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Abstract: To proceed with the decommissioning of the Fukushima Daiichi Nuclear Power Station, it is
necessary to visualize radioactive substances using a gamma camera in high-dose-rate regions inside
a nuclear reactor building. We developed an umbrella-shaped Compton camera, whose sensitivity
distribution can be adjusted by changing its shape. When used on a robot, the moving distance of
the robot can be reduced compared to a pinhole camera that is sensitive only to the front surface. In
addition, unlike an omnidirectional Compton camera, the sensitivity in a specific direction can be
increased, which is expected to expand the degree of freedom of measurement. In this study, the
characteristics of the developed system were evaluated through simulations and experiments for
application in a high-level radioactive environment inside a reactor building. It is estimated that this
system can operate at a dose rate of approximately 2.68 mSv/h. Furthermore, we devised a method
to compensate for the effect of the dead time of the SiPM (MPPC) in the high-dose-rate region by
monitoring the current of the SiPM drive power supply and evaluating its applicability to high dose
rates. This correction method was validated in the case where the photoelectric peak of the energy
spectra fluctuated by approximately 60 keV due to dead time.

Keywords: Compton camera; decommissioning; Ce:GAGG; SiPM (MPPC); EGS5

1. Introduction

Due to the tsunami caused by the Great East Japan Earthquake that occurred on March
11, 2011, several reactors at the Fukushima Daiichi Nuclear Power Station failed to cool their
cores, and hydrogen explosions occurred in reactor buildings [1]. As a result, radioactive
substances scattered inside and outside the power stations [2]. Therefore, in preparation for
decommissioning measures, it is necessary to secure the work environment by visualizing
and removing radioactive substances inside reactor buildings. For the visualization of these
radioactive substances, a gamma camera, which can measure a wide range of contamination
at once, is promising. To date, several studies on pinhole cameras [3–6] and Compton
cameras [7,8] for the visualization of radioactive substances in nuclear reactor buildings
have been carried out. Pinhole cameras tend to be large and heavy because they require
extensive shielding, such as lead shielding; however, due to the simplicity of the principle
and structure of the device, they offer high quantitative accuracy. On the other hand,
Compton cameras require no shielding and are lightweight, which makes them easy to
install on robots. Furthermore, by introducing shape variability in Compton cameras with
an umbrella shape, the following advantages can be expected when installed on robots:
(1) The moving distance of robots may be shortened when measuring the source intensity
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distribution in each direction compared to a robot installed with a pinhole camera that is
sensitive only to the front; (2) Unlike omnidirectional Compton cameras, the sensitivity
distribution can be adjusted by changing the umbrella shape, thus expanding the degrees
of freedom of measurement, such as by increasing the sensitivity in a specific direction.
Therefore, as shown in Figure 1, we developed an umbrella-shaped Compton camera
whose sensitivity distribution can be adjusted by changing its shape.
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In this study, the characteristics of the developed system were evaluated through
simulations and experiments for application in a high-level radioactive environment inside
a reactor building. The demand for gamma cameras that can operate at high dose rates is
particularly high in the decommissioning work at the Fukushima Daiichi Nuclear Power
Plant, and a report has been made of measurements inside the reactor building using a
pinhole camera that visualized a hotspot in an environment of 659 mSv/h [4]. However,
it weighs as much as 100 kg. On the other hand, Compton cameras can be constructed
weighing only a few kgs, making them more suitable for use on robots than pinhole cameras.
Measurements inside the turbine building using a Compton camera whose scintillator
(Ce:GAGG) size is 1.5 × 1.5 × 5 mm3 for the scatterer and 1.5 × 1.5 × 10 mm3 for the
absorber have successfully visualized a hotspot with a surface dose rate of up to 3.5 mSv/h
in an environment of 0.4 to 0.5 mSv/h [9]. In addition, although the overall weight is 32.5 kg
when shielded by a 45 mm thick lead, there is an example of application in an environment
with an air dose rate of 40 to 60 mSv/h inside the reactor building [8]. In this study, the
ultimate goal is to expand the applicable range of the system to about 100 mSv/h and to
cover most regions inside the nuclear reactor building for measurement. We developed
a Compton camera consisting, of Ce:GAGG scintillators of 4 × 4 × 4 mm3 size and the
SiPMs, and evaluated the applicable dose rate, estimating that it can operate at dose rates
above approximately 2.68 mSv/h without shielding. By reducing the scintillator size and
providing shielding to the extent possible for mounting on a robot, it is expected that it can
be applied to even higher dose rates. Furthermore, we devised a method to compensate for
the effect of the dead time of the SiPM (MPPC) in the high-dose-rate region by monitoring
the current of the SiPM drive power supply and evaluating the applicability of the system
to high dose rates.
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2. Compton Camera Overview

A Compton camera is a device that utilizes the phenomenon of gamma rays imparting
energy to the detector through Compton scattering and photoelectric absorption to deter-
mine the direction of incident gamma rays [10]. As shown in Figure 2, the detector of a
Compton camera is divided into a scatterer and an absorber and consists of two stages.
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When the incident gamma ray is Compton-scattered by the scatterer, the scattered
gamma rays impart some of their energy (E1) to the scatterer and are scattered in the
direction of angle θ (scattering angle). The scattered gamma rays then cause Compton
scattering or photoelectric absorption in the absorber, thereby imparting the energy (E2)
to the absorber. A conical surface (Compton cone) is drawn to estimate the direction in
which the incident gamma ray flows from the information of θ obtained from Equation (1),
using the position information of the scatterer and absorber to which the incident gamma
ray imparts energy, as well as the energies E1 and E2, where mec2 is the electron resting
energy. In this study, the events were limited by the condition E1 + E2, shown in Section 2.5,
and the Compton cone was drawn only for events in which the majority of the gamma-ray
energy to be measured was imparted to the detector. By drawing multiple Compton cones,
the overlap region can be obtained, and the direction in which the incident gamma rays
flew can be identified.

cos θ = 1 − mec2
(

1
E2

− 1
E1 + E2

)
(1)

Owing to this principle, Compton cameras do not require shielding or the direction
of the incident gamma rays to be specified in advance, as required by pinhole cameras.
Therefore, they are advantageous in terms of miniaturization, weight reduction, and wide
field of view.

2.1. Ce:GAGG Scintillator

Ce:GAGG (Ce:Gd3Al2Ga3O12 [11]) was used as the scintillator in the developed system.
This scintillator is suitable for gamma-ray measurements owing to its large luminescence.
In addition, a short decay time allows for a fast response. Furthermore, because it is not
deliquescent and therefore does not deteriorate owing to moisture in the air, it can be used
stably for long periods of time [12].

2.2. SiPM (Silicon Photomultiplier)

An SiPM (HAMAMATSU MPPC S13360-6025PE [13]) was adopted as the photode-
tector of the developed system. This device operates at low voltage and has the high
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performance required for photon counting, including a high multiplication factor, fast
response, excellent temporal resolution, and wide wavelength sensitivity. It also has the
advantages of solid-state devices, such as being unaffected by magnetic fields and having
shock resistance [14].

2.3. System Configuration

In this study, systems with a scintillator size of 10 × 10 × 10 mm3 for a low dose rate
and 4 × 4 × 4 mm3 for a high dose rate were developed. By preparing scintillators of
different sizes, measurements could be performed under appropriate conditions according
to the dose rate of the measurement environment. Figure 3 shows a 4 × 4 × 4 mm3

system [15]. The developed system comprises two sets of umbrella-like jigs with attached
detectors: 32 for the scatterer and 32 for the absorber, totaling 64 detectors. This system can
be opened and closed like an umbrella to change its shape, which yields the determination
of the optimum sensitivity distribution when measuring the field of view. The umbrella
angle (ϕ) is 0◦ when the umbrella is fully open and 90◦ when it is fully closed. The detector
was fabricated by bonding a Ce:GAGG scintillator and an SiPM with a UV-curable optical
adhesive, which was stored in an aluminum case. The light-transmission efficiency to the
SiPM was increased by shielding all the surfaces of the Ce:GAGG scintillator with Teflon
tape, except for the junction with the SiPM, to prevent the diffusion of the scintillation light.
SiPMs with photosensitive areas of 6 × 6 mm2 were used in both systems. The center of one
face of the Ce:GAGG scintillator was combined with the center of the photosensitive area
of the SiPM. As shown in Figure 3b, the outer dimensions of the system are 38 × 38 × L cm
(ϕ = 0◦) and 10 × 10 × L + 14 cm (ϕ = 90◦) when the distance between the scatterers
and the absorbers is L cm. However, it is possible to reduce the size by manufacturing
a suitable jig for the detector arrangement and optimizing the sizes of the SiPM and the
aluminum case of the 4 × 4 × 4 mm3 system. Measurements using 137Cs as the source at
approximately 20 ◦C resulted in an average detector energy resolution of approximately
6.5% for the 4 × 4 × 4 mm3 system and 7.1% for the 10 × 10 × 10 mm3 system.
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The signals output from the detectors are waveforms shaped by the head amplifier
(CLEAR-PULSE Si-PM HEADAMP MODEL 80,364 [16]) and then transferred to an interface
circuit (CLEAR-PULSE HEADAMP READOUT BOX MODEL 80389), where they are read
by the software (LabVIEW 20.0.1). The time-constant CR for waveform shaping was set
to CR = 2.2 µs to make the decay time of Ce:GAGG negligibly long. In addition, the hold
time of the waveform peak after waveform shaping was set to approximately 5 µs. The
software was used not only to visualize the direction of gamma rays in real time, but also
to control the system, such as by adjusting the reverse voltage applied according to the
ambient temperature to keep the SiPM multiplication factor constant. The reverse voltage
applied to the SiPM was adjusted to between 54.7 ± 3.0 V.

2.4. Output Method of Reconstructed Images

A Compton camera consists of a scatterer and an absorber, which makes it possible to
draw more effective Compton cones when the source is on the scatterer side than when
it is on the absorber side. Therefore, from the standpoint of measurement efficiency, it is
important to have a scatterer on the side where the source resides. However, it is difficult
to move or rotate a system in an environment where human access is restricted, such as
inside a nuclear reactor building.

Because the developed system uses the same detector for both scatterers and absorbers,
each of the 64 detectors can be programmed as either a scatterer or an absorber. This makes
it possible to have a scatterer on the side where the source is located without changing
the overall hardware system of the measurement device, which is expected to shorten
measurement time. However, the position of the source is unknown at the start of the
measurement, and the detector that should be set as the scatterer cannot be specified.
Therefore, as shown in Figure 4, we set up the software to output two reconstructed images:
one called “Frontview”, which is calculated by setting the 32 detectors on the front side
of the system as scatterers and the others as absorbers, and the other called “Backview”,
which is calculated by setting the 32 detectors on the back side of the system as scatterers
and the others as absorbers. This allows us to acquire reconstructed images in all directions
in real time, making it possible to perform measurements without losing measurement
efficiency, even when the position of the source is unknown. The reconstructed image
displays the source position in a Cartesian coordinate system, with the center of the system
as the origin. The horizontal angle H and vertical angle V of the source as viewed from the
system were defined as the horizontal and vertical axes, respectively.
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2.5. Drawing Conditions of the Compton Cone

The drawing conditions of the Compton cone were set as follows:

1. Considering the energy resolution of the Ce:GAGG scintillator used in the detector,
an event was treated as valid when the sum of the energy E1 given to the scatterer and
the energy E2 given to the absorber was within ±5% of the gamma-ray energy emitted
from the objective nuclide. In the case of 137Cs (662 keV), the event was treated as a
valid event when the total energy of E1 and E2 ranged from 628.9 to 695.1 keV;

2. Owing to the structure of the system, when Compton scattering with a large scattering
angle occurs in the scatterer, the scattered gamma rays hardly enter the absorbers to
output a valid signal. Therefore, we only analyzed events with a scattering angle of
90◦ or less;

3. In some cases, incident gamma rays may cause multiple scattering with scatterers. To
exclude such events, we assumed that the event was valid only when the energy was
deposited in one scatterer and an absorber.

E1 and E2 were converted to 0 keV by the software if they were less than 20 keV to
reduce the effect of noise.

3. Characterization of the 4 × 4 × 4 mm3 System
3.1. Conditions of the Experiments and Simulations

We carried out an experiment to verify whether the 10 × 10 × 10 mm3 system would
work properly in low-dose-rate environments. In addition, a simulation was performed to
evaluate the experimental results. Furthermore, we performed a simulation to calculate the
measuring efficiencies (number of Compton cones to be drawn) by changing the umbrella
angle ϕ and horizontal angle H. An experiment was also conducted to evaluate the
maximum dose rate to which this system could be applied. The simulations were performed
using EGS5 [17], which is a Monte Carlo simulation code that can analyze the transport
phenomena of electrons, positrons, and photons in arbitrary elements, compounds, and
mixtures. Simulations were performed using all physics calculation options set to default.

Table 1 lists the experimental and simulation conditions used. Figure 5 shows a
schematic of the experiment and simulation in a low-dose-rate environment, In Figure 6,
a simulation condition changing the umbrella angle ϕ is shown. Figure 7 depicts the
experimental setup for the high-dose-rate environments. The source of radiation was 137Cs,
which is the main nuclide causing contamination in reactor buildings [2].

Table 1. Conditions of the experiments and simulations. The (a) 0◦ and (b) −45◦ of the high-dose-rate
experiments correspond to Figure 7a,b.

Low-Dose-Rate
Experiment

Low-Dose-Rate
Simulation

Simulation Changing the
Umbrella Angle ϕ

High-Dose-Rate
Experiments

Source 137Cs Sealed source 137Cs Point source 137Cs Surface source 137Cs Sealed source

Measurement time or number
of gamma rays 40 h 22.8 billion

(Isotropic source)

500 million
(Parallel beams with 11 cm

diameter)
20 min

Distance between the system
center and the source D

(Air dose rate at the center of
the system)

100 cm
(0.27 µSv/h) 100 cm - 350 cm

(10 µSv/h)

Umbrella angle ϕ 0◦ 0◦ 0, 15, 30, 45,
60, 75, 90◦ 0◦

Horizontal angle H of the
source as viewed from the

system

45◦ 45◦ 0, ±30, ±60, ±90, ±120, ±150,
180 (−180)◦

(a) 0◦

(b) −45◦

Vertical angle V of the source
as viewed from the system 0◦ 0◦ 0◦ 0◦

Distance between scatterer
and absorber L 5 cm 5 cm 5 cm 10 cm
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Electronics 2023, 12, 2640 8 of 16

3.2. Results of the Experiments and Simulations
3.2.1. Results of the Low-Dose-Rate Experiment and Simulation

Figure 8 shows the reconstructed images from the experiments and simulations at a
low dose rate. It was confirmed that the developed 4 × 4 × 4 mm3 system could visualize
the incident direction of gamma rays. Table 2 lists the parameters of the reconstructed
images. In this study, as shown in Figure 9a, we considered the average of the FWHMs
obtained from the polynomial fitting of the data along dotted lines (1)–(4) centered at the
estimated source position. The FWHM along dotted lines (1)–(4) was defined as FWHMs
(1)–(4) and averaged. Figure 9b shows the results of the polynomial fitting using the
least-squares method for the data along the dotted line (1).
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Figure 8. (a) Frontview and (b) Backview in low-dose-rate experiment and (c) Frontview and
(d) Backview in a simulation for a low-dose-rate experiment, where the incident angle of gamma
rays is all set to H = 45◦, V = 0◦, and the umbrella angle to be ϕ = 0◦. The width of the Compton cone
was 2◦.

The FWHM of the experimental results was larger than that of the simulation results.
Although the cause of this has not been identified, it could be an accidental coincidence
due to device noise. However, because there was no significant difference between the
reconstructed images from the experiment and those from the simulation, the simulation
can effectively evaluate the characteristics of this system in low-dose-rate regions.

Table 2. The parameters of the reconstructed images in the low-dose-rate experiment and simulation.

(a) (b) (c) (d)

FWHM at the estimated source position.
(FWHM (1), FWHM (2), FWHM (3), FWHM (4))

27◦

(31◦, 31◦, 21◦, 23◦) - 20◦

(25◦, 18◦, 21◦, 16◦) -

H and V at
the estimated source position.

H= 44◦,
V= 0◦ - H= 44◦,

V= 0◦ -

Number of events (Compton cones). 1363 counts 454 counts 1363 counts 364 counts
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Figure 9. (a) Schematic view of the analysis in Figure 8a. FWHM was evaluated by fitting the data
along the dotted lines (1)–(4). The center coordinate of the dotted line is the estimated source position
(H = 44◦, V = 0). (b) Results of polynomial fitting using the least-squares method to the data along
the dotted line (1). The FWHM (1) was 31◦.

3.2.2. Result of Simulation with Changing the Umbrella Angle ϕ

Figure 10 shows the distribution of the calculated number of events normalized by
the umbrella angle ϕ = 0◦, where the vertical and horizontal angles were set to H = 0◦ and
V = 0◦. The distance from the origin represents the number of events in each plot. When
H = 0◦ to ±30◦ or H = ±150◦ to 180◦ (−180◦), the results with ϕ = 0◦ showed the highest
efficiency (red graph). On the other hand, when H takes other values than those mentioned
above, the data with ϕ = 90◦ were the highest (blue graph). This indicates that by changing
the value of ϕ, the developed system can achieve a nearly uniform efficiency distribution
in all directions.
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Figure 10. Distribution of the number of normalized events.

3.2.3. Results of the High-Dose-Rate Experiment

Figure 11 shows the reconstructed images in the high-dose-rate experiment, where
the direction of the incoming gamma rays was visualized at an air dose rate of 10 µSv/h.
Table 3 lists each parameter of the reconstructed images. Compared to the results of the
low-dose-rate experiment, the FWHM of the Frontview increased, and the counts in the
Backview increased. Although the cause of this was not identified, the number of accidental
coincidences owing to different gamma rays may have been higher at lower dose rates.
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Figure 11. (a) Frontview and (b) Backview with the source located at H = 0◦, V = 0◦; (c) Frontview
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Table 3. The parameters of the reconstructed images in the high-dose-rate experiment.

(a) (b) (c) (d)

FWHM at the estimated source position.
(FWHM (1), FWHM (2), FWHM (3), FWHM (4))

26◦

(19◦, 29◦, 32◦, 22◦) - 46◦

(67◦, 30◦, 37◦, 50◦) -

H and V at
the estimated source position.

H= −3◦,
V= −2◦ - H= −46◦,

V= −6◦ -

Number of events (Compton cones). 590 counts 414 counts 610 counts 430 counts

On the other hand, in high-dose-rate experiments exceeding 10 µSv/h, measurement
was not possible owing to software outage.

4. Improvements in Software
4.1. Improvements in Software for Faster Data Loading

In high-dose-rate experiments, as too many events occur at both scatterers and ab-
sorbers, the data-loading speed of the software is not sufficient to process them prop-
erly. Therefore, we improved the software to increase the data-loading speed using the
following techniques:

1. A data structure called a queue was used to exchange data within the software. Before
the improvement, the software used a queue between the loop for reading data and
the loop for analyzing the read data. However, a queue temporarily stores data in the
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storage area (memory), which reduces the analysis speed. Therefore, we improved
the program structure by eliminating the use of queues;

2. To reduce the amount of data to be analyzed, we stopped displaying all pulse-height
distributions for the 64 detectors. After the improvement, the software displayed the
pulse-height distributions only for selected detectors;

3. As shown in Figure 12a, before the improvement, a virtual COM port was used
for data transmission between the extension buffer and the software. However, the
virtual COM port is a bottleneck owing to its slow data-read speed. Therefore, a DLL
program based on C was created to achieve data I/O without a virtual COM port.
After the improvement, as shown in Figure 12b, data were transferred without using
the COM port by executing a DLL program in the software;

4. Before the improvement, the software read and analyzed all event data. However, after
the improvement, the software could freely change the frequency of data transmission
in the extension buffer. This enabled adjusting the amount of event data to be read
according to the air dose rate, thus allowing more leeway for data analysis.
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4.2. Result of Software Improvements

Table 4 shows the dose rate limits at which the system can read data without stopping
before and after the software improvements. Although the limit could not be measured
for the 10 × 10 × 10 mm3 system owing to insufficient gamma-ray source strength, the
improved system was confirmed to be able to work at least at 255 µSv/h. This value was
approximately 268 times higher than that achieved before the improvement. If we assume
that the same improvement can be realized for the 4 × 4 × 4 mm3 system, it is expected
to be able to work at approximately 2.68 mSv/h. Furthermore, based on the expectations
that (1) a 10 × 10 × 10 mm3 system can operate at 255 µSv/h or higher and (2) the lower
counting rate of the 4 × 4 × 4 mm3 system, the actual dose-rate limit for the 4 × 4 × 4 mm3

system may be higher than 2.68 mSv/h.

Table 4. The dose rate limits at which the system can read data before and after the improvements.

10 × 10 × 10 mm3 System 4 × 4 × 4 mm3 System

Before
improvements

0.95 µSv/h
(Experimental value)

10 µSv/h
(Experimental value)

After
improvements

255 µSv/h
(Experimental value: Maximum air dose rate that could be
produced by the gamma source used in the experiment.)

2.68 mSv/h
(Estimated from the results ofcalculation)

Future experiments using a stronger source are necessary to confirm the limit of the
10 × 10 × 10 mm3 system. In addition, we evaluate whether the system can be applied to
the environment inside a reactor building. If it is difficult to apply the system, hardware
improvements, such as changes in the scintillator size, should be considered.



Electronics 2023, 12, 2640 12 of 16

5. Shifting Phenomenon of Pulse-Height Distribution

On the other hand, as shown in Figure 13, under high-dose-rate conditions, the
pulse-height distribution shifted to the lower energy side for the 10 mm square system.
Figure 13a shows the relationship between the air dose rate and the pulse height (ch) of
the photoelectric peak. The magnitude of the shift increased as the dose rate increased.
This phenomenon affects Compton cone drawing because it makes accurate conversion
from ch to energy (Eg) difficult. Figure 13b shows the pulse-height distributions measured
in environments with different dose rates. In the pulse-height distribution at 2.35 mSv/h,
the counts were also higher on the right side of the peak owing to pile-up. However,
because the pile-up cannot explain the shift to the lower energy side in a high counting rate
environment, the direct cause of the shifting phenomenon must be other than the pile-up
itself, as discussed in Sections 5.1 and 5.2. In addition, the 4 × 4 × 4 mm3 system has a
lower probability of the shifting phenomenon than the 10 × 10 × 10 mm3 system, but it
may occur in high-dose-rate regions.
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5.1. Hardware Survey and Results to Address the Shifting Phenomenon

At a high dose rate, the HV current (IHV) flowing through the SiPM increases, resulting
in a larger voltage drop across the filter resistor and a decrease in the voltage applied to the
SiPM is expected [14]. To reduce the voltage drop, the filter resistor was changed from 1 kΩ
to 100 Ω in the circuit used for the system shown in Figure 14a, but no effect was observed.
Therefore, it was found that the voltage drop in the resistor was not the direct cause of the
shifting phenomenon.
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Another cause is thought to be the performance bottleneck of the SiPM. As shown in
Figure 14b, the SiPM has a structure in which avalanche photodiode (APD) pixels operating
in Geiger mode are connected in parallel. The charges contained in all pulses were summed
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and outputted. However, because the Geiger-mode APD pixels must be recharged after
output, they become insensitive during this time [14]. Therefore, as the dose rate increases,
the number of pixels that can output the signal decreases. A possible countermeasure to
this problem is to change the SiPMs to models with a larger number of pixels and a shorter
insensitivity time. However, because SiPMs with relatively high performance have already
been in use, significant improvement is not expected.

5.2. Software Improvement and the Results

To reduce the errors caused by the shifting phenomenon using software, we developed
a new correction technique for software control. Equation (2) is the energy calibration
formula, assuming a linear relationship between the digitally converted pulse height ch and
gamma-ray energy Eg. Under low-dose-rate conditions, the values of A can be assumed to
be constant. However, under a high dose rate, as A changed depending on the dose rate,
we attempted to correct the values of A based on the monitored current values from the
high-voltage source: IHV .

Eg = A·ch + B (2)

For the 10 × 10 × 10 mm3 system shown in Figure 15, the relationship between ch of the
photoelectric peak and IHV for one detector was investigated. In addition, eight detectors
were placed at a uniform distance from the gamma-ray source, and IHV was measured by
changing the number of detectors (Ndetector) by removing one detector at a time.
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Figure 16a illustrates the relationship between IHV and ch. It shows that both the
peak shift and IHV increase when many pixels simultaneously output signals in the SiPM.
Although the reason for these linear relationships cannot be explained currently, a linear
relationship was observed. Figure 16b depicts the dependency of IHV on Ndetector, where
IHV increases linearly with Ndetector. We introduced these relationships into the software
for energy calibration based on Equation (3), where IHV0 and ch0 are IHV and ch are in the
background, respectively, and C is the slope of the linear function in Figure 16a.

Eg =
A · ch0 · ch

ch0 +
(IHV−IHV0)C

Ndetector

+ B (3)

As shown in Figure 17a, we used 32 detectors in a 10 × 10 × 10 mm3 system to
demonstrate the correction technique mentioned above (Ndetector = 32). Figure 17b shows the
energy spectra before and after the correction. The results demonstrate that the correction
technique can successfully reduce the shifting phenomenon. Furthermore, because this
correction method was used to measure IHV under the air dose rate at each time point, it is
expected to be applicable in environments where the air dose rate changes, such as when
mounted on a robot.
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was approximately 223 µSv/h. (b) Energy spectra before and after correction. Before correction, the
energy of the photoelectric peak has shifted to the low energy side at 600 keV, but after correction, it
appears around 662 keV.

6. Conclusions

Through experiments and simulations, we characterized an umbrella-shaped Compton
camera developed for application in a high-dose-rate environment inside a nuclear reactor
building at the Fukushima Daiichi Nuclear Power Station. The detectors for this system are
4 × 4 × 4 mm3 Ce:GAGG and SiPM, which are capable of fast response. Simulations were
performed, which demonstrated that by changing the umbrella angle ϕ, the developed
system can achieve a nearly uniform efficiency distribution in all directions. Without the
improvements in the control software, the system has been shown to be able to be applied
to environments up to 10 µSv/h. By improvements in data-loading speed, we were able
to increase the applicable dosage rate by a factor of at least 268. We calculated that the
system is applicable to approximately 2.68 mSv/h. On the other hand, we observed that the
pulse-height distribution shifted with an increasing dose rate. We succeeded in reducing
the effect of the shift using a correction technique in the energy calibration formula. We
plan to investigate the exact limits of the applicable dose rate of the system in future
experiments using more intensive gamma radiation sources. Furthermore, it is necessary to
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appropriately select the dose rate range for which the 10 × 10 × 10 mm3 system should be
used, as well as address the adhesion of radioactive substances to the detector and damage
to the SiPM in radioactive environments.
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