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Abstract: WESPs (Wet Electrostatic precipitators) are mainly installed in industries and factories
where PM (particulate matter) is primarily generated. Such a wet type WESPs exhibits very excellent
performance by showing a PM collection efficiency of 97 to 99%, but the PM collection efficiency may
decrease rapidly due to a situation in which the dust collector and the discharge electrode is corroded
by water. Thus, developing technology to predict efficient PM collection in the design and operation
of WESPs is critical. Previous studies have mainly developed machine learning-based models to
predict atmospheric PM concentrations using data measured by meteorological agencies. However,
the analysis of models for predicting the dust collection efficiency of WESPs installed in factories and
industrial facilities is insufficient. In this study, a WESPs was installed, and PM collection experiments
were conducted. Nonlinear data such as operating conditions and PM measurements were collected,
and ensemble PM collection efficiency prediction models were developed. According to the research
results, the random forest model yielded excellent performance, with the best results achieved when
the target was PM 7: R2, MAE, and MSE scores of 0.956, 0.747, and 1.748, respectively.

Keywords: ensemble model; artificial neural network; dust collection; wet electrostatic precipitator

1. Introduction

The rapid development of modern society has led to an increase in the generation of
particulate matter (PM 10) and fine PM (PM 2.5), and air pollution problems are growing in
severity [1]. PM 2.5 and PM 10 contain hazardous substances such as exhaust gases, ozone,
and nitrogen dioxide emitted from industries and factories, which can cause diseases such
as bronchitis, respiratory illnesses, and reduced lung function [2]. Accordingly, the World
Health Organization (WHO) recommends that the mass of PM 2.5 particles suspended in
the air be less than 10 µg/m3; however, this mass threshold is regularly exceeded in most
regions of Germany [3]. Therefore, research and development to reduce the concentration
of PM in the atmosphere and improve the performance of dust collectors installed in
industries and factories is necessary [4].

Currently, dry electrostatic precipitators (DESPs) are mainly used in industrial sites
such as factories and power plants owing to their advantages such as high collection
efficiency and low energy consumption, leading to their widespread use in more than 80%
of coal manufacturing businesses [5–7]. However, DESPs have disadvantages of generating
harmful ozone due to corona discharge and reduced collection efficiency for fine particles
like PM 2.5 [8]. Additionally, DESPs showed a rapid decrease in dust collection efficiency
after 15 and 20 min of continuous operation, with 15.7% to 39% and 5% to 21% efficiency
reduction, respectively [9].

Wet electrostatic precipitators (WESPs) were developed to address DESPs’ drawbacks,
showing an average of 20–30% improvement in collection efficiency in laboratory-scale
tests [10]. However, they still have problems such as ozone generation due to corona
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discharge [11], excessive water usage and wastewater treatment issues [12], high invest-
ment and operating costs [13], and the formation of non-uniform electric fields and spark
discharges [14]. To overcome these disadvantages, Pan et al. used an electrostatic spray
method to supply water with fine nozzles installed in the precipitator to reduce water
consumption and installed discharge electrodes between the nozzle and the collecting
electrode where PM is captured, allowing electrical collection of PM [15]. According to the
dust collection performance test results, water usage was significantly reduced compared to
the conventional WESP method. A dust collection efficiency of 97.70–99.09% was achieved,
with a substantial reduction in the amount of ozone generated by corona discharge. In
addition, According to a study conducted by Othman et al., Wet Electrostatic Precipita-
tors (WESPs) demonstrate higher dust collection efficiency compared to other types of air
pollution control technologies such as baghouses or cyclones. The research indicated that
WESPs can achieve a collection efficiency of up to 99.99%, while baghouses and cyclones
typically attain collection efficiencies of up to 99% and 95%, respectively [16].

Therefore, in this study, we installed an electrostatic spray-based WESP with excellent
dust collection performance and effective water consumption reduction and developed
machine learning (ML) models to predict dust collection efficiency using various data
collected and applied performance tests. The developed ML model is expected to verify the
PM collection performance of each designed WESP through PM collection efficiency and
serve in the stable operation, equipment inspection, and optimal WESP design reflecting
the types and processing capacity of PM.

Various ML techniques have been applied in the field of PM. Notably, researchers
have conducted studies predicting the concentration of atmospheric PM and the energy
efficiency and PM collection efficiency of dust collectors [17–21]. Examples include the
prediction of PM 10 concentrations in Ankara, Turkey using ML algorithms (Lasso, support
vector regression (SVR), RF, k-nearest neighbors (kNN), gradient boosting (e.g., XGBoost))
and artificial neural networks (ANNs) [17]; prediction of PM 2.5 and PM 10 concentrations
in Seoul using RF and gradient boosting (e.g., XGB, LGB) algorithms [18]; air quality
prediction using sensor data-based ML technology [19]; PM concentration prediction in
Seoul using hybrid deep learning models (i.e., deep neural networks with multiple hidden
layers) [20]; and air quality prediction in Pakistan using a recurrent neural network-based
(RNN) long short-term memory (LSTM) model [21].

Research has also been conducted to predict the performance of DESPs and WESPs,
using artificial intelligence prediction analysis techniques. Examples include hybrid model-
ing for PM concentration prediction in ESPs [22], modeling of rotating packed bed (RPB)
dust collection using ANN [23], and prediction of particle capture performance of WESPs
under various conditions using ANN [24]. First, Guo et al. [22] developed a deep neural
network (DNN)-based hybrid model, which improved the prediction accuracy of dust
collection efficiency under various operating conditions of the precipitator, compared to
modeling techniques applied in previous studies to derive calibration coefficients from
experimental data. Second, Li et al. [23] used ANN to predict the PM collection efficiency
of an RPB with many complex variables and found that these predictions yielded better
results than traditional theoretical modeling methods. Finally, Yang et al. [24] developed a
three-layer ANN model to predict the dust collection performance of WESPs, which varied
according to operating condition variables, yielding excellent prediction. In summary,
many researchers have performed studies on improving dust collection performance using
ANN-based models to predict the dust collection performance of PM collectors and have
reported excellent prediction results. However, the review and analysis of ML prediction
models for analyzing dust collection performance are somewhat lacking compared to the
research on predicting PM concentration in the atmosphere using ML algorithms.

The contributions of this study are as follows:

• We collected various sensor data, such as OPC, temperature, humidity, ozone, and
applied voltage, in a laboratory-scale WESP in real time on a PC server through a
programmable logic controller (PLC).
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• A novel method for forecasting the PM collection effectiveness of WESP, which in-
volves utilizing an ensemble model that integrates multiple nonlinear data obtained
during the WESP PM collection, proposes a new approach.

• The model proposed in this paper was intended to contribute to efficient WESP design
and operation by predicting the PM dust collection efficiency of WESP.

The structure of this paper is as follows. Section 2 describes the laboratory-scale elec-
trostatic spray WESP used in this study. Section 3 explains the principles of the ML-based
PM collection efficiency prediction model. Section 4 describes various experimental results
using the ML model in the experiment. Section 5 discusses the conclusions and fu-ture
research plans.

2. Principles and Structure of Electrostatic Spray-Based WESP
2.1. Direct-Charging Electrostatic Spray ESP

The direct-charging electrostatic spray ESP applies a negative high voltage directly to
the nozzle, causing the conductive liquid passing through the nozzle to carry a negative
charge. The negatively charged conductive liquid moves to the liquid surface due to the
electric force and is atomized into fine droplets. However, this method has a problem
of significantly increased high-voltage insulation costs for pipes and other components,
as the nozzle is directly charged with a high voltage of about 10~30 kV. In contrast, the
indirect-charging method, which does not apply voltage directly to the nozzle but installs
a discharge electrode between the nozzle and the collection electrode to indirectly apply
voltage, generates microdroplets stably at a relatively low applied voltage of 1–7 kV and
captures PM. Thus, it is an economically cost saving and electrically safe structure since
there is no need for separate insulation treatment for pipes and other components [25].
Figure 1 is a conceptual diagram of the principles of indirect-charging electrostatic spraying.

Figure 1. Conceptual diagram of principles of indirect-charging electrostatic spraying.

2.2. Electrostatic Spray-Based WESP System

Figure 2 is a schematic diagram of the electrostatic spray-based WESP system designed
and fabricated at laboratory scale. The experimental system was divided into three main
components: a PM generation device, an electrostatic spray-based WESP, and a system
control and data collection device. PM was generated in the PM generation device, captured
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in the WESP, and then discharged through a flue gas fan. Various sensors in operation were
designed to collect data in real-time through the PLC, and the sensor data was stored on a
PC in real-time using a Python program [26].

Figure 2. Schematic diagram of PM collection system.

2.3. PM Generation Device

Figure 3 is a photograph of the constructed PM generation device. To ensure a stable
supply of PM particles, an appropriate pressure was applied to a solution of KCl powder
and diluted tap water using an air compressor (WSC-200-ST). The incoming solution was
then filtered through silica gel blue, consisting mainly of silicon dioxide and with a particle
size of 5~10 mesh, to generate the PM particles. KCL powder ranging in particle size
from 0.3 µm to 10 µm is introduced with an air compressor and can most closely replicate
the actual size of PM. Hence, particles similar to actual suspended PM and fine PM were
generated and introduced at the entrance of the precipitator [27].

Figure 3. Actual PM generator.



Electronics 2023, 12, 2579 5 of 17

2.4. Electrostatic Spray-Based WESP Device

Figure 4 shows photographs of the manufactured electrostatic spray-based WESP
device. A 100 L capacity water tank (Water tank 1) was installed to supply water, and a
pump (PM-015NM) was used to supply water to the pipeline. A flow meter (RMA-42-SSV)
installed in the pipeline controlled the flow of liquid, and a continuous water supply was
provided to 30 nozzles installed on the precipitator’s ceiling. Additionally, a negative
high voltage DC (direct current) supply device (PBS 7.5 (30 kV, 25 mA)) was installed to
control the voltage within the range of 0–30 kV. A voltage of 1–7 kV was applied to the
discharge electrode installed between the 30 nozzles supplying water and the collection
electrode capturing PM. As shown in the figure, the collection electrode was installed below
the discharge electrode, generating charged microdroplets and capturing PM through the
collection electrode [28].

Figure 4. Electrostatic spray-based WESP device (a): Front view of the precipitator, (b): Top view of
the precipitator.

3. Principles of the Predictive Analysis Technique Based on the Ensemble Model

Figure 5 is an overall schematic diagram of the ML-based PM prediction model.
To develop the PM collection efficiency prediction model using the collected data, the
Python program-based Scikit-learn library was used [29]. The ML prediction models
employed were kNN, RF, and decision tree (DT), which are commonly used ensemble
models. Ensemble models are non-parametric ML methods that are less influenced by the
relationship types between independent and dependent variables and the distribution of
variables, and they can determine the relative importance or contribution of variables to
the overall model [30]. Therefore, in this study, an optimal collection efficiency prediction
model using ensemble models was proposed.



Electronics 2023, 12, 2579 6 of 17

Figure 5. An overall schematic diagram of the ML-based PM prediction model.

3.1. kNN (K-Nearest Neighbor)

The kNN model clusters data by utilizing the information of the k nearest neighbors.
To apply the kNN algorithm, the k closest training data are selected according to the
value of k and the distance measurement method, and the average of the output values is
predicted. In the kNN algorithm, the Euclidean distance formula (Equation (1)) is used [31].

d(x, y) =

√
n

∑
i
(xi − yi)

2, (1)

where xi and yi are the x-coordinate and y-coordinate values, respectively.

3.2. DT(Decision Tree)

The DT method represents decision-making rules as a tree structure as shown in
Figure 6 and classifies input data according to each branching question in order to make
predictions. In DT training, data is classified from each branching node to the final node,
and the data is classified into two or n steps depending on the depth value of the branch. At
each node, the branching method involves finding the independent variable and threshold
value with the largest information gain at the parent node and classifying the child nodes
accordingly. The content of the information gain is represented in Equation (2) [32].

IG
(

Dp, f
)
= I
(

Dp
)
−

n

∑
j=1

Nj

Np
I
(

Dj
)
, (2)

where Dp is the dataset in the parent node, Dj is the dataset in the j-th child node, f is the
feature value according to the branch, I

(
Dp
)

is the impurity of Dp data, Np is the number
of data in Dp, Nj is the number of data in the dataset, and I

(
Dj
)

is the impurity of Dj.
This analysis method is advantageous because the prediction process is represented

by inference rules based on the tree structure, increasing the computation speed compared
to ANN, SVR, and regression models. Additionally, researchers can easily understand and
explain the process.
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Figure 6. Development process of PM 2.5 prediction models.

3.3. RF(Random Forest)

RF is an ensemble model that aggregates multiple DT models, typically showing better
prediction results than a single DT. It involves randomly sampling n pieces of data from a
given dataset, creating several DTs, and determining the average prediction value based on
the prediction results of each DT. The more DTs generated in the RF model, the better the
performance of the prediction results [33,34].

The aforementioned ensemble model-based prediction models were tested using an
80% and 20% training and test datasets, respectively, and the results were compared with
those of similar previous studies to verify the superiority of the models. The detailed
settings of the model proposed in this study were determined with reference to existing
studies on predicting PM in the atmosphere using similar data, and the values are presented
in Table 1.

Table 1. Ensemble model setting value.

ML Algorithms Setting Value Dataset Reference

kNN k = 3
(Euclidean distance)

PM 10
(Caribbean Area) Plocoste et al. [35].

DT Tree number ~100
Max depth

PM 10
(Caribbean Area) Plocoste et al. [35].

RF num. trees = 390, mtry = 16,
min. node size = 4

PM 10, PM 2.5
(Atmosphere data) Kim et al. [17].

3.4. K-Fold Cross-Validation

K-fold cross-validation is a common technique for evaluating the performance of a
machine learning model. This method involves dividing the dataset into K equal-sized
folds and conducting K iterations of model training and validation. During each iteration,
K-1 folds are used for training and one fold is used for validation. The model’s performance
is then evaluated based on the average score across all K iterations. By considering multiple
iterations of model training and validation, this technique provides a more dependable
estimate of model performance.

To optimize the ensemble model, we employed K-fold cross-validation to select the
optimal hyperparameters. The hyperparameters considered included the number of indi-
vidual models to combine and the weights assigned to each model. We employed K-fold
cross-validation to assess the performance of the ensemble model for every combination of
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hyperparameters. The optimal hyperparameters were chosen based on the highest average
performance across all K iterations. The K value in this paper was set to 100, and the
hyperparameters were optimized through 100-fold cross-validation.

3.5. Model Performance Evaluation Metrics
3.5.1. R2 Score

R2 score is a performance evaluation metrics that assesses the correlation between
the data applied to the regression model and the model. The R2 score ranges from 0 to 1,
with values closer to 1 indicating a high correlation between the regression model and the
applied data, and values closer to 0 indicating a low correlation. The formula for the R2
score is shown in Equation (3) [36].

R2 = 1− (T − P)2

∑(T − A)2 , (3)

where R is the coefficient of determination, T is the target, P is the predicted value, and A
is the average value.

3.5.2. MSE

MSE is the average of the squared differences between the predicted values and the
actual values of the model. The higher the accuracy of the prediction model, the lower
the MSE value. Also, since MSE squares the errors, the larger the error, the more heavily
it is weighted, and the MSE value increases rapidly. The formula for MSE is shown in
Equation (4) [37].

MSE =
1
N

N

∑
i=1

(yi − ŷi)
2, (4)

where yi and ŷi are the actual and predicted values, respectively, and N is the number of
data points.

3.5.3. MAE

MAE is the average of the absolute differences between the predicted and actual values
of the model, with lower values indicating a higher accuracy of the prediction model. Since
MAE takes the absolute value of the errors, the size of the error is directly reflected, making
it suitable for use when the size of the error is relatively large. The formula for MAE is
shown in Equation (5) [38].

MAE =
1
N

N

∑
i=1
|yi − ŷi|, (5)

where yi and ŷi are the actual and predicted values, respectively, and N is the number of
data points.

4. Experiments and Results
4.1. PLC-Based Dust Collection System Control Device and Real-Time Data Collection
and Preprocessing

Figure 6 shows the experimental process of this study. First, the flow rate of one
nozzle was set to 10 mL/min and the blower at the dust collector outlet was fixed at
30 Hz, and the voltage was increased from 1 to 7 kV at intervals of 1. The experiment
was conducted for 150 min for each applied voltage, and sensor information within the
PLC was collected in real-time every 6 s using the Python-based Pymodbus module. The
collected data items include the input data and target data mentioned in Table 1. Second,
mechanical error rates such as hardware loading from the sensor values collected in real-
time were removed through preprocessing using the Python-based Pandas package, and
dust collection efficiency was calculated using Equation (6) based on the collected PM inlet
and outlet data [39]. Then, input data and target data were set, which are presented in
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Table 2. Table 3 provides the detailed experimental conditions for PM collection. Finally,
model training and evaluation were conducted to predict PM collection efficiency using
kNN, DT, and RF models with the preprocessed data.

η =

[
1− Co

Ci

]
× 100(%) (6)

where Ci is the PM concentration at the WESP inlet, and Co is the PM concentration at the
WESP outlet.

Table 2. Dataset information.

Input Data Target Data

Inlet Temperature Outlet Temperature

PM
collection efficiency

Inlet Humidity Outlet Humidity
Inlet PM 2.5 Outlet PM 2.5
Inlet PM 4 Outlet PM 4
Inlet PM 5 Outlet PM 5
Inlet PM 7 Outlet PM 7

Ozone Voltage

Table 3. Experiment conditions of Wet electrostatic precipitators.

Item Value

Solution Tap water
Solution flow rate 10 [mL/min]

Nozzle inner diameter 0.55 [mm]
Voltage 1, 2, 3, 4, 5, 6, 7 kV

Measurement time by voltage 150 min
Data storage time unit 6 s

4.2. Dust Collector Experimental Results

Data was collected every 6 s for 150 min for each applied voltage, and the results of
preprocessing for mechanical error rates such as hardware loading from the devices (OPC,
etc.) and PM collection results by applied voltage are shown in Figure 7. Figure 7a shows
that for PM 2.5, 4, 5, and 7, dust collection efficiency results of 90~95% were obtained in
the range of 1–3 kV applied voltage, and from 4 kV onwards, the average dust collection
efficiency was over 97%. Figure 7b shows that approximately 700–800 data points were
collected as a result of data preprocessing. Consequently, this indicates that the PM
collection efficiency tends to increase as the applied voltage increases, and about 5000 data
points were collected through the experiment.

Figure 7. WESP dust collection results by applied voltage. (a) PM collection efficiency by applied
voltage; (b) Number of data by applied voltage.
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Figure 8 presents the trend of PM collection efficiency by PM size for different WESP
operating conditions. Although Figure 7 demonstrates high performance in terms of
the average PM collection efficiency, the distribution of actual data reveals a decrease
in the dust collection efficiency with finer PM particles. Furthermore, the collected data
exhibited highly dynamic characteristics, and the PM collection efficiency was found to
vary significantly depending on the magnitude of the voltage applied to the WESP.

Figure 8. Distribution of PM collection efficiency by applied voltage. (a) PM 2.5 efficiency distribution;
(b) PM 4 efficiency distribution; (c) PM 5 efficiency distribution; (d) PM 7 efficiency distribution.

Figure 9 illustrates the variables that display fluctuations among the input values
of inde-pendent variables, such as the PM count at the inlet and outlet of the WESP,
the temperature and humidity values, the applied voltage, the ozone concentration, and
the values of PM2.5, 4, 5, and 7 corresponding to the dependent variables. The figure
suggests a correlation among these variables, where temperature, humidity, and ozone
exhibit negative correlation coefficients, while the PM inlet and outlet concentrations and
the applied voltage exhibit positive correlation coefficients. Therefore, the PM collection
efficiency is substantially influenced by the operating conditions and the amount of inflow
and PM collection.

Figure 10 illustrates the distribution of the PM values at the inlet and outlet of the
WESP. The inlet value of PM2.5 exhibits significant variability, particularly with values
distributed between 0 and 25,000,000 and rapid changes. Likewise, the PM outlet values are
widely distributed and exhibit rapid changes. Hence, the dataset employed in this study is
affected by multiple variables and interrelated intricately with each other. By utilizing a
machine learning prediction model, it is possible to predict the PM collection efficiency by
accounting for various variables necessary for the design and operation of the WESP.
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Figure 9. Correlation of data variables.

Figure 10. WESP inlet, outlet PM distribution. (a) Inlet PM distribution; (b) Outlet PM distribution.

In this study, we aimed to predict the PM collection efficiency of a WESP using various
data, such as the inlet and outlet PM concentrations and applied voltage. These data are
highly variable and exhibit rapid changes for each data point. To achieve this goal, we
proposed the use of an ensemble series prediction model, which offers several advantages
over traditional machine learning models. Ensemble models combine multiple models to
increase accuracy, reduce bias, and improve robustness. Additionally, the ensemble model
can handle complex and non-linear relationships between variables and can explain the
interrelationships of the data used in this study. The ensemble model showed particularly
high performance due to the complexity and variability of the data used, making it well-
suited for the prediction of WESP PM collection efficiency.



Electronics 2023, 12, 2579 12 of 17

4.3. Experimental Results of Dust Collection Efficiency Prediction Models

K-fold cross-validation is a powerful technique for evaluating machine learning model
performance and selecting optimal hyperparameters. In this study, we demonstrated the
use of K-fold cross-validation to optimize an ensemble prediction model, which resulted in
improved accuracy and robustness.

4.3.1. kNN Model Prediction Results

Figure 11 shows the PM collection efficiency prediction results of the kNN model
evaluated based on the test dataset. As the particle size of PM increases, the data is mainly
distributed in the range of 90~100%, but the error between target data and predicted data
increases. As a result, the kNN model’s predicted values tended to deviate more from the
target as the particle size of PM increased during the prediction process.

Figure 11. PM collection efficiency prediction results (kNN model). (a) PM 2.5 efficiency prediction;
(b) PM 4 efficiency prediction; (c) PM 5 efficiency prediction; (d) PM 7 efficiency prediction.

4.3.2. DT Model Prediction Results

Figure 12 shows the PM collection efficiency prediction results of the DT model
evaluated based on the test dataset. The error between target data and predicted data shows
improved performance compared to the kNN model. Hence, the DT model demonstrates
superior performance in predicting PM collection efficiency by reflecting various sensor
values of the dust collector compared to the kNN model.
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Figure 12. PM collection efficiency prediction results (DT model). (a) PM 2.5 efficiency prediction;
(b) PM 4 efficiency prediction; (c) PM 5 efficiency prediction; (d) PM 7 efficiency prediction.

4.3.3. RF Model Prediction Results

Figure 13 shows the PM collection efficiency prediction results of the RF model for
the test dataset. The RF model, which has a deeper algorithm depth and more complex
structure than the DT model, showed superior performance in predicting PM collection
efficiency compared to the DT model. Additionally, the error range of predicted values
deviating from the target clearly decreased.

Figure 13. Cont.
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Figure 13. PM collection efficiency prediction results (RF model). (a) PM 2.5 efficiency prediction; (b)
PM 4 efficiency prediction; (c) PM 5 efficiency prediction; (d) PM 7 efficiency prediction.

Table 4 shows the performance evaluation results of the PM collection efficiency
prediction models using kNN, DT, and RF. First, in the prediction results of dust collection
efficiency for PM 2.5, 4, 5, and 7 evaluated in this study, the kNN model showed relatively
large errors and low R2 score performance. Second, the DT model outperformed the kNN
model but showed a tendency towards overfitting, as the evaluation result for the test
dataset was lower than the training result for the training dataset. Finally, the RF model
yielded the highest PM collection efficiency prediction performance with an R2 score of
0.93–0.95 for the test dataset.

Table 4. Prediction model evaluation Result.

Target:
Collection Efficiency Model

R2-Score MAE MSE

Train Test Train Test Train Test

PM 2.5
kNN 0.955 0.905 0.383 0.710 4.834 10.772
DT 0.998 0.921 0.046 0.460 0.173 8.887
RF 0.993 0.942 0.120 0.380 0.741 6.548

PM 4
kNN 0.855 0.763 0.270 0.353 3.077 3.958
DT 1.0 0.908 0.0 0.194 0.0 1.536
RF 0.978 0.936 0.073 0.154 0.466 1.066

PM 5
kNN 0.661 0.705 0.508 0.618 7.529 4.266
DT 1.0 0.872 0.0 0.205 0.0 1.850
RF 0.972 0.944 0.075 0.613 0.154 0.815

PM 7
kNN 0.611 0.173 1.506 16.073 2.370 32.848
DT 1.0 0.710 0.0 0.412 0.0 11.500
RF 0.982 0.956 0.109 0.747 0.246 1.748

5. Discussion and Comparison with Similar Works

This study proposes a machine learning-based model to predict the particulate matter
(PM) collection efficiency of a wet electrostatic precipitator (WESP). While a WESP has many
variables, including various flow rates, voltages, and fine dust concentrations, previous
studies have only considered fixed conditions, such as the effective range of the electric
field, internal space of the dust collector, and size of the dust collecting electrode. Variables
that change in real-time, such as flow rate, voltage, and fine dust concentration, have not
been adequately considered. Although the artificial neural network (ANN) model used
in previous studies achieved an R2 score of 0.98, the random forest (RF) model proposed
in this study achieved an excellent performance with an R2 score of 0.956, despite the
difference in the number of data with large changes in real-time conditions, as shown in
Table 5. Therefore, the RF model shows excellent performance in predicting the fine dust
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collection efficiency, even in WESP with various fluctuating conditions. This model will
greatly contribute to the production of fine dust collectors, detection of equipment aging,
and WESP design and operation in the future.

Table 5. Comparison between proposed and existing model.

Algorithms Model
Evaluation Index Parameter Result Reference

Hybrid model R2
Inlet temperature[◦C]

Inlet concentration (g/m3)
Rated migration velocity (ω)

0.933 Guo, Yishan,
et al. [21].

ANN R2, MSE

Inlet concentration (kg/m3)
Gas flow rate (m3/s)

Liquid flow rate (104 m3/s)
Rotor speed (rpm)

Particle size range (lm)

R2 = 0.962
MSE = 2.87

Li, Weiwei,
et al. [22].

ANN R2, MSE

gas temperature
gas humidity
gas velocity

particle concentration

R2 = 0.9897
MSE = 0.27

Yang,
Zhengda,
et al. [23].

Random forest R2, MSE, MAE

Inlet Temperature
Outlet Temperature

Inlet Humidity
Outlet Humidity

Inlet PM 2.5, 4, 5, 7
Outlet PM 2.5, 4, 5, 7

Ozone
Voltage
Blower

R2 = 0.956
MSE = 1.74

RF model
[Ours]

6. Conclusions

This study proposed a new approach to PM collection efficiency prediction modeling
using machine learning. We manufactured an actual PM collector to collect the dataset for
the prediction modeling and conducted performance tests, reflecting the flow rate, voltage,
flow velocity, and PM concentration of the dust collector. Ensemble model-based PM
collection efficiency prediction models were developed for the sensor data collected from
the dust collector under various variable conditions. According to the experimental results,
the trained kNN model showed highly unfavorable prediction performance for new data
in terms of error compared to the other models, and the DT model outperformed the kNN
model but showed overfitting. On the other hand, the RF model yielded improved PM
collection efficiency prediction performance for the test dataset compared to the kNN and
DT models, with R2, MAE, and MSE scores of 0.956, 0.747, and 1.748, respectively, when the
target was PM 7, and the error was substantially improved. Thus, we confirmed that the
RF model showed the highest performance in predicting dust collection efficiency among
the ensemble models. The RF model developed in this study is expected to contribute
to various industrial fields in areas such as optimal WESP design reflecting the type and
processing capacity of PM, stable operation, improvement of dust collector operating
conditions, and diagnosis of equipment aging.

In future studies, we plan to analyze the structure of industrial WESPs to develop
new electrode materials that can withstand high temperatures and corrosive environments.
We aim to improve WESP performance by optimizing the electric field formed inside the
dust collector to enhance PM collection efficiency. Additionally, we aim to develop an
intelligent PM collector that can automatically control the applied voltage based on the PM
concentration. This will maximize the collector’s performance by controlling its operating
conditions through prediction of PM collection efficiency.
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