adopts a late fusion decision-making method based on the idea of
weight self-adaptation to realize the decision-level fusion of audio and video modalities. In
short, the model and method proposed in this paper have achieved a good performance
on multiple datasets, providing new ideas and methods for the in-depth exploration of
multimodal emotion-recognition problems.

2. Related Work

With the development and application of the field of affective computing and deep-
learning technology, researchers began to pay attention to the research of multimodal
affective computing. In 2017, researchers from the University of Stirling (School of Natural
Sciences) and Nanyang Technological University (Temasek Laboratories) in Singapore con-
ducted a collaborative study. Soujanya Poria conducted the first comprehensive literature
review on the different fields of affective computing [14]. On the basis of describing the
results of various single-factor impact analysis, the existing methods of information fusion
under different modes are outlined. In this article, the researchers review the basic stages
of the multimodal emotion-recognition framework for the first time. The available bench-
mark datasets are first discussed, followed by an overview of recent advances in audio,
video, and text-based emotion-recognition research. The article addresses findings by other
researchers that multimodal classifiers far outperform unimodal classifiers. Furthermore,
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deep learning has clear advantages in multimodal tasks. Therefore, future research on
multimodal fusion emotional computing combined with deep learning ideas will be an
important research direction in this field.

The model proposed by researchers such as Deepak Kumar Jain is based on a single
deep convolutional neural network [15], which contains convolutional layers and deep
residual blocks. Image labels for all faces are first set up for training. Second, the images
are passed through the proposed DNN model. The contribution is to classify each image
into one of six facial emotion categories. Balaji Balasubramanian et al. present a dataset
and algorithm for facial emotion recognition [16]. This algorithm ranges from simple
support vector machines (SVM) to complex convolutional neural networks (CNN). These
algorithms are explained through fundamental research papers and applied to the FER
task. Dhwani Mehta et al. focus on identifying emotional intensity using machine-learning
algorithms in a comparative study [17]. The algorithms used in the comparative study are
Gabor filters, the histogram of oriented gradients (HOG), and local binary patterns (LBP)
for feature extraction. For classification, support vector machines (SVM), random forests
(RF), and nearest neighbors (kNN) are used. The study implements emotion recognition
and intensity estimation for each recognized emotion. Yang Liu et al. conduct the first
investigation of the graph-based FAA method [18]. The results of the team’s findings
can serve as a reference for future research in this area and summarize the performance
comparison of state-of-the-art graph-based FAA methods, discussing the challenges and
potential directions for future development.

Multimodal affective computing has been continuously improved by rapid develop-
ment and has solved many of the problems raised previously, but new challenges have
been raised by researchers one after another. Therefore, there are still many problems in this
field of research, which urgently need to be solved. The core issues of the current research
are how to efficiently extract effective features in multimodal datasets, eliminate redundant
and invalid interference information, and achieve effective multimodal fusion, improving
classification accuracy, and optimizing system performance. In order to solve these core
problems in the field of multimodal affective computing, researchers are paying more
attention to the application of deep-learning algorithms and the design of a more complete
multimodal deep-learning model. The research on the combination of multimodal affective
computing and deep learning has achieved great progress and remarkable results.

3. Materials and Methods
3.1. Audio-Modal Model Construction
3.1.1. Implementation Process of Audio-Modality Emotion-Recognition Model

For the accurate detection of emotional flashpoints during audio processing and analysis,
appropriate audio segmentation is necessary. Furthermore, other preprocessing operations [2,19]
are essential to enable efficient emotional feature extraction and obtain the expected emotion-
recognition classification model through training. This paper presents an audio-modality
emotion-recognition network based on a time-distributed convolutional neural network
and long short-term-memory network [20,21]. The network leverages time and frequency
domain information to extract audio signals and incorporates contextual correlation into
model training. Figure 1 below illustrates the overall model training and prediction process:
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The audio feature-extraction network consists of a stack of time-distributed CNN and
LSTM network [4], which is different from the traditional CNN [22]. The CNN network
introduces the time-distributed wrapper [23], and the neural network with this design is
referred to as a time-distributed convolutional neural network. The time-distributed layer
is applied to each input time slice, and the input data dimensionality contains at least three
dimensions. In experiments, audio samples have been transformed into a dataset of shape
(N,128,384), where each sample contains 128 frames that have undergone time-distributed
framing operations, and each frame has 384 feature vectors. The fully connected layer is
then applied to each of these 128 frames independently using the time-distributed wrapper,
which keeps the parameter weights of the shared layer and total number of parameters
constant. Additionally, time-distributed wrappers are also applied to convolutional layers,
batch normalization layers, activation function layers, pooling layers, and dropout layers,
allowing feature maps of different layers to share parameter weights, which is an important
implication of its application.

The primary idea of the time-distributed convolutional neural network is to use
a rolling window on the log-mel spectrogram, with a preset window size and moving
step. Each window is used as an input for a convolutional neural network consisting of
four local featur- learning blocks [24] to extract shallow information about audio samples.
Subsequently, the output of each convolutional neural network unit is flattened to obtain
the output vector of the time-distributed convolutional neural network. These vectors are
then fed into a recurrent neural network containing two LSTM units to learn long-term
contextual dependencies in samples and extract deeper features of audio samples. Finally, a
fully connected layer with a Softmax activation function [25] is applied to predict emotions
in the audio samples. This is the overall design of the audio-modality feature.

Figure 2 illustrates the schematic diagram of the network structure.
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The above figure elaborates on the process of inputting log-mel spectrogram fea-
tures [2] into the shallow feature-extraction network comprising four time-distributed
CNNs to extract shallow features of the audio samples. The output is then passed to the
deep feature-extraction network, consisting of two LSTM units, which mines the long-term
contextual relationships and extracts the deep features. This model construction is referred
to as “time-distributed CNNs + LSTMs”.

3.1.2. Audio-Modality Dataset
The Ryerson Audio–Visual Database of Emotional Speech and Song: RAVDESS [26]

The RAVDESS dataset, also known as the Ryerson affective language and song audio–
visual dataset, was released in 2013. It is a large-scale audio emotion dataset developed
by the SMART Lab team. The dataset is collected from 24 professional actors with pure
North American pronunciation, including 12 male and 12 female professional actors. Each
actor records several speech audios and song audios with emotional labels. The research
in this paper only uses speech audio samples in the dataset. A total of 24 professional
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actors participate in the speech audio collection. The number of collections per person is
60, and the total number of samples is 1440. The composition of emotional labels is shown
in Table 1 for details:

Table 1. RAVDESS dataset sentiment label distribution table.

Emotional Label Happy Sad Angry Fear Disgust Surprise Calm Neutral Total

Male 96 96 96 96 96 96 96 48 720

Female 96 96 96 96 96 96 96 48 720

total 192 192 192 192 192 192 192 96 1440

Each of the seven emotions in the Table 1 above: happy, sad, angry, fear, disgust,
surprise, and calm, is distinguished by two emotional intensities: normal and strong. The
number of valid samples verified for model training for the above seven emotions is 1344.
There is also a neutral emotion, which is not differentiated by intensity. It should be noted
that because we focus on the task of sentiment analysis in speech, only samples of the
first six emotions are used for training the audio-modal emotion-recognition model in
this paper.

The Interactive Emotional Dyadic Motion Capture Database: IEMOCAP [27]

The IEMOCAP dataset is a multimodal dataset for emotion recognition, including
audio, video, text, and action data. The dataset includes sessions from 10 actors, each
character exhibiting multiple emotions in different environments. In order to compare
the accuracy of the six classifications, this article uses the audio part of the IEMOCAP
dataset for verification and comparison testing. The audio part excerpts six emotional
classifications, which are: happy, sad, angry, fear, disgust, and surprise. Each of these six
emotional classifications has a corresponding speech sample, a total of 1083 audio clip
samples. In addition, the audio part of the IEMOCAP dataset also contains other emotional
classifications, such as neutral and others. Among them, each sample is an audio file
with an emotion label, marking the emotional state expressed by the audio file, which
can be used for model training, testing, and evaluation of emotion classification tasks. In
addition, there are certain other labels and attributes related to emotion, such as speech
features, speech quality, and emotional intensity, etc., which can help researchers to better
understand and analyze the audio part of the IEMOCAP dataset. The emotional labels
distribution table of the IEMOCAP dataset used is shown in Table 2.

Table 2. IEMOCAP dataset sentiment label distribution.

Emotional Label Happy Sad Angry Fear Disgust Surprise Total

Number of sample points 188 218 214 200 134 129 1083

3.2. Construction of Video-Modality Model
3.2.1. Implementation Process of Video-Modality Emotion-Recognition Model

Facial expressions are often utilized to construct features for video-modality emotion-
recognition tasks. Human expression provides an intuitive reflection of psychological
emotions, making facial expressions one of the crucial modalities in affective computing
research. Many researchers focus on facial expression and rely on chosen features to play a
significant role in final model performance.

For the task of video-modality emotion recognition, this paper presents the “DeepID
V3 + Xception architecture” model construction scheme: First, video-modal data undergo
image preprocessing [28,29] and HOG feature extraction [6,7]; then, the residual network
design [30,31] is introduced, along with the design of the network structure and the
adjustment of the relevant optimization strategies based on the working principles and



Electronics 2023, 12, 2548 6 of 21

roles of DeepID V3 [10,11] and the Xception system in the video feature-extraction network.
Figure 3 depicts the training and prediction flowchart of the video-modality emotion-
recognition model. The extended Cohn–Kanade dataset [32] undergoes preprocessing
operations, to extract valid frames from the video sequences, and subsequently passes them
into the neural network for deeper feature extraction. The final classification prediction
model is obtained through training.
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3.2.2. Video Feature-Extraction Network

After completing relevant image preprocessing operations on the video sequences
within the dataset, experimental samples undergo transformation into multidimensional
arrays with a higher processing capability for neural networks. In deep learning, the
neural network design can impact model performance. Hence, this paper utilizes the
Xception system network [8,9] as the primary video-modality emotion-recognition network
framework, with the DeepID V3 network [10,11] serving as the front-end facial feature-
extraction network. Together, they form the video feature-extraction network, known as the
“DeepID V3 + Xception architecture” scheme. The use of related networks is detailed below.

Facial Feature-Extraction Network: DeepID V3

DeepID3 proposes two deeper neural network architectures inspired by the VGG
network and GoogLeNet [33,34], respectively, named DeepID3 net1 and DeepID3 net2. The
structure is illustrated in Figure 4.

Within DeepID3 net1, each pooling layer is preceded by two consecutive convolutional
layers. Compared to the traditional VGG network [35], DeepID3 net1 has been optimized in
several ways: (i) supervisory signals are added to multiple fully connected layers branched
from the middle pooling layer, enhancing the neural network’s ability to learn mid-
level features and allowing for easier training and optimization of deep neural networks;
(ii) the top two convolutional layers are replaced with two local-connection layers, utiliz-
ing unshared weight parameters to create more expressive features while also reducing
feature size.

In DeepID3 net2, the shallow network structure resembles DeepID3 net1, with a
pooling layer inserted after every two consecutive convolutional layers. The subsequent
deep network feature-extraction stage introduces the inception structure, where three
consecutive inception layers are stacked before the third pooling layer, and two consecutive
inception layers before the fourth pooling layer. A joint identity verification supervision
signal is additionally included on top of the fully connected layer.
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This paper employs DeepID3 net1 as the facial feature-extraction network, enhanced
using two optimizations: (i) a ReLU activation function [36] is applied to all neural net-
work layers except the pooling layer, reducing the network’s overall computational load;
(ii) a dropout layer is introduced following the final feature-extraction layer. Although this
design increases network depth, the improved network’s size is smaller than that of the
VGG network and GoogLeNet. After image preprocessing, feature extraction is performed
on samples using this improved DeepID3 net1 network, resulting in a class activation
map, as shown in Figure 5. The figure displays activated pixels on the final layer. One
can observe the emotion “happy” linked to pixels surrounding the eyes and mouth, while
the emotions “angry” and “sad” seem to be linked to pixels near the eyebrows. Of course,
these visualizations merely generate a rough perception of facial features, and building
a complete neural network model is ultimately necessary to determine the relationship
between emotion types and features.

Xception System Network

Xception [8,9] is a novel deep convolutional neural network architecture inspired by
the Inception structure. The Inception structure [37,38] sits between traditional convolu-
tion and depthwise separable convolution operations in convolutional neural networks.
Depth-separable convolution comprises two steps: channel-by-channel convolution and
point-by-point convolution, which can be interpreted as the Inception structure with the
largest number of towers, which allows Xception to make use of deep separable con-
volution instead of Inception structures. In image classification, Xception outperforms
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Inception V3 [39]. Therefore, this paper adopts Xception as the primary video-modality
emotion-recognition model framework, with targeted fine-tuning and optimization to form
a video-modal feature-extraction network together with the previously mentioned DeepID
V3 network.
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Xception System Network Structure

The Xception system proposes a convolutional neural network architecture based
on depth-separable convolutional layers, distinct from the Inception system. Xception
hypothesizes that the mappings of cross-channel correlations and spatial correlations in
feature maps of convolutional neural networks can be fully decoupled. This assumption
stems from those proposed by the Inception architecture, thereby naming Xception as
“extreme Inception”.

Figure 6 illustrates the network structure diagram of the Xception system. The network
comprises 36 convolutional layers, including classical convolutional layers and depthwise
separable convolutional layers that form the fundamental feature-extraction component.
The last fully connected layer and logistic regression layer [40] of the network are optional,
depending on task requirements. For our video-modality emotion-recognition task, these
layers are necessary to achieve image classification.

The overall Xception system comprises three parts: entry flow, middle flow, and
exit flow. A total of 36 convolutional layers construct 14 modules, where all modules,
except the first and last, have linear residual connections. This design simplifies the neural
network’s learning process, improving gradient propagation efficiency and training speed.
In contrast with learning original features, the network with residual connections learns
feature differences. That is, each residual block within the network need not learn complex
functional relationships but instead simpler ones, reducing the task’s learning difficulty.
The specific formula is as follows:

F(x) = H(x)− x (1)

In the formula, H(X) represents a nonlinear transformation of a deep neural network,
and X is the input of the network. F(X) is the residual calculated by the residual block,
which represents the error of the network. By adding the input X and the residual, the
output H(X) of the network is obtained, that is, H(X) = X + F(X). The residual block can
help the model to reduce the learning difficulty of the task. This is because the residual
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block can help the model converge faster during training, and it can also avoid problems
such as gradient disappearance and gradient explosion. In addition to the aforementioned
benefits, residual connections in the network can partially mitigate the undesirable effects
of neural network degradation while simultaneously enhancing generalization ability. In
essence, the Xception system is a linear stack of depth-separable convolutional layers
utilizing residual connections. This design simplifies researchers’ ability to define and
adjust network parameters for practical applications and delivers promising results across
various fields.
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During model training using the Xception system, the features that have been extracted
by DeepID V3 are first fed into the entry stream for processing. These processed features
are then passed through eight stacked intermediate flows before entering the exit flow to
extract feature vectors. Subsequently, these feature vectors pass through the fully connected
layer and logistic regression layer to conclude the overall model training process.

3.2.3. Video-Modality Dataset: The Extended Cohn–Kanade [32]

The extended Cohn–Kanade (CK+) dataset was released in 2010. It is a video sequence
dataset developed by Cohn, Kanade, and others and applied to the field of emotion
recognition. This dataset has been optimized and refined to address three limitations of
the Cohn–Kanade dataset released by the same team in 2000, which is used as the video
modality in the multimodal dataset in the study of this paper. The data are collected from
123 subjects, a total of 593 video sequence samples containing human facial expressions,
including seven emotions, namely happy, sad, angry, fear, disgust, surprise, and neutral.

The expression of facial emotions is complex. The expression of specific emotions
must have a process from brewing to eruption, and then to fading. No emotion appears
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suddenly and without warning. The expression of emotions is affected by many factors. In
this paper, 593 video sequences in the CK+ dataset are retrieved by a manual FACS encoder,
and the number of occurrences of the seven emotions is counted by the peak frame at the
moment of the emotional outburst in the video sequence. The distribution of the seven
emotions in the 593 video sequences is shown in Table 3. It should be noted that this paper
only uses the samples of the first six emotions for video-modality emotion-recognition
model training.

Table 3. Distribution table of seven emotional labels in the CK+ dataset.

Emotional Label Happy Sad Angry Fear Disgust Surprise Neutral

The number of occurrences 69 28 46 25 59 83 146

3.3. Implementation Ideas of Multimodal Fusion
3.3.1. Overview of Multimodal Fusion Methods and Ideas

Multimodal fusion technology has garnered extensive attention from researchers
due to its convenience for various multimedia analysis tasks. In the case of multimodal
emotion recognition, the integration of multiple modalities, their related characteristics,
or intermediate decisions is referred to as multimodal fusion. While multimodal fusion
overcomes the limitations of incomplete emotional features in the single modality, it also
introduces new problems. The benefits of multimodal fusion come with certain costs and
complexities during analysis, which are caused by the different characteristics involved in
multimodal fusion. Thus, selecting an appropriate fusion strategy has become the core issue
of multimodal fusion. Only by choosing an appropriate fusion strategy, comprehensively
considering the implementation cost and model performance, and finding a balance point
can the advantages of multimodal fusion be brought into play, such that good results can
be obtained in emotion-recognition tasks.

Multimodal fusion methods can be categorized from multiple perspectives, including
early-fusion methods, late-fusion methods [41], and hybrid-fusion methods [42,43].

(1) Early-fusion methods include data-layer fusion methods and feature-layer fusion
methods. In the data-layer fusion method, the original data of different modalities are
merged, and the classifier directly classifies them. The feature-layer fusion method entails
fusion at the feature layer after the feature extraction of each modal dataset. For instance,
multimodal feature fusion methods have been designed based on wavelet transform and
PCA [44,45].

(2) The late-fusion method, also known as the decision-making level fusion method,
accomplishes multimodal fusion in the late stage of the multimodal emotion-recognition
process. Each modality can be trained using a different model, each mode is independent
of each other in the stage before the decision-making level. Based on the characteristics
of each modality and the actual research needs, the optimal model suitable for different
modes can be selected, and finally, fusion is realized at the decision-making level.

(3) The hybrid-fusion method combines the advantages of both early- and late-fusion
methods by fusing some of the modal information together in the data preprocessing
stage while feeding the other modal information into different classifiers for learning and
prediction during training and testing to achieve better fusion results. A flow chart of this
method is shown in Figure 7.

Hybrid-fusion methods encompass both feature-level fusion and decision-level fusion
methods. This method attempts to combine the respective advantages of the previous
two fusion methods, The hybrid-fusion method combines the advantages of both early-
and late-fusion methods by fusing some of the modal information together in the data
preprocessing stage while feeding the other modal information into different classifiers
for learning and prediction during training and testing to achieve better fusion results. In
multimodal emotion-recognition research, the aforementioned three methods have their
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individual merits and demerits. It is essential to choose an appropriate fusion method
based on different research contexts.
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There is no absolute advantage for any fusion method. In actual tasks, various factors
need to be comprehensively considered. This paper primarily explores the multimodal
deep learning emotion-recognition algorithm and its applications. Based on the progress of
previous research work and the need for later system expansion, the late-fusion method—
which is more flexible in terms of modal expansion—is chosen to carry out this research on
multimodal emotion recognition, considering the asynchronous nature of the dataset used
in the study. Late fusion of audio and video modalities is attempted in late fusion to verify
the effectiveness and feasibility of multimodal fusion.

3.3.2. Late-Fusion Method Based on Mean Thought

By utilizing the average value idea [46], the output results of both the audio- and
video-modality models are averaged to acquire the final output results. The implementation
process is illustrated in Figure 8 below.
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Figure 8. Flowchart of implementing the late-fusion method based on the average value idea.

In making the mean thought decision, firstly, the test data are input and the respective
outputs are predicted using the prediction models obtained above for the audio modality,
as well as the video-modality emotion recognition. Then, using the mean-value idea, the
paper assumes that the reflections of the modalities on the expression of emotions have the
same importance level, and the final output is obtained. The decision-level fusion of audio
and video modalities is realized via the average decision method, as validated through
experiments. The experimental results are presented in Table 4 below.

As shown in the table above, after the decision-making layer fusion, the accuracy rate
of the six-category emotion-recognition task improves as compared to the single video
modality, with an average accuracy rate of 0.7166. However, this decision-making method
does not consider the varying importance levels of each modality’s response to emotional
expression. Thus, to address this challenge, this paper proposes a weight-adaptation-based
late fusion decision-making method.
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Table 4. Confusion matrix of late-fusion experiment results based on the idea of averages.

Unit: % Happy Sad Angry Fear Disgust Surprise

happy 66 11 21 2 0 0
sad 0 65 12 13 10 0

angry 0 13 79 8 0 0
fear 3 15 0 75 7 0

disgust 0 0 17 13 68 2
surprise 0 11 0 5 7 77

3.3.3. Late-Fusion Method Based on the Weight-Adaptive Idea

Considering the differences in the importance levels of the two modalities of audio and
video in reflecting emotional expressions, this paper proposes a late-fusion decision method
based on the idea of weight adaptation. When making decisions, the two modalities should
be assigned different weights to better match the process of real human emotion expressions.
Drawing inspiration from related research, this paper introduces a late-fusion approach
based on a weight-adaptive concept; when making decisions, the method takes full account
of individual variability and adaptively adjusts the respective weights according to the
two modalities of the input information. Compared to the mean-based late-fusion method,
the method proposed in this paper has the following two characteristics: (i) it takes into
account the influence of individual variability on the experimental results; (ii) it adopts a
weighted adaptive decision-making method.

The specific implementation process of the algorithm is demonstrated in Figure 9 below.
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When employing weight-adaptive decision making, the process mainly includes the
three steps shown in Figure 10 above. This paper introduces a parameter δj, which is used
to indicate the importance level of each modality’s response to emotional expression, where
j denotes the modality serial number, and j = 1, 2, . . . , J. Each sample corresponds to δj
value in the decision-making phase, and the adaptive operation of weight distribution is
realized according to the size of the value. The specific formula is as follows:

P = {pi|i = 1, 2, . . . , I} (2)

δj = 1− d
(

P, P1
I

)
(3)

Among them, the vector P is composed of the predicted probability of each category
label of the test sample, and I denotes the number of emotion types to be predicted, which
is six in the research task of this paper. d represents the Euclidean distance, which is used
to find the Euclidean distance between two vectors [47].
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Through the above formula, the δj parameter value of each test sample is calculated,
which can be used to measure the importance level of each modality’s response to emotional
expression. Next, the sigmoid function [48] is used to normalize the parameter δj and the
parameter value is scaled to the interval [0, 1]. It can be expressed as:

µj = 1− 1

1 + e−a(δj−b)
(4)

Through Formula (4), the adaptive operation of the weight is realized, and the im-
portance level of any sample to the emotional expression is mapped to the weight value
µi. For any sample of the test input, Formula (4) is used to realize the adaptive allocation
operation of the weight. Next, according to the weight-adaptation results, the fusion of
prediction probabilities can be realized to obtain the final fusion prediction probabilities.
The specific formulae are as follows:

Plast = {plast_i|i = 1, 2, . . . , I} (5)

plast_i = ∑J
j=1

µj

∑M
m=1 µm

pi_j (6)

After the decision fusion of weight self-adaptive thinking, the final prediction proba-
bility output vector Plast is obtained, and the emotion type corresponding to the maximum
value of the probability in this vector is the emotion type finally predicted by the algorithm.
In Formula (6) above, pi−j represents the j-th mode and the predicted probability values
for the i-th emotion type derived from predictions made by the corresponding modal
emotion-recognition model.

4. Experiment and Results
4.1. Training and Evaluation of Audio-Modal Emotion-Recognition Models

For audio mode, this paper employs the “time-distributed CNNs + LSTMs” approach
and conducts 100 rounds of training on the model by continuously tuning parameters and
executing other operations. In order to avoid overfitting and improve the generalization
ability of the model, the dataset is divided into a training set and a test set in the ratio of
8:2, and the cross-validation method is used to assist in adjusting the model parameters,
resulting in a more stable and better performing model. The differences in loss function
values and accuracy values are compared between the training and validation sets at the
end of the 1st training round and at the end of the 100th training round, as shown in Table 5.
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Table 5. Comparison table of loss function value and accuracy value on the audio-modality training
set and verification set.

Number of
Training
Rounds

Training Set
Loss

Training Set
Accuracy Validation Loss Validation Set

Accuracy

round 1 1.9524 0.1696 2.1361 0.1450
. . . . . . . . . . . . . . .

round 100 0.2774 0.9036 0.3986 0.8254

Based on the results in Table 5 above, it is evident that after 100 rounds of training,
the model’s loss function value on the training set decreases from 1.9524 to 0.2774, and the
accuracy rate increases from 0.1696 to 0.9036. The loss function value on the validation set
also decreases from 2.1361 to 0.3986, with the accuracy improving from 0.1450 to 0.8254.
This demonstrates that while maintaining appropriate model complexity, the generalization
ability of the model has been successfully improved. In order to better illustrate the change
trends in the two datasets during the training process, Figure 10 displays the loss function
value and accuracy value curves for the audio-modality training and validation sets for
rounds 1–100.

Upon completion of the training process, the “time-distributed CNNs + LSTMs”-based
audio-modality emotion-recognition model is obtained. The model file can then be used
for prediction, and the detailed parameters of each layer within the network are recorded.
The network parameters are listed in Table 6.

Table 6. Names and parameters of each layer in the audio-modal emotion-recognition network.

CNNs with Time-Distributed Layer:

Conv2D_1: Conv2D_2: Conv2D_3: Conv2D_4:
filters = 64 filters = 64 filters = 128 filters = 128

kernel_size = 3, 3 kernel_size = 3, 3 kernel_size = 3, 3 kernel_size = 3, 3
strides = 1, 1 strides = 1, 1 strides = 1, 1 strides = 1, 1

padding = same padding = same padding = same padding = same
activation = linear activation = linear activation = linear activation = linear

BatchNorm_1: BatchNorm_2: BatchNorm_3: BatchNorm_4:
axis = 3 axis = 3 axis = 3 axis = 3

momentum = 0.99 momentum = 0.99 momentum = 0.99 momentum = 0.99
epsilon = 0.001 epsilon = 0.001 epsilon = 0.001 epsilon = 0.001
Activation_1: Activation_2: Activation_3: Activation_4:

activation = elu activation = elu activation = elu activation = elu
MaxPool_1: MaxPool_2: MaxPool_3: MaxPool_4:

pool_size = 2, 2 pool_size = 4, 4 pool_size = 4, 4 pool_size = 4, 4
padding = same padding = same padding = same padding = same

strides = 2, 2 strides = 4, 4 strides = 4, 4 strides = 4, 4
Dropout_1: Dropout_2: Dropout_3: Dropout_4:
rate = 0.2 rate = 0.2 rate = 0.2 rate = 0.2

Flatten:
input = (None, 5, 1, 1, 128)

output = (None, 5, 128)
LSTM_1: LSTM_2:

units = 256 units = 256
activation = tanh activation = tanh

dropout = 0.2 dropout = 0.2
Dense:

units = 7
activation = softmax

After training, this paper successfully constructs an audio-modal emotion-recognition
model based on the “time-distributed CNNs + LSTMs” scheme and records the detailed
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parameters of each layer in the model. In the test phase, the performance of the model was
evaluated using the RAVDESS dataset; six emotions were classified and predicted; and
the “time-distributed CNNs + LSTMs” scheme was combined with the “SVM on global
statistical features” [49] program and the “hybrid LSTM-transformer model” [50] in a
comparative experiment. The specific effects are shown in Table 7 below.

Table 7. Accuracy of RAVDESS dataset in various network models.

Model Scheme Accuracy

SVM on Global Statistical Features 68.3%
Hybrid LSTM-Transformer Model 75.6%
Time-Distributed CNNs + LSTMs 80.4%

The results show that the combination of the “time-distributed CNNs + LSTMs” net-
work and the log-mel spectrogram features of audio samples, compared with the traditional
SVM combined with low-level statistical features, significantly improves the performance
of the model. A six-classification accuracy 80.4% is achieved, a 12% improvement over
the traditional scheme. It is also 4.8% more accurate than the well-performing hybrid
LSTM-transformer model network model.

In order to further verify the generalization ability of the model, the IEMOCAP dataset
with a larger data volume and audio duration is selected to be verified on the two model
networks in the verification stage. This article excerpts the six emotions in the audio part of
the IEMOCAP dataset to classify and predict based on the scheme of this article, calculates
the accuracy of the six categories, and compares the verification results of the IEMOCAP
dataset on the attention-oriented parallel CNN encoders network [51]. The specific effects
are shown in Table 8 below.

Table 8. Accuracy of IEMOCAP dataset in various network models.

Model Scheme Accuracy

Attention-Oriented
Parallel CNN Encoders 71.11%

Time-Distributed CNNs + LSTMs 73.82%

The results show a slight decrease in accuracy when faced with the more complex
IEMOCAP dataset compared to the RAVDESS dataset, probably due to the greater complex-
ity of the IEMOCAP dataset and the long sample fragment times. However, it is also 2.5%
more accurate than the attention-oriented parallel CNN encoders with a good performance.

In addition, the model complexity is successfully controlled within a reasonable range,
and it can be quickly deployed for sentiment prediction. Our method meets the criteria
for practical application, and in the field of emotion computing, using audio to analyze
human emotions has greater advantages. Therefore, audio modalities should be given
higher voting weights when fusing models.

4.2. Training and Evaluation of Video-Modality Emotion-Recognition Model

For the video mode, this paper adopts the “DeepID V3 + Xception architecture”
scheme, and conducts 100 rounds of training on the experimental platform. The cross-
validation method is also adopted for training. As mentioned earlier, the Xception structure
has excellent working principles and features. In order to further improve the model
performance of Xception in emotion-recognition tasks, optimization strategies such as data
augmentation, early stopping, learning rate decay, L2 regularization, and class weight
balance are optimized and adjusted.

After adopting relevant optimization strategies, the loss function value drops from
1.7515 to 1.0031, and the accuracy rate increases from 0.2968 to 0.6453 on the training set
during the whole training process. At the same time, on the validation set, the loss function
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value drops from 2.3387 to 1.0921, and the accuracy rate increases from 0.2644 to 0.5965. The
1–100 round loss function value change curve of the video-modality training set and the
verification set and the numerical change curve of the accuracy rate are shown in Figure 11.
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In addition to the aforementioned analysis, this paper also conducts comparative
experiments with several schemes proposed by other researchers. These include SVM
on HOG features, SVM on facial landmarks features, SVM on facial landmarks and
HOG features, SVM on sliding window landmarks and HOG, and Inception architecture.
The experiment employs the SVM classifier and utilizes methods such as HOG features,
face feature point features, and their combined features and sliding window to conduct
the experiments.

Finally, this paper also uses the Inception architecture network to conduct experiments.
Table 9 presents a comparison of the experimental results of the scheme proposed in this
paper and the abovementioned comparison schemes.

Table 9. Performance comparison between DeepID V3 + Xception architecture and other scheme models.

Model Scheme Accuracy

SVM on HOG Features 32.8%
SVM on Facial Landmarks Features 46.4%

SVM on Facial Landmarks and HOG Features 47.5%
SVM on Sliding Window Landmarks and HOG 24.6%

Inception Architecture 59.5%
DeepID V3 + Xception Architecture 64.5%

After comparison, the DeepID V3 + Xception architecture is tested on the CK+ dataset
using a combination of HOG features and facial feature points. The results show that
the model achieves an accuracy of 64.5%, which is a 5% improvement over the Inception
architecture. Furthermore, the model size is only 15 MB. It should be noted that the
proposed scheme in this paper has much room for improvement in the video-modal
emotion-recognition task due to the quality of the dataset, among other reasons. Therefore,
when implementing model fusion, video modalities should be assigned larger weights to
further improve the model performance.
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4.3. Modal Experiment Results Comparison and Evaluation

The late-fusion decision method based on the idea of weight adaptation proposed
in this paper is verified through experiments. The experimental results are presented in
Table 10 below.

Table 10. Confusion matrix of late-fusion experiment results based on a weight-adaptive idea.

Unit: % Happy Sad Angry Fear Disgust Surprise

happy 82 7 11 0 0 0
sad 0 85 8 5 2 0

angry 0 9 84 7 0 0
fear 3 3 0 88 6 0

disgust 0 0 9 8 83 0
surprise 0 6 0 4 6 84

The above table reveals that after incorporating individual differences and the signifi-
cance level of each modality in emotional expression, the model’s performance improves
substantially, with the average accuracy rate of six classifications reaching 0.8433. We
compare the results obtained by all the algorithms proposed in this paper in Figure 12.
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The above figure reveals that in the single-modal emotion-recognition task, the ac-
curacy of the algorithm presented in this paper is as follows: 80.40% for the audio mode
and 64.50% for the video mode. The results indicate that the proposed algorithm utilizing
audio modality performs better.

This paper further explores the multimodality late-fusion method by integrating audio
and video modalities. Two late-fusion techniques based on average and weight-adaptive
ideas are designed and used separately to predict the accuracy of the emotion-recognition
model. As per the experimental results, the latter algorithm yields a prediction accuracy of
84.33%, surpassing the prediction accuracy of all single-mode models. Compared to the
best single-modal model, the accuracy rate has improved by approximately 4%; findings
which demonstrate the feasibility and effectiveness of multimodal fusion in emotion-
recognition tasks.

In order to better reflect and verify the advantages of the algorithm proposed in this
paper, the model training results obtained in this paper are compared with the experimental
results of deep convolutional neural networks [52] and an audio–visual and emotion-
centered network [53]. The experimental results are shown in Table 11.
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Table 11. Performance comparison table between the scheme of this paper and other multimodal schemes.

Model Scheme Accuracy

Deep Convolutional Neural Networks 77.64%
Audio–Visual and Emotion-Centered Network 81.28%

Our Scheme 84.33%

After the experimental results, it can be seen that the experimental results of multi-
modal emotion recognition in this chapter are the highest, and the accuracy rate of the
model used reaches 84.33%, which is better than other network models, reflecting the
superior performance of the algorithm proposed in this paper.

5. Conclusions

This paper delves into the direction of emotion recognition in the field of emotion
computing through a detailed study of multimodal emotion recognition using audio
and video data and deep-learning-based methods. Initially, we describe the construction
process of the emotion-recognition models for each modality. In order to validate the model
construction schemes proposed in this paper, experimental verification is conducted by
comparing the model results with those obtained by previous researchers.

In order to achieve this, the paper introduces the comparative experimental method-
ology and analyzes and evaluates the outcomes. Finally, we provide a brief overview of
the three fusion methods, i.e., early fusion, late fusion, and hybrid fusion, and realize the
late fusion of the audio and video modalities based on two distinct ideas. The specific
contributions and innovations of this paper are as follows:

(1) For the task of audio-modal emotion recognition, this paper determines the model
construction scheme of “time-distributed CNNs + LSTMs”. Firstly, the audio-signal pre-
processing is carried out on the audio-modality data, and then the log-mel spectrogram
feature extraction is carried out on the audio sequence. Next, this paper performs a time-
distributed framing operation on the data sample to adapt it to the subsequent network.
Through model training and related comparative experiments, it reflects and proves the
superior performance of the network model.

(2) For the video-modal emotion-recognition task, the model construction scheme
of “DeepID V3 + Xception architecture” is determined. In the experiment, the image
preprocessing of the video-modality data is first performed, and then the process of HOG
feature extraction is performed. Finally, the role of DeepID V3 and the Xception system in
the video feature-extraction network is introduced. At the same time, the residual network
design is introduced, and the design of the network structure and the adjustment of related
optimization strategies are carried out.

(3) In order to verify the audio- and video-modality emotion-recognition model con-
struction scheme proposed in this paper, experimental verification is carried out, and the
model construction scheme for each modality is compared with the existing common
emotion-recognition algorithms. The results show that the emotion-recognition accuracy of
the two modalities is increased by 12% and 5%, respectively, confirming the advantages
and performance of the proposed algorithm. A late-fusion method based on the idea of
weight self-adaptation is also attempted, which confirms the advantages of the multimodal
fusion algorithm; the recognition accuracy is improved by nearly 4% on the basis of the
optimal single-modal emotion-recognition algorithm proposed in this paper when com-
pared with other multimodal network models, proving the superiority of the algorithm
proposed herein.

In order to improve the recognition accuracy of the proposed multimodal model,
this paper chooses to focus on the accuracy of emotion recognition, mainly by comparing
the experimental results of different schemes and the accuracy of different datasets to
verify the reliability and generalization of the scheme. It does not include other accuracy
metrics for evaluating performance reliability, such as G-Mean, precision, recall, F1 value,
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Matthews correlation coefficient (MCC), and the area under the precision-recall curve (PR
AUC). Although the accuracy index cannot fully reflect the performance of our model,
we believe that the accuracy rate is still one of the most basic and simplest evaluation
indicators. In many cases, the accuracy rate is still one of the main indicators for evaluating
the performance of classifiers and remains of great reference value. In addition, it is
helpful to our work when we have insufficient information. At the same time, this paper
compares the results of different datasets and other network model schemes, proving the
effectiveness and accuracy of the scheme proposed in this paper resulting in improvement
to varying degrees.

Future prospects: The research on the multimodal emotion-recognition algorithm in
this paper is based on the two modalities of audio and video. In view of the shortcomings
of certain existing algorithms, corresponding improvement strategies and the algorithm
scheme of this paper are proposed. After experimental verification, the validity and
feasibility of the algorithm in this paper are proved. However, the accuracy rate is only one
of the main indicators to evaluate the performance of the classifier. Although the reliability
of the scheme is verified through comparative experiments in this paper, in follow-up
research, we should consider further evaluation indicators to verify the reliability of the
model. At the same time, there are many problems that have not yet been covered in the
research of this paper. There are still many problems in the field of multimodal emotion
recognition which urgently require further study by researchers. Research on multimodal
effective fusion is the core issue in the field of multimodal emotion recognition. Realizing
the effective fusion of multimodal information has always been a popular research direction
in this field. The fusion results determine the upper limit of the performance of emotion
recognition. Therefore, breakthroughs in multimodal fusion methods will give a huge boost
to the development of the field and, at the same time, pose a huge challenge to researchers,
who will focus on innovations in multimodal fusion methods in the next phase of research.
In the next stage of research, we will focus on the innovation of multimodal fusion methods.

Emotion-recognition technology has a wide range of applications in the field of driver
safety. In subsequent in-depth research, the driver’s emotion will be identified based
on the emotion-recognition algorithm proposed in this paper, the attention mechanism
will be used to weight the integrated feature vector, and the emotion-classification results
of multiple modalities will be integrated to obtain the final emotion-recognition results,
resulting in the integrated emotion state of the driver. Then, early warning tips will be
given according to the driver’s emotion classification, thus improving driver safety and
security and promoting the development of intelligent transportation.
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