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Abstract: Traditional blood group interpretation technology has poor detection efficiency and inter-
pretation accuracy in the face of complex conditions in clinical environments. In order to improve the
interpretation accuracy of the automatic blood group interpretation system, the important role of
deep learning in the blood group interpretation system was studied. Based on the AlexNet network
model, this paper proposes an improved scheme because of its advantages in terms of speeding
up the convergence training speed and enhancing the model’s generalizability. However, it still
needs improvement in terms of blood group interpretation accuracy. The improved AlexNet network
model proposed in this paper added an attention mechanism to the network structure, optimized
the loss function in the training algorithm, and adjusted the learning rate attenuation function. The
experiments showed that compared with the accuracy of the AlexNet model, its training effect was
remarkable, with an accuracy of 96.9%—an increase of 3%. Moreover, the improved network model
paid more attention to fine-grained classification, minimized the loss rate, and improved the accuracy
of system interpretation.

Keywords: blood type classification; AlexNet model; attention mechanism; loss function optimization;
learning rate decay function; deep learning; microcolumn gel card

1. Introduction

Recently, in the field of blood type detection, the fully automatic blood group analysis
instrument has long become a hot topic [1–3]. With the continuous development of clinical
science and in-depth and persistent research studies on blood type, there are various
methods and forms of blood type detection. Detection methods of automatic blood group
analysis instruments have covered the international mainstream detection methods. The
mainstream methods are such as the microplate method and microcolumn gel method [4].
The main directions that the blood group analysis instrument can detect roughly include
ABO blood type analysis, Rh blood type analysis, irregular antibody screening, cross-blood
matching test [5,6], etc.

The object of the subject points to the research study of the fully automatic blood
group interpretation system based on the microcolumn gel detection method (Card-type)
in the blood group analysis instrument. The automatic blood group analysis instrument is
based on microcolumn gel detection technology (MGDT), with a microcolumn gel card as
the experimental carrier, also known as a card-type blood group analysis instrument. The
card-type blood group analysis instrument has the advantages of simple operation, high
precision, high sensitivity, fewer specimens, long-term preservation, standardized results,
etc. It is suitable for hospitals, disease control, entry-exit for the Inspection and Quarantine
Bureau, and other medical institutions [7].

The most important part of the blood type interpretation system is the best training
model parameters that the model loads. The best training model parameters are the final
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derived model parameters by pretraining a large number of blood group image datasets.
At present, the most mainstream training and learning method is deep learning. Deep
learning is a kind of machine learning which is the essential path to achieving artificial
intelligence [8–10]. Deep learning is studied to build neural networks that mimic the
human brain for data analysis and learning features of datasets, such as images, text, and
sound [11].

The fully automatic blood group interpretation system often uses the classification-
based deep neural network model. It needs to learn various red blood cell agglutination
phenomena and reclassify them [9]. With the development of the classification-based deep
neural network model of today, there have been many excellent neural network structures.
From the LeNet network model published in 1998 to the AlexNet network model in 2012,
the VGG network model in 2014, and the ResNet residual network model in 2015, etc.,
countless research scholars have been innovating and developing deep neural network
models suitable for various fields constantly [12–14].

The project chooses to innovate based on the AlexNet network model and applies it to
the field of blood type detection by the microcolumn gel method to improve the reading
accuracy of the existing blood group interpretation system.

2. Materials and Methods
2.1. The AlexNet Architecture

AlexNet uses an eight-layer convolutional neural network. The first five layers are
the convolutional layers, and the last three are the fully connected layers in the neural
network. AlexNet won the 2012 ImageNet Image Recognition Challenge by a substantial
margin [15] and had input pictures sized at 224 × 224 × 3. After the transformation of
five convolutional layers, three max-pooling layers and activation functions to map the
raw data to the hidden layer feature space are created. Finally, three fully connected layers
act as “classifiers”, dividing the raw data into multiple categories [16–18]. The AlexNet
network model concept is shown in Table 1.

Table 1. The AlexNet Network Concept Table.

Layer Name Kernel Size Kernel Num Stride Padding Input Size Output Size

Conv1/Relu1 11 × 11 96 4 [1, 2] 224 × 224 × 3 55 × 55 × 96
LRN1 / / / / 55 × 55 × 96 55 × 55 × 96

Maxpool1 3 × 3 / 2 0 55 × 55 × 96 27 × 27 × 96
Conv2/Relu2 5 × 5 256 1 [2, 2] 27 × 27 × 96 27 × 27 × 256

LRN2 / / / / 27 × 27 × 256 27 × 27 × 256
Maxpool2 3 × 3 / 2 0 27 × 27 × 256 13 × 13 × 256

Conv3/Relu3 3 × 3 384 1 [1, 1] 13 × 13 × 256 13 × 13 × 384
Conv4/Relu4 3 × 3 384 1 [1, 1] 13 × 13 × 384 13 × 13 × 384
Conv5/Relu5 3 × 3 256 1 [1, 1] 13 × 13 × 384 13 × 13 × 256

Maxpool3 3 × 3 / 2 0 13 × 13 × 256 6 × 6 × 256
FC1/Relu6 4096 / / / 6 × 6 × 256 4096

Drop6 / / / / 4096 4096
FC2/Relu7 4096 / / / 4096 4096

Drop7 / / / / 4096 4096
FC3 9 / / / 4096 9

The ReLU function is used as the activation function in the AlexNet network model,
which replaces the traditional Sigmoid and Tanh activation functions and successfully
solves the gradient dispersion problem of Sigmoid when the network is deeper. Meanwhile,
the LRN function is used to normalize the partial features. It uses the result as the input
of the ReLU activation function, which can effectively reduce the error rate. Moreover,
the network selectively ignores individual neurons in training using the random discard
technique (Dropout). It is employed in the last few fully connected layers, which can
avoid the overfitting of the model. The pooling layer uses an overlapping maximum
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pooling layer. That is, the pooling range is larger than the step size, and it can avoid the
averaging effect of average pooling. However, the disadvantage is that the calculations
will become more difficult as the network deepens, which leads to the “degradation” of the
network [16,19,20].

2.2. Improvement Scheme Based on AlexNet

The scheme is an improvement based on the original AlexNet network structure. In the
structure, add the channel attention mechanism (SEBlock) between the first convolutional
layer and the first max-pooling layer. The SEBlock will give each channel a weight so that
different channels have different forces on the results. It is conducive to expanding the
impact of available features on the results. In the training environment, optimize the cross-
entropy loss function algorithm. It is conducive to speeding up the loss rate convergence.
Meanwhile, the learning rate fixed step decay strategy is tuned to find the optimal learning
rate. It is beneficial to improve the impact of the learning rate on the results.

2.2.1. The Channel Attention Mechanism SEBlock

The Attention Mechanism is a data processing method in machine learning, which
is used widely in different types of machine learning tasks, such as speech recognition,
image recognition, and natural language processing. There are currently two main types of
attention mechanisms: the spatial attention mechanism and the channel attention mecha-
nism [20].

When inputting an image, the neural network will extract the image features, and
each layer has a feature map of different sizes. Among them, the common matrix shape of
the feature map is [C, H, W]. When the model is training, the matrix shape of the feature
map is [B, C, H, W]. Where B means the batch size, C implies the number of channels,
H indicates the height of the feature map, and W denotes the weight of the feature map.
When the network extracts the image feature layers, the ability of the network to extract
features can enhance by adding the spatial attention mechanism or channel attention
mechanism between the convolutional layers. When writing the code, it considers the
attention mechanism between feature maps, so the input of the code is the feature map
with shape [B, C, H, W], and the output is still the feature map with shape [B, C, H, W] [3].

The SEBlock proposed in the improved scheme is a channel attention mechanism. It
adaptively recalibrates channel feature responses by explicitly building the interdependen-
cies between channels. These modules can be stacked together to form an MLP network
structure and generalized effectively over multiple datasets. The SEBlock module structure
is shown in Figure 1.

Electronics 2023, 12, x FOR PEER REVIEW 3 of 14 
 

 

Moreover, the network selectively ignores individual neurons in training using the ran-
dom discard technique (Dropout). It is employed in the last few fully connected layers, 
which can avoid the overfitting of the model. The pooling layer uses an overlapping max-
imum pooling layer. That is, the pooling range is larger than the step size, and it can avoid 
the averaging effect of average pooling. However, the disadvantage is that the calculations 
will become more difficult as the network deepens, which leads to the “degradation” of 
the network [16,19,20]. 

2.2. Improvement Scheme Based on AlexNet 
The scheme is an improvement based on the original AlexNet network structure. In 

the structure, add the channel attention mechanism (SEBlock) between the first convolu-
tional layer and the first max-pooling layer. The SEBlock will give each channel a weight 
so that different channels have different forces on the results. It is conducive to expanding 
the impact of available features on the results. In the training environment, optimize the 
cross-entropy loss function algorithm. It is conducive to speeding up the loss rate conver-
gence. Meanwhile, the learning rate fixed step decay strategy is tuned to find the optimal 
learning rate. It is beneficial to improve the impact of the learning rate on the results. 

2.2.1. The Channel Attention Mechanism SEBlock 
The Attention Mechanism is a data processing method in machine learning, which is 

used widely in different types of machine learning tasks, such as speech recognition, im-
age recognition, and natural language processing. There are currently two main types of 
attention mechanisms: the spatial attention mechanism and the channel attention mecha-
nism [20]. 

When inputting an image, the neural network will extract the image features, and 
each layer has a feature map of different sizes. Among them, the common matrix shape of 
the feature map is [C, H, W]. When the model is training, the matrix shape of the feature 
map is [B, C, H, W]. Where B means the batch size, C implies the number of channels, H 
indicates the height of the feature map, and W denotes the weight of the feature map. 
When the network extracts the image feature layers, the ability of the network to extract 
features can enhance by adding the spatial attention mechanism or channel attention 
mechanism between the convolutional layers. When writing the code, it considers the at-
tention mechanism between feature maps, so the input of the code is the feature map with 
shape [B, C, H, W], and the output is still the feature map with shape [B, C, H, W] [3]. 

The SEBlock proposed in the improved scheme is a channel attention mechanism. It 
adaptively recalibrates channel feature responses by explicitly building the interdepend-
encies between channels. These modules can be stacked together to form an MLP network 
structure and generalized effectively over multiple datasets. The SEBlock module struc-
ture is shown in Figure 1. 

 
Figure 1. The SEBlock module structure. Figure 1. The SEBlock module structure.

The SEBlock module has four main steps: First, starting from a single image, the
image features are extracted, and the current feature map dimension of the feature layer U
is [C, H, W]. Second, average pooling or maximum pooling for the [H, W] dimensions of
the feature map. The size of the pooled feature map is from [C, H, W] to [C, 1, 1]. [C, 1, 1]
can be interpreted as for each channel C, there is a number corresponding to it one by one.
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Third, the weights are extracted from each channel itself. The weights indicate the influence
of each channel on feature extraction. After global pooling through the MLP network, the
vector means that it obtains the weights of each channel. Finally, the weights obtained for
each channel C [C, 1, 1] apply to the feature map U [C, H, W] [21]. That is, each channel
multiplies its respective weight. The flow chart is shown in Figure 2.
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In this paper, after comparison experiments, it was found that the best result is when
r takes 16, so the default r = 16. SEBlock is an MLP network consisting of an adaptive
mean pooling layer and two fully connected layers, where the data are extracted from each
channel itself via the MLP network with weight. The weights represent the influence of
each channel on feature extraction [22]. The meaning of the globally pooled vectors after
passing through the MLP network is that it obtains the weight of each channel, allowing
the feature maps with a significant role to have slightly more influence on the results [3,21].

2.2.2. The Multi-Categorical Cross-Entropy Loss Function Algorithm Optimization

Cross-entropy loss is also known as log-likelihood loss and log loss. The cross-entropy
loss function is used for multi-category tasks in deep learning where the model does not
give the labels of the samples directly for the input sample z, but the probabilities of
the labels. In multi-category tasks, the Softmax activation function combined with the
cross-entropy loss function is usually used because cross entropy describes the difference
between two probability distributions. However, the output of a neural network is a vector
and not the form of a probability distribution. Therefore, the Softmax activation function is
needed to “normalize” a vector into the form of a probability distribution [21,23]. Then the
cross-entropy loss function is used to calculate the loss.

The multi-categorical cross-entropy loss function is calculated as follows:

Loss(x, class) = − log

(
exp(x[class])
∑
j

exp(x[j])

)

= −x[class] + log

(
∑
j

exp(x[j])

) (1)
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where x is a vector of dimension J that the neural network inputs into the function with
sample z, then outputs. The element value of this vector is between negative infinity and
positive infinity, and the Softmax function normalizes this vector to between 0 and 1. class
is the number of true classes of samples.

The cross-entropy loss function uses an inter-class competition mechanism, which is
better at learning information between classes, but only cares about the accuracy of the
prediction probability for the correct labels while ignoring the differences of other non-
correct labels. It leads to a scattering of learned features [21]. Therefore, the optimization
scheme demands considering the reasons for learning label prediction errors. The multi-
category cross-entropy loss function optimization GCELoss adopted in this paper calculates
as follows.

Loss = −x[class]+

log

(
exp(−x[class]) + ∑

j
exp(x[j])

)
(2)

The optimization formula GCELoss adds an exp(−x[class]) factor to the logarithmic
part of the original multi-classification cross-entropy loss function formula. It makes the
gradient of the new loss function higher than the gradient of the initial loss function, which
facilitates network convergence [24].

2.2.3. Learning Rate Fixed Step Decay Strategy

Learning rate decay is a strategy to prevent the learning rate from being too large
and swinging back and forth when converging to the global optimum. Therefore, we
need to use a learning rate decay strategy that allows the learning rate to keep decreasing
exponentially with the number of training rounds. The optimizer used in deep learning
optimizes the learning rate, mainly during the backward operation process. The learning
rate decay is a method of decaying per iteration, mainly during the forward operation
process [11,25].

The idea of learning rate setting is to use a higher learning rate in the early stage to
ensure faster convergence and a lower learning rate in the later stage to ensure stability.
There are four main learning rate decay strategies: fixed-step decay, exponential decay,
multi-step decay, and custom function decay [12]. Figure 3 shows the curves of the four
strategies that dynamically adjust the learning rate as the iterations proceed.
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The learning rate is essential in neural networks, and the way to find the optimal
learning rate is the key to how accurate the training. If the learning rate is too low, it will
cause the loss rate of the network to decrease very slowly. If the learning rate is too high,
the magnitude of the parameter updates is higher, which causes the network to converge
to a local optimum point or causes the loss rate to increase directly [26].

In this paper, we use the learning rate fixed step decay strategy, which means that
the learning rate decreases by a multiple after each fixed-step. Its calculation formula is
as follows:

lr = lrinitial × τ(epoch/step) (3)

where lrinitial is the initial learning rate, τ is the multiplier value, epoch is the number of
training iterations, and step is the fixed step size.

The initial learning rate of the AlexNet network model is 0.001, and the learning rate
decreases by 0.5 times every ten steps. While the initial learning rate of the improved
AlexNet network model remains the same, and the learning rate chooses to decrease by
0.1 times every 50 steps. Because the decay of the learning rate of the original AlexNet will
make the learning rate drop very slowly, making the training curve prone to loss value
explosion and oscillation. After adjusting the parameters, the final learning rate will be in a
suitable range, thus speeding up the convergence of the training curve. The calculation
formulas are as follows:

lr1 = 0.001 × 0.5(epoch/10) (4)

lr2 = 0.001 × 0.1(epoch/50) (5)

Now, the two learning rate decay strategies are compared under the same initial
learning rate with the Adam optimizer algorithm, as shown in Figure 4.
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We can see from Figure 4 that the fixed-step decay strategy of the learning rate after re-
adjusting the parameters converges faster and facilitates the training of the network model.

2.3. Datasets and Experiment Scheme

To test the performance of the proposed improved AlexNet network model, we acquire
a large number of Microcolumn Gel Card blood group images through the operating system
of a blood group analysis instrument. Each Microcolumn gel card blood group image has
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six microcolumn tubules. We split the tubules into six different Microcolumn Tubule blood
group images for use in the experiment.

2.3.1. Dataset Description

The blood group images of the microcolumn gel cards are acquired through the
operating system of the blood group analysis instrument, as shown in Figure 5. The
six microcolumn tubules per microcolumn gel card, each a blood group image, are used as
the data set for the training part of the blood group interpretation system.
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Observe the characteristics of the erythrocyte agglutination reaction phenomenon in
microcolumn tubules. According to the interpretation criteria of erythrocyte agglutination
intensity based on the microcolumn gel detection technique [4,14], we can divide the
microcolumn tubule blood group images into nine categories. They are negative (−),
slightly positive (±), weakly positive (1+), moderately positive (2+), positive (3+), strongly
positive (4+), the double cluster of cells (DP), hemolysis (H), and empty column (empty) [19].
The categories of the blood group images are shown in Figure 6.

The dataset images are cropped into images with 224 × 224 pixels to facilitate feature
learning of the network model. The total number of blood group image datasets used in the
blood group reading system is 837. They are divided into the training set, the validation
set, and the test set with a ratio of 7:3:2, and the number of categories of the blood group
image dataset is nine. The dataset is shown in Table 2.

Table 2. Dataset Division of Blood Group Reading System.

Training Set Validation Set Test Set Total Dataset

479 197 161 837

Both the training and validation sets are in the model training phase [13]. The data in
the training set is the object of neural network learning, and the validation set is used to
show the approximate accuracy when the model trains to a certain step. When the model
trains, the accuracy will be high and low. The last point of the training accuracy is not
necessarily the highest value. The existence of the validation set can pick out the model
parameters with the best accuracy. The test set tests the goodness of the trained model,
whose accuracy is calculated from the confusion matrix generated by the model.



Electronics 2023, 12, 2608 8 of 14

Electronics 2023, 12, x FOR PEER REVIEW 8 of 14 
 

 

Observe the characteristics of the erythrocyte agglutination reaction phenomenon in 
microcolumn tubules. According to the interpretation criteria of erythrocyte agglutination 
intensity based on the microcolumn gel detection technique [4,14], we can divide the mi-
crocolumn tubule blood group images into nine categories. They are negative (−), slightly 
positive (±), weakly positive (1+), moderately positive (2+), positive (3+), strongly positive 
(4+), the double cluster of cells (DP), hemolysis (H), and empty column (empty) [19]. The 
categories of the blood group images are shown in Figure 6. 

 
Figure 6. Nine categories of microcolumn tubule blood group image datasets. 

The dataset images are cropped into images with 224 × 224 pixels to facilitate feature 
learning of the network model. The total number of blood group image datasets used in 
the blood group reading system is 837. They are divided into the training set, the valida-
tion set, and the test set with a ratio of 7:3:2, and the number of categories of the blood 
group image dataset is nine. The dataset is shown in Table 2. 

Table 2. Dataset Division of Blood Group Reading System. 

Training Set Validation Set Test Set Total Dataset 
479 197 161 837 

Both the training and validation sets are in the model training phase [13]. The data in 
the training set is the object of neural network learning, and the validation set is used to 
show the approximate accuracy when the model trains to a certain step. When the model 
trains, the accuracy will be high and low. The last point of the training accuracy is not 
necessarily the highest value. The existence of the validation set can pick out the model 
parameters with the best accuracy. The test set tests the goodness of the trained model, 
whose accuracy is calculated from the confusion matrix generated by the model. 
  

Figure 6. Nine categories of microcolumn tubule blood group image datasets.

2.3.2. Experiment Scheme

To demonstrate the advantages of the proposed pre-trained improved AlexNet net-
work model step by step and explicitly, it is compared with the original AlexNet network
structure [16], pre-trained AlexNet-Attention network structure [21], AlexNet + StepLR
(50, 0.1), and AlexNet + GCELoss. Some frequent classification network models are also
compared, such as VGG16 [27], ResNet5 [3], and DenseNet201. After reviewing a large
amount of literature, they are compared with AlexNet + SVM [19], AlexNet + ELM [15],
and other improved schemes.

They will experiment in some of the same training environments. The AlexNet
network model trains with a batch size of 128, an optimizer of Adam, a weight decay value
of 0.0005, a momentum of 0.9, a loss function with a multi-classification cross-entropy loss
function, and an initial learning rate of 0.001. The learning rate decay strategy uses a fixed
step decay function (StepLR), and the number of training iterations is 440.

The confusion matrix is a metric for judging the results of a model and is part of the
model evaluation and is often used to evaluate the merits of a classification model. It
summarizes the records in the data set in the form of a matrix according to two criteria.
The two criteria are the real category and the category predicted by the classification model.
The rows of the matrix symbolize the authentic values, and the columns of the matrix
describe the predicted values [23,28–31]. The confusion matrix analysis is shown in Table 3.

Table 3. The Confusion Matrix Analysis Table.

Predicted
Actual

Positive Negative

Positive TP FP
Negative FN TN

Positive is a positive sample, and Negative is a negative sample. Each row of the
confusion matrix corresponds to all samples predicted to belong to that class, and the
diagonal line of the confusion matrix indicates the number of samples predicted correctly.
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We hope that the prediction categories will be on the diagonal of the matrix when the
network makes its prediction. The more densely the predictions are distributed on the
diagonal, the better the model performance. The confusion matrix also makes it easy to see
which categories the model are prone to classify incorrectly.

The accuracy, precision, recall, and specificity can be calculated by using the confusion
matrix. Notice that the accuracy is for all samples, and the precision, recall, and specificity
are for each category [12,19]. The formulas for their calculation are as follows:

Precision = TP/(TP + FP) (6)

Recall = TP/(TP + FN) (7)

Speci f icity = TN/(FP + TN) (8)

Accuracy = (TP + TN)/(TP + FP + FN + TN) (9)

Precision indicates the proportion of correct predictions among all Positive types
predicted by the model. Recall indicates the proportion of correct model predictions among
all true Positive types. Speci f icity indicates the proportion of all true Negative types for
which the model predicts the correct Negative types. Accuracy indicates the proportion
of the number of samples correctly classified by the model to the total number of samples
(all categories). In general, the higher the precision, recall, and accuracy, the better the
model [3].

3. Results

To evaluate the performance of the proposed improved AlexNet network model and
compare it with the performance of traditional classification methods on the blood group
dataset based on the microcolumn gel detection method. The results of the blood group
classification accuracy are shown in Table 4.

Table 4. Accuracy Results of Network Models for Blood Group Classification Table.

Blood Classification Network Model Classification Accuracy (%)
AlexNet 93.8

AlexNet-Attention 95.3
VGG16 91.2

ResNet50 93.4
DenseNet201 88.1

AlexNet + SVM 94.3
AlexNet + ELM 92.9

AlexNet + StepLR (50, 0.1) 96.3
AlexNet + GCELoss 94.5

SEBlock + AlexNet + StepLR (50, 0.1) + GCELoss 96.9

To better demonstrate the performance of the proposed improved AlexNet network
model on the blood group dataset, the training effect plots, confusion matrices, and data
analysis tables for each category are compared between the original AlexNet network and
the improved AlexNet network now.

3.1. Training Effect

The training effect plots of the original AlexNet network and the improved AlexNet
network are shown in Figure 7a,b.

From Figure 7, we can see that after the training of the original AlexNet network in
(a), the accuracy of the training set is 99.3% on average. The accuracy of the validation set
is 91.7% on average, and the training time is 729.207 s. In comparison, after training the
improved AlexNet network in (b), the accuracy of the training set is 99.5% on average and
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is more stable. The accuracy of the validation set is 93.2% on average, and the training time
is 756.978 s, which is within the affordable range. It demonstrates that, by comparing with
the training effect of the original AlexNet network model, the loss rate of the validation set
of the improved AlexNet network reduces. The up-and-down fluctuations of the loss rate
are lower, the stability is relatively better, and the accuracy rate is effectively improved.
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3.2. Confusion Matrix Results

After loading the parameters of the trained network model, the confusion matrix of
the original AlexNet network for the test set is shown in Figure 8a. The precision, recall,
specificity, and accuracy are shown in Figure 8b.
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The confusion matrix and the histogram of category data analysis show that the
original AlexNet network training model loaded, excluded the blood type category with
blurred boundaries, and showed multiple misclassifications, such as 3+ and DP, and empty
and 1+. These categories are precisely the categories with low accuracy or recall. The
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results are predicted in batches for the blood group images and visualize results. Through
calculation, the accuracy of the model can reach 93.8%.

For comparison with the original network model, the parameters of the improved
AlexNet network model load into the prediction program, and the test set confusion matrix
is shown in Figure 9a. The precision, recall, specificity, and accuracy are shown in Figure 9b.

Electronics 2023, 12, x FOR PEER REVIEW 11 of 14 
 

 

loss rate are lower, the stability is relatively better, and the accuracy rate is effectively im-
proved. 

3.2. Confusion Matrix Results 
After loading the parameters of the trained network model, the confusion matrix of 

the original AlexNet network for the test set is shown in Figure 8a. The precision, recall, 
specificity, and accuracy are shown in Figure 8b. 

  
(a) (b) 

Figure 8. The original AlexNet network. (a) The confusion matrix. (b) Histogram of data analysis 
for each category. 

The confusion matrix and the histogram of category data analysis show that the orig-
inal AlexNet network training model loaded, excluded the blood type category with 
blurred boundaries, and showed multiple misclassifications, such as 3+ and DP, and 
empty and 1+. These categories are precisely the categories with low accuracy or recall. 
The results are predicted in batches for the blood group images and visualize results. 
Through calculation, the accuracy of the model can reach 93.8%. 

For comparison with the original network model, the parameters of the improved 
AlexNet network model load into the prediction program, and the test set confusion ma-
trix is shown in Figure 9a. The precision, recall, specificity, and accuracy are shown in 
Figure 9b. 

  
(a) (b) 

Figure 9. The improved AlexNet network. (a) The confusion matrix. (b) Histogram of data analysis 
for each category. 
Figure 9. The improved AlexNet network. (a) The confusion matrix. (b) Histogram of data analysis
for each category.

We can see from the confusion matrix and the histogram of category data analysis
that the number of errors in the test set will highly reduce after the improved AlexNet
network training model is loaded. The errors mainly appear in blood group categories with
blurred boundaries, such as between 4+ and 3+, ± and 1+. Their overall category accuracy
and recall rates were generally higher, resulting in a substantial increase in the accuracy of
the test set. Through calculation, the accuracy of the model can reach 96.9%. The results
are predicted in batches for the blood group images and visualize results. The prediction
results graph is shown in Figure 10.
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4. Discussion

From Table 3 and Figures 6–10, we can see that among the traditional classification
network models, the DenseNet201 model has the worst accuracy because the features of mi-
crocolumn gel card image are complex and the calculation cost is high, while DenseNet201
model is suitable for the situation with few parameters and calculation cost. However,
VGG16 and ResNet50 models are unstable due to the severe vibration of loss value in
the training process. In contrast, the AlexNet model is more dominant in the field of
blood type interpretation of microcolumn gel cards. Moreover, no matter the addition
of attention mechanism, learning rate attenuation function tuning or loss function opti-
mization algorithm can improve the accuracy of blood group classification. The improved
AlexNet model obtained the best accuracy of blood group classification. Compared with
other improved schemes in the AlexNet model, the addition of SVM and ELM limited the
improvement of interpretation accuracy due to their slow learning rate and low general-
ization performance. However, the improved scheme of attention mechanism combined
with loss function optimization and learning rate attenuation function tuning could better
improve the classification performance of the AlexNet model in the field of blood group
interpretation in microcolumn gel cards.

In summary, the comparison between the original and the improved network mod-
els demonstrates the feasibility of the improvement scheme in the field of blood group
interpretation based on the microcolumn gel card, with the accuracy greatly improved.

5. Conclusions

In this paper, the improved AlexNet network structure, namely SeBlock + AlexNet + StepLR
(50, 0.1) + GCELoss model, is proposed for use in a blood group interpretation system
based on the microcolumn gel detection technique. By making the best of the attention
mechanism, loss function, and learning rate decay function, we can further improve the
performance of the AlexNet network. The improved AlexNet network model exhibits
robust feature description capability for MGDT blood group images. The combination of
the channel attention mechanism SEBlock takes into account the weight of each channel of
the images, which helps feature distinct regions become more visible. The combination of
loss function optimization GCELoss considers the difference of non-correct labels outside
of inter-class information, which helps to focus the features more and reduce the error rate.
The tuning of the learning rate decay function considers that the learning rate will make
the training curve prone to loss-value explosion and oscillation when the decay is slow,
which helps to train the model.

Through experiments, the proposed improved AlexNet network model outperforms
the current AlexNet network model and the classification interpretation on the dataset
based on blood group images of microcolumn gel cards. In our future work, we will explore
the optimization of the loss function and the learning rate decay function in more CNN
models. It enables the fully automated blood group analysis instrument to interpret the
test results of microcolumn gel cards faster and more accurately.
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