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Abstract: This paper presents a novel approach to synthesizing curved reflectarrays using Geometri-
cal Optics (GO). It introduces the concepts of virtual normal and path length shift, which enable a
vector-based formulation of the problem that can be solved using ray tracing techniques. The for-
mulation is applied for the design of two different versions of a Dual Bifocal Reflectarray with a
parabolic main surface and a flat subreflectarray. The first version aims to enhance the performance
of the multibeam antenna by providing a focal ring located at the feed cluster plane. The second
version focuses on improving the scanning characteristics of the antenna in the horizontal plane
by incorporating two foci. The synthesis procedure yields samples of the path length shift or its
derivatives. To reconstruct the phase distribution, an interpolation scheme is employed and described
in this paper. Numerical results are presented for both the focal-ring and two-foci configurations,
demonstrating the feasibility of this solution for multibeam or scanning satellite antennas operating
in the Ka.

Keywords: reflectarrays; bifocal; path length shift; virtual normal; multibeam antennas; scanning

1. Introduction

Multibeam antennas for emerging communications satellites require an increasing
number of spot beams that exploit different polarizations and frequencies [1]. The gain
and beamwidth requirements of individual spots make it necessary to use of reflector or
reflectarray systems fed by an appropriate cluster of feeding elements providing a color
map of beams defined to achieve global coverage through frequency and polarization
reuse. In a single-feed-per-beam (SFPB) configuration, due to the closely spaced beams
required and the size limitation of the usable focal plane, traditional reflector antennas can
provide only one color, and typically four reflector antennas are required, each operating
in transmission (Tx) and reception (Rx). The field of view of these antennas, which is
related to the scanning performance of the reflector or reflectarray systems, is one of the
most critical factors in the design, due to the extensive use of the focal plane and the large
coverage area compared to the size of a single beam.

It is known that bifocal dual reflector antennas [2–4] can improve the field of view of
scanning antennas compared to the corresponding dual reflector versions with a single
focus. The use of a dual reflector system introduces an additional degree of freedom, which
can be utilized to ensure two privileged directions in the far field (or two focal targets
in imaging applications) instead of requiring the condition that the main reflector and
subreflector share a common focal point.
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Reflectarray configurations have shown promise as solutions for multibeam antennas
due to their ability to generate multiple beams using a single feed by polarization/frequency
discrimination [5], or acting as a polarizer providing dual circular polarizations when
illuminated by a signal in dual linear polarization [6].

The bifocal technique has been applied in dual reflectarray configurations [7–9] based
on flat surfaces. In [7], a small size centered dual reflectarray antenna was proposed
to improve the field of view in automotive radars operating in linear polarization. In [8],
a procedure to compute the phase distribution of a bifocal dual reflectarray is presented
for centered and offset configurations. In [9], a new bifocal design procedure for dual
reflectarray antennas in offset configurations is presented. This procedure involves ini-
tially considering an axially symmetric geometry with the reflectarrays placed in parallel
planes, and then tilting the reflectarray planes while readjusting the phases to avoid
blockage effects.

For large aperture antennas, required for high gain multibeam antennas, using flat
surface reflectarrays has the drawback of requiring a large phase adjustment with a high
number of 2π cycles. This adjustment is necessary to transform the spherical waves
provided by the feeds into a large aperture with an almost uniform phase, which is crucial
for providing narrow beams in high frequency bands such as the Ka-band commonly used
for satellite communications. A promising technique is to combine the focusing advantages
of curved reflector surfaces such as the paraboloid with the control of reflection properties
available with reflectarray solutions. An example of this combination was proposed in [6]
to design a polarizing reflector that transforms linear polarization into dual polarization.

The shaping techniques based on Geometrical Optics (GO), typically used for reflector
antennas, such as the bifocal technique, can be generalized to reflectarray surfaces by using
the modified Snell Law, when phase control is added to the surface. This paper presents a
novel formulation that considers GO shaping techniques in curved reflectarrays. It is based
on the concept of path length shift, which is proportional to the phase adjustment in reflec-
tarray surfaces, and the concept of virtual normal, which allows for a vector formulation
for GO shaping and analysis of curved reflectarrays. The technique is illustrated throug the
design of a bifocal dual reflectarray with flat subreflector and parabolic main reflectarray.

Section 2 and Appendix A present the treatment of the reflection equations for curved
reflectarrays introducing the concepts of path length shift (proportional to the phase distri-
bution) and the virtual normal (representing the reflection law at the reflectarray surface).
Section 3 and Appendix B summarize the main characteristics of reflectarray analysis and
synthesis for curved reflectarrays, as well as some interpolation algorithms for the treatment
of the synthesized path length shift distributions that characterize the reflectarrays.

Section 4 presents the vector formulation of the bifocal synthesis algorithm applied
to a curved reflectarray as the main surface fed from a flat sub-reflectarray. The synthesis
of a line of data points is first formulated, followed by two examples of the 3D extension.
Section 5 presents preliminary simulations of two different examples of bifocal reflectarrays
defined for a multibeam satellite antenna in the Ka band. Finally, Section 6 presents
the conclusions.

2. Reflection Equations for Curved Reflectarrays

Figure 1 represents a reflectarray surface described in Cartesian coordinates by the
function z(x, y). The partial derivatives of the function with respect x and y are denoted as
zx(x, y), zy(x, y), respectively. All of them are known “a priori”, as well as the unit normal
vector to the surface, denoted as n̂, which can be expressed as:

n̂ =
−zx x̂− zyŷ + ẑ√

1 + z2
x + z2

y

. (1)

The figure also depicts a generic reflection point R, along with the incident ray (î)
and reflected ray (r̂). Figure 2 provides a detailed view of the reflection point and a local



Electronics 2023, 12, 2619 3 of 20

reference system composed of the orthonormal vectors
{

α̂, β̂, n̂
}

, where α̂ and β̂ lie in the
tangent plane to the surface at R.
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For a reflectarray surface, a phase distribution denoted by Φ(x, y) can be defined at
each point of the surface, representing the phase control introduced by the local reflectarray
elements. Let L(x, y) be the so-called path length shift, which is proportional to the phase
shift introduced by the reflectarray elements at any point of the surface:

Φ(x, y) = −kL(x, y) = −2π

λ
L(x, y), (2)

where k is the propagation constant.
The unit vectors corresponding to the incident and reflected rays can be expressed in

the system shown in Figure 2 as:

r̂ = sinθrcosφr α̂ + sinθrsinφr β̂ + cosθrn̂,
î = sinθicosφiα̂ + sinθisinφi β̂− cosθin̂.

(3)
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According to [10], the tangential components of î and r̂ are related to the partial
derivatives of the phase shift across the surface:

sinθrcosφr + sinθicosφi = − 1
k

∂Φ
∂α = ∂L

∂α ,

sinθrsinφr + sinθisinφi = − 1
k

∂Φ
∂β = ∂L

∂β .
(4)

The virtual normal is then defined at R as:

→
N = r̂− î. (5)

The main property of the virtual normal is that its tangential component
→
Nτ is not

dependent on the incidence angle of the ray î, but it is directly related to the partial
derivatives of Φ along the two tangential variables α, β, locally defined for the reflectarray

surface around the reflection point R. The tangential vector
→
Nτ can be represented both in

the Cartesian system and in the local tangential system composed of α̂ and β̂:

→
Nτ = Nx x̂ + Nyŷ + Nz ẑ = Nαα̂ + Nβ β̂,

Nα = ∂L
∂α , Nβ = ∂L

∂β .
(6)

Ray tracing techniques, which can be used to analyze a reflectarray, usually represent
the rays in the absolute system {x̂, ŷ, ẑ}. For planar reflectarrays, it is possible to define a
local orthonormal system

{
α̂, β̂, n̂

}
at the center of the reflectarray, and the transformation

between local coordinates and absolute coordinates in the system {x̂, ŷ, ẑ} is simple and
allows for connecting ray tracing in the absolute system to the reflectarray characterization
through the path length shift distribution L(α, β) in the local system

{
α̂, β̂, n̂

}
.

However, for curved reflectarrays, since the local system
{

α̂, β̂, n̂
}

varies across the
surface, it is preferable to characterize the path length shift in the aperture domain through
the function L(x, y), where XY represents the aperture plane. As a result, it is necessary

to relate the partial derivatives in the absolute system to the Cartesian components of
→
Nτ .

After some mathematical manipulations based on differential geometry (justified in detail
in Appendix A), the following relation can be derived:[

∂L
∂x
∂L
∂y

]
=

[
1 0 zx
0 1 zy

]Nx
Ny
Nz

. (7)

For the synthesis problem of the reflectarray, it is necessary to express L(x, y) after

determining
→
Nτ using ray tracing techniques. This can be achieved by obtaining the partial

derivatives using (7) and then integrating the derivatives or employing an interpolation
scheme, as described in Appendix B.

For the analysis problem of the synthesized reflectarray by means of ray tracing
techniques, the inverse relation required to order to evaluate the Cartesian components

of
→
Nτ in terms of the derivatives of L with respect to the aperture coordinates (x, y).

The following relation can also be derived by inverting (7), as described in Appendix A.Nx
Ny
Nz

 =
1

1 + z2
x + z2

y

1 + z2
y −zxzy

−zxzy 1 + z2
x

zx zy

[ ∂L
∂x
∂L
∂y

]
. (8)

3. Geometrical Optics Analysis and Synthesis of Curved Reflectarrays
3.1. Analysis Problem: Ray Tracing Algorithm to Obtain the Reflected or Incident Ray

The ray tracing technique can be utilized to calculate a reflected ray at the reflectarray
surface when the incident ray is known and the function L(x, y) is characterized, as well as
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its partial derivatives ∂L/∂x and ∂L/∂y. First, the intersection point R between the incident
ray î and the reflectarray surface z(x, y) is computed using geometric considerations, as
well of the corresponding unit normal vector n̂. Once the (x, y) coordinates of the reflection

point are known, (8) allows us to obtain the tangential part
→
Nτ of the virtual normal.

The tangential part of the vector r̂ can be calculated by inverting (5), considering only the
tangential components. Then, the reflected direction r̂ can be reconstructed by adding the
normal component, ensuring that it remains a unit vector:

→
i τ = î−

(
î·n̂
)
n̂,

→
r τ =

→
i τ +

→
Nτ , r̂ =

→
r τ + n̂

√
1−

∣∣∣→r τ

∣∣∣2. (9)

If the incident vector must be determined from the reflected one, a similar procedure
can be used, but considering the following equations:

→
r τ = r̂− (r̂·n̂)n̂,

→
i τ =

→
r τ −

→
Nτ , î =

→
i τ − n̂

√
1−

∣∣∣∣→i τ

∣∣∣∣2. (10)

where the subindex τ denotes the tangential part of the vectors.

3.2. Synthesis Problem: Ray Tracing Algorithms to Obtain the Path Length Shift Distribution
across the Reflectarray

In the synthesis problem, the ray tracing technique is utilized to define the incident

(
→
i k) and reflected (

→
r k) rays at a set of reflectarray points {xk, yk, zk}, where zk = z(xk, yk).

Additionally, the unit normal vector n̂k at each point is known. Since incident and reflected

rays have been already described, the virtual normal
→
Nk at each point can be obtained

using (5). The next step is to calculate the tangential component of each
→
Nk by subtracting

the normal component:

→
Nk =

→
r k −

→
i k

→
Nτk =

→
Nk −

(→
Nk·n̂k

)
n̂k. (11)

Then, (6) can be used to compute the partial derivatives of L(x, y) at the set of data
points across the reflectarray.

Alternatively, instead of using the reflection law, an eikonal condition can be applied,
which assumes equal paths for the sum of the ray lengths along each trajectory. Let LEk
denote the electrical length of ray k, and LGk its geometric length. The sum of the geometric
length and the path length shift across the reflectarray represents the electrical length.
In a synthesis problem, the electrical length is imposed by the designer, the geometric
length is obtained from the ray tracing synthesis algorithm, and the path length shift across
the reflectarray is unknown. Therefore, the following equation is used to describe the
reflectarray path length shift:

Lk = LEk − LGk. (12)

Once the path lengths shift {Lk}, its partial derivatives with respect to x and y{
Lxk, Lyk

}
or both are obtained for a set of data points, and an interpolation algorithm is

required. A least squares scheme with polynomial basis functions is proposed to interpo-
late the synthesized data, allowing for a complete description of the path length function
L(x, y). This description enables the determination of the required phase shift for each
element of the reflectarray based on the coordinates of the cell element. Two versions of
this approximation are detailed in Appendix B, depending on the available data: L(x, y) or
its partial derivatives.
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4. Bifocal Dual Reflectarray with Parabolic Main Surface and Flat Subreflector Surface
4.1. Synthesis Algorithm of a Linear Section

The proposed bifocal dual reflectarray consists of a parabolic main reflectarray surface,
denoted as main-RA, and a flat subreflector reflectarray, denoted as sub-RA. This design
aims to significantly reduce the phase adjustment requirements for the main reflectarray
compared to using a flat reflectarray, as in [7–9].

The bifocal synthesis involves considering two reflectarray surfaces, main-RA and sub-
RA, with two focal points ( F1, F2) and two focused scanned directions ( ŝ1, ŝ2). An algorithm
is developed to obtain two lines of data points, which correspond to the main-RA and sub-
RA, along with the virtual normal at each point. Figure 3 illustrates the bifocal synthesis for
a 2D case. To start the synthesis process, a starting point is chosen at the main-RA, denoted

as M0, corresponding with unit normal vector n̂M0 and virtual normal vector
→
NM0 obtained

from (5) if the incident and reflected rays at the starting point M0 are known. Note than
→
NM0 and n̂M0 are generally not collinear for reflectarray surfaces. In contrast, they would
be colinear for a solid reflector surface without the ability to introduce phase shifts.
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the main-RA to generate “×” points and starting at a known point S0 on the sub-RA to generating
“�” points. Both procedures lead to the same geometry.

The algorithm for bifocal synthesis illustrated in Figure 3 works as follows. Given a
generic point Mj on the main-RA, along with its unit normal n̂Mj and the corresponding

virtual normal
→
NMj, follow the next steps:

1. Extract the tangential part
→
NMτ j of

→
NMj by (11):

→
NMτ j =

→
NMj −

(→
NMj·n̂Mj

)
n̂Mj; (13)
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2. Compute the incident unit vector ĥ1j at Mj by using (10):

→
s 1τ = ŝ1 −

(
ŝ1·n̂Mj

)
n̂Mj, ĥ1τ j =

→
s 1τ −

→
NMτ j,

ĥ1j = ĥ1τ j − n̂Mj

√
1−

∣∣∣ĥ1τ j

∣∣∣2;
(14)

3. Determine the intersection point Sj between the incident ray ĥ1j and the flat sub-RA,
and obtain its unit normal n̂Sj.

4. Calculate the incident ray at Sj as:

î1j =
F1Sj∣∣∣F2Sj

∣∣∣ ; (15)

5. Obtain the virtual normal at the sub-RA by using (5):

→
NSj = ĥ1j − î1j; (16)

6. Extract the tangential part of
→
NSj:

→
NSτ j =

→
NSj −

(→
NSj·n̂Sj

)
n̂Sj; (17)

7. Consider a focusing ray from ŝ2 to F2 through the point Sj. As the first step for this
second ray, get the incident ray at sub-RA as:

î2j =
F2Sj∣∣∣F2Sj

∣∣∣ ; (18)

8. Calculate the reflected unit vector ĥ2j at sub-RA by (9):

→
i 2τ j = î2j −

(
î2j·n̂Sj

)
n̂Sj, ĥ2τ j =

→
i 2τ j +

→
NSτ j,

ĥ2j = ĥ2τ j + n̂Sj

√
1−

∣∣∣ĥ2τ j

∣∣∣2;
(19)

9. Obtain the intersection point Mj+1 between ĥ2j and the main-RA and determine its
unit normal n̂M(j+1);

10. Get the virtual normal by using (5):

→
NM(j+1) = ŝ2 − ĥ2j; (20)

11. Return to step 1 with point Mj+1 and virtual normal
→
NM(j+1). The procedure is

iterated several times until the main-RA is oversized.

Figure 3 illustrates this algorithm to obtain data points drawn with symbols “×”:
Another procedure can be established by starting at the sub-RA (known point S0

and known virtual normal
→
NS0) by considering first steps 6 to 11 and then steps 1 to 5.

The result will produce the set of data points drawn with symbols “�” in Figure 3.

4.2. 3D Extension with Two Foci

In the 3D extension of the bifocal synthesis algorithm, the steps described in
Equations (13)–(20) remain valid with general vector relations. However, since the al-
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gorithm generates data points along curved lines for both main-RA and sub-RA, it is
necessary to use a set of starting points along central sections of both surfaces.

Figure 4 schematically illustrates how the algorithm evolves transversally from the
central sections to produce the required set of data points across the aperture of the main-
RA and sub-RA. In Figure 4 it has been assumed that the starting profile lies in the plane of
symmetry, allowing the other half of the reflectarray surfaces to be defined by symmetry.
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at the main-RA central section while diamonds are obtained by starting at sub-RA central section.
The left part, not represented in the figure, is obtained by symmetry means.

4.3. 3D Extension with Focal Ring

In the case of the 2D bifocal procedure applied starting at the vertex of a symmetric
structure such as that of Figure 5, with two symmetric focal points ( F1, F2) and two focused
scanned directions ( ŝ1, ŝ2), all of them contained in the plane XZ. The 3D extension of
this central section by rotation about Z axis produces a symmetric dual configuration
with a focal ring containing F1 and F2. A feed located in a point of this focal ring would
produce maximum radiation for a direction belonging to a focused cone containing ŝ1 and
ŝ2. Even if an offset section is selected, the same property remains. However, both the
surface equations and the path length shift functions must be symmetric and will depend
only on the radial coordinate ρ.
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5. Numerical Results

Two different examples of dual bifocal reflectarray are presented. Both have been
designed for a multi-beam onboard satellite antenna operating in the Ka band. The goal
is to provide a high number of beams (around 100) with 0.65-degree beamwidth and a
separation between contiguous beams of 0.56 degree, both in transmission and in the
reception bands (in the 20 and 30 GHz bands, respectively). Adopting reflectarray surfaces,
the number of antennas needed for full area coverage can be reduced from four to two.
This is achieved by using the reflectarrays to provide two beams per feed by polarization
discrimination. In this way, two of the four colors can be produced by a single multibeam
antenna. More details of this application can be found in [5,6,9,11–14] showing different
options based in single and dual reflectarray antennas.

In this paper, the details and simulated performance results of two bifocal reflectarray
configurations are presented. Both configurations consist of a parabolic main-RA and flat
sub-RA. A Cassegrain scheme with parabolic main reflector and hyperbolic subreflector
is first defined as baseline design, as shown in Figure 6a. In the figure, the reference unit
vectors of the feed system (x̂ f , ẑ f ) are depicted as well as those of the absolute system (x̂, ẑ).
The unit vectors ŷ f and ŷ, not represented, are normal to the plane of the figure. The main-
RA will be supported by the same parabolic main reflector surface of the Cassegrain
while two different options will be considered for the flat sub-RA. The first one is used
to synthesize a bifocal configuration with a focal ring and a focused cone as shown in
Figure 5. Since for this case the sub-RA surface must be symmetric about the Z axis, it
must be normal to the Z axis (if a flat surface is required), otherwise it should be a curved
surface. For instance, if a tilted section is chosen, the sub-RA would be a cone. The second
option for the sub-RA is selected to synthesize a bifocal configuration with two focal points
with the 3D extension shown in Figure 4. In this case, a tilted sub-RA plane is selected to
be tangent to the hyperbolic surface at a central point adequately selected to reduce the
average difference between the hyperbolic surface and the tangent plane. Both choices are
depicted in Figure 6b.
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The geometric parameters of the two baseline Cassegrain configurations are summa-
rized in Table 1.
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Table 1. Baseline Cassegrain Parameters.

Geometric Parameter Symbol and Value

Main reflector aperture diameter D = 1.8 m
Main reflector focal length f = 2.4 m

Main reflector offset heigth hoff = 1.6 m (focal ring design)
hoff = 1.8 m (Two foci design)

Inter-focal length 2c = 0.96 m
Feed location Feed = (0, 0, −0.96) m

Magnification factor M = 1.25

5.1. Focal Ring Bifocal Design

To achieve the desired scanning capability of the antenna, a focused cone with a
central angle of 1.68◦ is enforced, along with a focal ring of radius 114 mm in the focal plane.
This configuration ensures that the focused cone aligns with the map of beams, as shown
in Figure 7, minimizing the mean scanning losses across the field of view. The map of
beams depicted in Figure 7a shows two of the four colors which are necessary for the whole
coverage by reusing two frequencies and two polarizations. Figure 7b shows schematically
the cluster of feed apertures, each providing two beams. Two antennas would be necessary,
each one providing two of the four colors. As can be seen in Figure 7b, the cluster of dual
beams covers all the focal plane space, so a second antenna is necessary to provide the
other two colors not represented in Figure 7a.
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Figure 7. Multibeam configuration for one antenna (two are necessary for whole coverage): (a) map
of beams, each color represents a different polarization; (b) feed cluster where each antenna generates
two beams with perpendicular polarizations.

The sub-RA plane was selected to be normal to the Z axis (as shown in Figure 6b) and
containing a central point of the original hyperbolic subreflector of the baseline Cassegrain
configuration. The bifocal algorithm described in Section 4.1 was applied in the offset
plane. The iterations of the algorithm started at the vertex of the parabola in the Z axis,
generating a first set of data points. A second set of data points was obtained, as described
in Section 4.1, starting from the vertex of the hyperbola in the Z axis. Due to the symmetry of
the problem, only half of the data points (those corresponding to x ≥ 0) were used to adjust
the polynomial approximation L(x), according to Appendix B, but without considering zy,
∂L/∂y or Ny since it is a 2D problem. The polynomial approximation was performed using
the following basis functions:

L(x) =
8
∑

n=0
anψn(x), ∂L(x)

∂x =
8
∑

n=0
anψ′n(x),

ψn(x) = xn, ψ′n(x) = nxn−1.
(21)
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Figure 8 shows the derivative of L(x) as obtained from the bifocal synthesis algorithms
through the computation of the virtual normal and the polynomial approximation used
to characterize the reflectarrays. The maximum errors for these derivatives due to the
polynomial approximation have been found to be less than 5 × 10−5 for the flat sub-RA
and 2 × 10−5 for the parabolic main-RA. The global view of the path length shift L(x, y)
is depicted in Figure 9. It must be taken into account that the function L is circularly
symmetric, depending only on the radial cylindrical coordinate ρ.
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The focusing properties have been evaluated by GO and the results are depicted
in Figure 10. A quasi-perfect focusing is achieved when scanning to ±1.68◦ and the feed
is located at the corresponding focal point. The case −1.68◦ is quite good, but in general,
scanning to negative values in the offset plane is worse than the corresponding positive
value because the upper part of the subreflector, where the asymmetry due to the offset
configuration is steeper, is used.

Basic Physical Optics (PO) simulations at 20 GHz have been developed by using
in-house software tools [15,16] based on discretizing the surface in small triangular patches.
The implementation of the impact of the phase shift due to the reflectarrays has been
performed by multiplying the currents predicted using PO by the phase shift term (propor-
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tional to the path length) computed at the center of each patch. Ideal feed models of cos-q
type have been adopted, providing edge taper illumination of −12 dB. Figure 11 shows
the PO patterns for the bifocal design with focal ring when the feed is located to make
the antenna scan in the boresight direction and in the θ = 1.68◦ for the principal cuts.
The scanning behavior of the antenna is satisfactory. The lack of symmetry observed in the
XZ plane is a result of the offset configuration employed in the design.
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5.2. Bifocal Design with Two Focal Points

In this design, two focal points were selected to correspond to scanning directions
at θ = 1.68◦ in the YZ plane (φ = 90◦ and φ = −90◦). The focal points were chosen to
replicate the same deviation factor as in the baseline Cassegrain design in order to maintain
the size of the sub-RA. In this design, the sub-RA plane is the tilted version of Figure 6b,
and a feed plane normal to the ẑ f direction was considered. The ẑ f direction points from
the original feed point in the baseline Cassegrain to the bisector direction of the sub-RA.
The two focal points were chosen in this feed plane by GO calculations in the baseline
Cassegrain. Two sets of rays incoming to the main reflector from the focal directions
(θ = 1.68◦, φ = ±90◦) are considered. After reflection of the sets of rays at main reflector
and subreflector, the best focusing points at the feed plane are computed, providing the
coordinates of the focal points at (0, −0.0952, −0.96) for φ = 90◦ and (0, 0.0952, −0.96)
for φ = −90◦.

Before synthesizing the 3D main-RA and sub-RA as described in Section 4.2, a central
section of the reflectarrays is synthesized in the offset ZX plane. A bifocal central section
is initially synthesized with focal directions (θ = 1.68◦, φ = 0◦ and 180◦). In this case, the
focal points are also taken in the feed plane at the coordinates (−0.084929, 0, −0.911868)
for φ = 0◦ and (0.081149, 0, −1.00599) for φ = 180◦. The set of data points from the central
section is then used to extend the synthesis in 3D, resulting a set of data points as depicted
in Figure 12.
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With the synthesized sets of data for the derivatives of the path length shift for
main-RA and sub-RA, a polynomial interpolation was constructed by using the following
basi functions:

L(x, y) =
2

∑
j=0

3

∑
i=0

pijψij(x, y), ψij(x, y) = xiy2j+1 (22)

The data points used for interpolation exceed the area of the main-RA and sub-RA.
This is convenient to improve the accuracy of the polynomial approximations. The view
of the path length shift distribution and those of the phase delay distributions for both
reflectarrays are plotted in Figure 13. It can be observed that a deeper variation in path
length shift variation is required for the flat sub-RA than for the main reflector. The error
due to the polynomial interpolation for the partial derivatives has been found to be less
than 5 × 10−3 for the flat sub-RA and less than 2 × 10−3 for the main-RA.
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(b) sub-RA.

To verify the focusing properties of the designed bifocal dual reflectarray, the unifor-
mity of the phase distribution across the scanned aperture was studied by analyzing the
root mean square (rms) of the path length after GO simulations. Figure 14 compares the
path length rms when the antenna scans in the plane of the foci compared to that of the
baseline Cassegrain.
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Again, basic Physical Optics (PO) simulations at 20 GHz were performed using the
same approximations adopted in Section 5.1. Figure 15 show the Physical Optics patterns
for the bifocal design with two foci when the antenna scans in the plane where the focusing
directions are located. The maximum ripple of the gain for the considered beams, extending
beyond the focal directions is approximately 0.2 dB compared to about 0.5 dB ripple
observed in the baseline Cassegrain configuration.
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requirements for main lobe and side lobes.

6. Conclusions

In this paper, a novel vector formulation has been proposed for the synthesis of curved
reflectarrays using ray tracing techniques. The concept of path length shift, which is directly
proportional to the phase distribution, has been introduced and applied to solve the first
stage of the reflectarray synthesis problem without restrictions in frequency. The concept of
virtual normal, which characterizes the reflection law at the reflectarray surface, enables the
vector formulation of ray tracing for curved reflectarrays. Equations have been developed
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to establish the relationship between the virtual normal, obtained in the GO synthesis, and
the derivatives of the path length shift distribution with respect to the coordinates of the
aperture of the curved reflectarray. The path length shift, and, hence, the phase distribution
is then reconstructed by an interpolation scheme that is also presented. This interpolation
minimizes, in a least mean squares sense, the differences between the synthesized deriva-
tives of the path length shift, as obtained from the GO synthesis, and the derivatives of the
interpolation polynomial.

Two different configurations of bifocal dual reflectarrays have been presented, along
with numerical results that demonstrate the feasibility of the proposed solution. In the first
configuration, a focal ring is generated in the focal plane, improving the antenna’s field of
view when a cluster of feeds is used to achieve a multibeam antenna, as opposed to the
standard case of having a single focal point. The reflectarray synthesis in this configuration
is a 2D problem, and the 3D extension is obtained through the rotational symmetry of the
phase shift synthesized using the bifocal technique in the central section of the surfaces.
In the second configuration, a 3D synthesis problem is solved to produce two foci in the
horizontal plane of the antenna, resulting in enhanced scanning performance in such plane.
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Appendix A. Computation of the Tangential Part of the Virtual Normal

Let
→
r (x, y) be the location of any point of the surface. The surface and its partial

derivatives can be expressed as:

→
r (x, y) = xx̂ + yŷ + z(x, y)ẑ,

→
r x(x, y) = x̂ + zx(x, y)ẑ,

→
r y(x, y) = ŷ + zy(x, y)ẑ.

(A1)

Then, the unit normal vector can be written as:

n̂ =

→
r x ×

→
r y∣∣∣→r x ×
→
r y

∣∣∣ = −zx x̂− zyŷ + ẑ√
1 + z2

x + z2
y

(A2)

A local system {û, v̂, n̂} can be defined at each reflection point R so that û =
→
r x/

∣∣∣→r x

∣∣∣
and v̂ =

→
r y/

∣∣∣→r y

∣∣∣ are tangent to the surface and n̂ is normal to it. The following matrix
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formulation can be written for the transformation from the Cartesian system to the local
system {û, v̂, n̂}: û

v̂
n̂

 =


1

Cx
0 zx

Cx

0 1
Cy

zy
Cy

−zx
C

−zy
C

1
C


x̂

ŷ
ẑ

,

Cx =
√

1 + z2
x, Cy =

√
1 + z2

y, C =
√

1 + z2
x + z2

y.

(A3)

Although û and v̂ are not perpendicular to each other, the election is interesting because
each of them is contained in the respective plane XZ or YZ. The tangential coordinates
along û and v̂ can be projected on the axis X and Y, giving the following simple relations:[

∂u
∂x

∂v
∂x

∂u
∂y

∂v
∂y

]
=

[
Cx 0
0 Cy

]
. (A4)

Consequently: [
∂L
∂x
∂L
∂y

]
=

[
∂u
∂x

∂v
∂x

∂u
∂y

∂v
∂y

][
∂L
∂u
∂L
∂v

]
=

[
Cx 0
0 Cy

][
∂L
∂u
∂L
∂v

]
. (A5)

Consider now an orthonormal system (α̂, β̂, n̂) so that α̂ is in the direction of
→
Nτ while

β̂ is perpendicular. The following transformation matrix can be established, according
to Figure A1: [

û
v̂

]
=

[
cos(δ) sin(δ)

cos(δ + γ) sin(δ + γ)

][
α̂

β̂

]
=

[
û·α̂ û·β̂
v̂·α̂ v̂·β̂

][
α̂

β̂

]
. (A6)
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(
α̂, β̂
)
.



Electronics 2023, 12, 2619 17 of 20

The mapping transformation between the coordinates (u, v) and (α, β) can be written
with the transposed matrix as:[

α
β

]
=

[
cos(δ) cos(δ + γ)
sin(δ) sin(δ + γ)

][
u
v

]
=

[
û·α̂ v̂·α̂
û·β̂ v̂·β̂

][
u
v

]
. (A7)

The derivatives ∂L/∂u and ∂L/∂v can be expressed as:[
∂L
∂u
∂L
∂v

]
=

[
∂α
∂u

∂β
∂u

∂α
∂v

∂β
∂v

][
∂L
∂α
∂L
∂β

]
=

[
û·α̂ û·β̂
v̂·α̂ v̂·β̂

][ ∂L
∂α
∂L
∂β

]
. (A8)

Since α̂ has been chosen along
→
Nτ , the following simplifications hold:

→
Nτ =

∂L
∂α

α̂,
∂L
∂β

= 0 =⇒
[

∂L
∂u
∂L
∂v

]
=

[
û·α̂
v̂·α̂

]
∂L
∂α

=

[
û·
→
Nτ

v̂·
→
Nτ

]
. (A9)

Combining (A5) and (A9), enables to write:[
∂L
∂x
∂L
∂y

]
=

[
Cx 0
0 Cy

]
=

[
Cx 0
0 Cy

][ 1
Cx

0 zx
Cx

0 1
Cy

zy
Cy

]Nx
Ny
Nz

, (A10)

which can be simplified as: [
∂L
∂x
∂L
∂y

]
=

[
1 0 zx
0 1 zy

]Nx
Ny
Nz

. (A11)

Taking into consideration that
→
Nτ has no normal component, its Cartesian components

are not independent, and the following condition must be satisfied:

→
Nτ ·n̂ = 0 =⇒ Nz = zx Nx + zyNy. (A12)

The expression (A11) can be written in terms of only Nx and Ny by introducing the
condition (A12): [

∂L
∂x
∂L
∂y

]
=

[
1 + z2

x zxzy
zxzy 1 + z2

y

][
Nx
Ny

]
. (A13)

An inverse expression can be obtained directly as:[
Nx
Ny

]
=

1
1 + z2

x + z2
y

[
1 + z2

y −zxzy

−zxzy 1 + z2
x

][ ∂L
∂x
∂L
∂y

]
. (A14)

Finally, (A14) can be completed with the Nz component, as expressed in (A12), giving
the following relation: Nx

Ny
Nz

 =
1

1 + z2
x + z2

y

1 + z2
y −zxzy

−zxzy 1 + z2
x

zx zy

[ ∂L
∂x
∂L
∂y

]
. (A15)

Appendix B. Least Squares Interpolation to Compute the Path Length Shift

Let L(x, y) be a function with known values Lk at a set of data points (xk, yk). It is
possible to estimate the function L(x, y) by a series expansion using known basis func-
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tions ψn(x, y). Usually polynomial functions are selected, but the formulation is described
here in general. The series expansion is written as:

L(x, y) = ∑
n

anψn(x, y), (A16)

where an are coefficients to be determined. The least squares condition is based on mini-
mizing the following error function:

ε(a) = ∑
k

(
∑
n

anψn(xk, yk)− Lk

)2

. (A17)

To achieve such minimization, the derivatives of ε(a) respect to every unknown term
am are neglected:

∂ε(a)
∂am

= ∑
k

2

(
∑
n

anψn(xk, yk)− Lk

)
ψm(xk, yk) = 0. (A18)

Last expression can be rewritten by denoting ψk
n = ψn(xk, yk) :

∑
n

an

(
∑
k

ψk
nψk

m

)
= ∑

k
Lkψk

m. (A19)

For each basis function (numbered by m), it is posible to write an equation such as
(A19). The set of equations admits a matrix formulation as the following example (for three
basis functions): 

∑
k

ψk
1ψk

1 ∑
k

ψk
1ψk

2 ∑
k

ψk
1ψk

3

∑
k

ψk
2ψk

1 ∑
k

ψk
2ψk

2 ∑
k

ψk
2ψk

3

∑
k

ψk
3ψk

1 ∑
k

ψk
3ψk

2 ∑
k

ψk
3ψk

3


a1

a2
a3

 =


∑
k

ψk
1Lk

∑
k

ψk
2Lk

∑
k

ψk
3Lk

. (A20)

This can be generalized for any number of basis functions with the following matrix
formulation: [

ΨΨT
]
[A] = [ΨL], Ψn,k = ψk

n, An = an, Lk = Lk. (A21)

The unknown vector of coefficients {an} to develop the interpolation (A16) is then
determined as:

[A] =
[
ΨΨT

]−1
[ΨL]. (A22)

Although the size of the matrix Ψ is N × K, being N the number of basis functions
and K the number of data points across the reflectarray, the matrix ΨΨT , which must be
inverted in (A22), is only N × N.

If the partial derivatives Lxk, Lyk are known at a set of points rather that the function
itself, the interpolation formula (A16) can be adopted, but an alternative least squares error
function is adopted for the minimization:

δ(a) = ∑
k

(
∑
n

anψxn(xk, yk)− Lxk

)2

+

(
∑
n

anψyn(xk, yk)− Lyk

)2

, (A23)
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where ψxn and ψyn are the derivatives of the basis function ψn respect to x and y, respectively.
A similar formulation can be developed by denoting the derivatives of the basis functions
at the data points by ψk

xn = ψxn(xk, yk), ψk
yn = ψyn(xk, yk):

∂δ(a)
∂am

= ∑
k

{
2

(
∑
n

anψk
xn − Lxk

)
ψk

xm + 2

(
∑
n

anψk
yn − Lxk

)
ψk

ym

}
= 0, (A24)

which can be rewritten as:

∑
n

an

(
∑
k

ψk
xnψk

xm + φk
ynφk

ym

)
= ∑

k
Lxkψk

xm + Lykψk
ym, (A25)

Again, a matrix formulation is possible:[
ΨXΨT

X + ΨYΨT
Y
]
[A] = [ΨX LX + ΨY LY],

ΨXn,k = ψk
xn, ΨYn,k = ψk

yn,
An = an, LXk = Lxk, LYk = Lyk

(A26)

The unknown vector of coefficients is then obtained as:

[A] =
[
ΨXΨT

X + ΨYΨT
Y

]−1
[ΨX LX + ΨY LY] (A27)

References
1. Schneider, M.; Hartwanger, C.; Wolf, H. Antennas for multiple spot beams satellites. CEAS Space J. 2011, 2, 59–66. [CrossRef]
2. Rao, B.L. Bifocal dual reflector antenna. IEEE Trans. Antennas Propag. 1974, 22, 711–714. [CrossRef]
3. Rappaport, C. An offset bifocal reflector antenna design for wide-angle beam scanning. IEEE Trans. Antennas Propag. 1984,

32, 1196–1204. [CrossRef]
4. Pino, A.G.; Llombart, N.; González-Valdés, B.; Rubiños, O. A Bifocal Ellipsoidal Gregorian Reflector System for THz Imaging

Applications. IEEE Trans. Antennas Propag. 2012, 60, 4119–4129. [CrossRef]
5. Martinez-de-Rioja, E.; Martinez-de-Rioja, D.; Encinar, J.A.; Pino, A.; Gonzalez-Valdes, B.; Rodriguez-Vaqueiro, Y.; Arias, M.;

Toso, G. Advanced Multibeam Antenna Configurations Based on Reflectarrays: Providing Multispot Coverage with a Smaller
Number of Apertures for Satellite Communications in the K and Ka Bands. IEEE Antennas Propag. Mag. 2019, 61, 77–86. [CrossRef]

6. Martinez-de-Rioja, E.; Encinar, J.A.; Pino, A.; Rodriguez-Vaqueiro, Y. Broadband Linear-to-Circular Polarizing Reflector for Space
Applications in Ka-Band. IEEE Trans. Antennas Propag. 2020, 68, 6826–6831. [CrossRef]

7. Menzel, W.; Al-Tikriti, M.; Leberer, R. A 76 GHz multiple-beam planar reflector antenna. In Proceedings of the 32nd European
Microwave Conference, Milan, Italy, 23–26 September 2002. [CrossRef]

8. Cuevas, J.G.; Tienda, C.; Encinar, J.A.; Krieger, G. Principle of bifocal antennas implemented in a dual reflectarray configuration.
In Proceedings of the 9th European Conference on Antennas and Propagation (EUCAP), Lisbon, Portugal, 12–17 April 2015.

9. Martínez-de-Rioja, E.; Encinar, J.A.; Pino, A.; González-Valdés, B.; Hum, S.V.; Tienda, C. Bifocal Design Procedure for Dual-
Reflectarray Antennas in Offset Configurations. IEEE Antennas Wirel. Propag. Lett. 2018, 17, 1421–1425. [CrossRef]

10. Leberer, R.; Menzel, W. A dual planar reflectarray with synthesized phase and amplitude distribution. IEEE Trans. Antennas
Propag. 2005, 53, 3534–3539. [CrossRef]

11. Pino, A.; Rodríguez-Vaqueiro, Y.; González-Valdés, B.; Rubiños, O.; Martínez-de-Rioja, E.; Encinar, J.A.; Toso, G. Design of
a Bifocal dual Reflectarray System with Parabolic Main Surface for a Multifed Space Antenna. In Proceedings of the IEEE
International Symposium on Antennas and Propagation and USNC-URSI Radio Science Meeting (APS/URSI), Boston, MA, USA,
8–13 July 2018. [CrossRef]

12. Martinez-de-Rioja, D.; Martinez-de-Rioja, E.; Rodriguez-Vaqueiro, Y.; Encinar, J.A.; Pino, A. Multibeam Reflectarrays in Ka-Band
for Efficient Antenna Farms Onboard Broadband Communication Satellites. Sensors 2021, 21, 207. [CrossRef] [PubMed]

13. Martinez-de-Rioja, E.; Encinar, J.A.; Toso, G. Bifocal Dual-Reflectarray Antenna to Generate a Complete Multiple Spot Beam
Coverage for Satellite Communications in Ka-Band. Electronics 2020, 9, 961. [CrossRef]

14. Martínez-de-Rioja, D.; Martínez-de-Rioja, E.; Rodríguez-Vaqueiro, Y.; Encinar, J.A.; Pino, A.; Arias, M.; Toso, G. Transmit–Receive
Parabolic Reflectarray to Generate Two Beams per Feed for Multispot Satellite Antennas in Ka-Band. IEEE Trans. Antennas Propag.
2021, 69, 2673–2685. [CrossRef]

https://doi.org/10.1007/s12567-011-0012-z
https://doi.org/10.1109/TAP.1974.1140869
https://doi.org/10.1109/TAP.1984.1143227
https://doi.org/10.1109/TAP.2012.2207064
https://doi.org/10.1109/MAP.2019.2932311
https://doi.org/10.1109/TAP.2020.2975617
https://doi.org/10.1109/EUMA.2002.339453
https://doi.org/10.1109/LAWP.2018.2848719
https://doi.org/10.1109/TAP.2005.858813
https://doi.org/10.1109/APUSNCURSINRSM.2018.8608188
https://doi.org/10.3390/s21010207
https://www.ncbi.nlm.nih.gov/pubmed/33396207
https://doi.org/10.3390/electronics9060961
https://doi.org/10.1109/TAP.2020.3030942


Electronics 2023, 12, 2619 20 of 20

15. Martínez, J.A.; Pino, A.G.; Vega, I.; Arias, M.; Rubiños, O. ICARA: Induced current analyis of reflector antennas. IEEE Antennas
Propag. Mag. 2005, 47, 92–100. [CrossRef]

16. Arias-Acuña, M.; García-Pino, A.; Rubiños-López, O. Fast Far Field Computation of Single and Dual Reflector Antennas. J. Eng.
2013, 2013, 140254. [CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

https://doi.org/10.1109/MAP.2005.1487792
https://doi.org/10.1155/2013/140254

	Introduction 
	Reflection Equations for Curved Reflectarrays 
	Geometrical Optics Analysis and Synthesis of Curved Reflectarrays 
	Analysis Problem: Ray Tracing Algorithm to Obtain the Reflected or Incident Ray 
	Synthesis Problem: Ray Tracing Algorithms to Obtain the Path Length Shift Distribution across the Reflectarray 

	Bifocal Dual Reflectarray with Parabolic Main Surface and Flat Subreflector Surface 
	Synthesis Algorithm of a Linear Section 
	3D Extension with Two Foci 
	3D Extension with Focal Ring 

	Numerical Results 
	Focal Ring Bifocal Design 
	Bifocal Design with Two Focal Points 

	Conclusions 
	Appendix A
	Appendix B
	References

