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Abstract: Accurately localizing and describing patients’ lesions has long been considered a crucial
aspect of clinical diagnosis. The fusion of multimodal medical images provides a feasible solution
to the above problem. Unfortunately, the trade-off between the fusion performance and heavy
computation overhead remains a challenge. In this paper, a novel and effective fusion method for
multimodal medical images is proposed. Firstly, framelet transform (FT) is introduced to decompose
the source images into a series of low and high frequency sub-images. Next, we utilize the benefits
of both steering kernel weighted guided filtering and side window filtering to successfully fuse
sub-images. Finally, the inverse FT is employed to reconstruct the final fused image. To verify the
effectiveness of the proposed fusion method, we fused several pairs of medical images covering
different modalities in simulation experiments. The experimental results demonstrate that the
proposed method yields better performance than current representative ones in terms of both visual
quality and quantitative evaluation.
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1. Introduction

As imaging technology continues to advance, it is now possible to obtain a wider
variety of medical images with diverse modalities. This enables us to provide and describe
lesion information from multiple angles, enhancing our overall understanding. Specifically,
common medical source images can be classified into two types, anatomical images and
functional images [1]. As the representatives of the former, the computed tomography (CT)
image is very sensitive to dense structures such as bones and implants, whereas the informa-
tion of soft tissues cannot be visualized. The magnetic resonance image (MRI) does well in
displaying the anatomical structure of soft tissues with a high spatial resolution. However,
the description of the dense structure in the MRI is poor. Unlike the anatomical image,
functional images such as the positron emission tomography (PET) and single-photon emis-
sion computed tomography (SPECT) images are applied to reveal the biological activity
of cells and the metabolic activity of tissues or organs. They are, therefore, commonly
used in characterizing tumor and organ blood flow. Due to the inherent advantages and
disadvantages of each imaging modality, fusing medical images with multiple modalities
can provide a feasible solution to merge representative and complementary information
from different images into a single output. This can lead to improved visualization and
more accurate diagnosis.

In the last few decades, a variety of fusion methods [2–32] on medical images have been
proposed and manipulated, and these can be broadly classified into three levels, including
pixel-level, feature-level and decision-level. Pixel-level fusion methods have become
increasingly popular due to their simple implementation and relatively low computational
complexity, among other advantages [2].
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Often, the pixel-level fusion can be conducted in the spatial or transform domain.
Spatial domain fusion focuses on the use of the local features of the image, and the common
methods include simple averaging, maximum choosing, principal component analysis
(PCA) [3,4] and so on. The spatial domain-based fused image, however, often suffers from
contrast reduction and spectrum distortion. As a result, research has paid more attention to
transform domain fusion.

Early classical transform domain schemes for image fusion include Laplacian pyramid
transform and discrete wavelet transform (DWT) [5], among others. However, both meth-
ods have limitations in terms of directionality and contour representation. To address these
issues, numerous enhanced versions have been introduced over the past decade. Li et al. [6]
introduced Laplacian re-decomposition to complete the fusion of medical images. Some
improved versions of DWT such as dual tree complex wavelet transform (DT-CWT) [7],
nonsubsampled rotated complex wavelet transform (NSRCxWT) [8] and discrete stationary
wavelet transform (DSWT) [9,10] were presented to complete the fusion of medical images.
In comparison with DWT, these updated versions possess both the redundancy feature
and the shift-invariance property, effectively preventing the Gibbs phenomenon found in
DWT. To capture more detailed contour information, the contourlet and shearlet transforms
were proposed sequentially. However, artifacts frequently occur in the fused image due
to down-sampling. In order to overcome the above defect, the corresponding improved
versions, namely non-subsampled contourlet transform (NSCT) [11] and non-subsampled
shearlet transform (NSST) [12], were proposed. Owing to the simpler structure and lower
computational cost, many recent fusion methods [13–16] on multimodal medical images
are based on NSST rather than NSCT.

It is noteworthy that the fusion quality does not depend only on the fusion scheme, but
also involves the fusion strategy. Take NSST for example. A low-frequency sub-image (LFI)
and a series of high-frequency sub-images (HFIs) can be obtained via NSST. A reasonable
strategy should ensure that the energy of LFI can be maximized, and the edges and details
in HFIs are preserved as well. In the past decade, a great many representative fusion strate-
gies, including the dictionary learning model [17,18], gray wolf optimization [19], fuzzy
theory [20], pulse coupled neural network (PCNN) [21,22], sparse representation [23,24],
guided filter (GF) [25,26], structure tensor [27] and so on, were successfully used to fuse
medical images.

Further research has shown that both transform domain schemes and recent strategies
are promising in the field of multimodal medical image fusion. Under this background, a
series of hybrid fusion methods combining both advantages have been presented in the
past several years. For example, Yin et al. [15] provided a novel fusion method based on
NSST and parameter-adaptive PCNN. Zhu et al. [28] utilized NSCT and combined it with
phase congruency and local Laplacian energy to fuse medical images. Modified choosing
maximum, sum of modified Laplacian (SML) and NSST were combined to complete the
fusion of medical images in [29]. Ullah et al. [30] successfully applied fuzzy theory and
SML in the NSST domain for the fusion of medical images. Cao et al. [31] presented a
fusion method that uses particle swarm optimization to optimize fuzzy logic in the NSST
domain. An ensemble of GF and NSST was constructed to deal with the medical image
fusion in [32].

Deep learning, an important branch of neural networks, has recently become a hotspot
in the field of image fusion. It can be applied in the transform domain or combined
with other schemes. However, the deep learning-based scheme commonly suffers from a
complex framework and huge computational costs. Additionally, the scarcity of medical
image datasets hinders its widespread application in the field of medical image fusion.

After conducting extensive research on recently published literature, we have con-
cluded that transformed domain methods are still dominant in the field of medical image
fusion. However, several significant issues have emerged and cannot be ignored. First, the
current typical transform domain schemes such as NSCT and NSST both consume enor-
mous computational resources, which directly limit their real-time application. Another
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significant factor that influences the final fusion performance is the current popular fusion
strategies, which still have significant room for improvement. In this context, we desire to
construct a new fusion method for medical images with novel transform domain fusion
schemes and strategies.

Considering the presented literature review, the authors propose a novel fusion
method to fuse multimodal medical images. Firstly, framelet transform is applied to
decompose the source images into LFIs and HFIs. Secondly, an improved GF is employed
to fuse LFIs. In addition, side window filtering (SWF) is used to complete the HFIs fusion.
Finally, the inverse framelet transform is utilized to reconstruct the final fused image.

The remainder of this paper is structured as follows: In the Section 2, we will briefly
review the preliminaries. Then, we will present the details of the proposed fusion method.
Afterward, we will conduct a series of simulation experiments to verify the effectiveness of
the proposed method. Finally, we will conclude this work.

2. Preliminaries

In this section, the basic models on which the proposed method is based are briefly
reviewed, including framelet transform, guided filter and side window filter.

2.1. Framelet Transform

As mentioned in the Section 1, NSCT and NSST have been regarded as effective tools in
fusing medical images. However, they both suffers from huge computational costs. To this
end, we sought to achieve a trade-off between fusion performance and heavy computation
overhead. In this paper, framelet transform (FT) [33], with a much simpler structure, is
applied to replace NSCT or NSST.

Structurally, great similarities exist between FT and DWT, both of which have one
scaling function denoted by ϕ(t) and much lower computational overheads. Unlike DWT,
which has only one wavelet function ψ(t), FT owns two counterparts, namely ψ1(t) and
ψ2(t). Therefore, if FT is applied to the field of 2D image fusion where x and y denote
two directions, one scaling function and eight wavelet functions can be generated via
the convolution between ϕ(t) and (ψ1(t), ψ2(t)) as follows. Obviously, FT also has the
property of multi-scale and multi-direction similar to NSCT and NSST, which is helpful in
representing and describing the main and detailed information from various angles.

ϕ(x, y) = ϕ(x) ∗ ϕ(y)
ψ1(x, y) = ϕ(x) ∗ ψ1(y), ψ2(x, y) = ϕ(x) ∗ ψ2(y)
ψ3(x, y) = ψ1(x) ∗ ϕ(y), ψ4(x, y) = ψ1(x) ∗ ψ1(y)
ψ5(x, y) = ψ1(x) ∗ ψ2(y), ψ6(x, y) = ψ2(x) ∗ ϕ(y)
ψ7(x, y) = ψ2(x) ∗ ψ1(y), ψ8(x, y) = ψ2(x) ∗ ψ2(y)

(1)

2.2. Guided Filter

As a representative of edge-preserving filtering models, guided filter (GF) [34] has
been widely applied in the field of image processing. Unlike the traditional isotropic filters,
GF adopts a guide image to filter the input image as follows.

Qi = ∑
j∈ωi

Wij(I) · Pj (2)

where I, P and Q denote the guide image, the input image and the output image, re-
spectively. ωi is a square neighborhood centered at pixel i. Wij(I) represents the weights
determined by the guide image I during the weighted calculation. Note that I = P is
allowed.

There is a local linear relation between the guide image I and the output image Q,
which is beneficial for the guide image I to keep the edge information. The linear relation
can be described as

Qi = akIi + bk, ∀i ∈ ωk (3)
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where ak and bk are two variables in the neighborhood ω centered at pixel i.
For simplicity, the output image Q can be regarded as the degraded image resulting

from the noise contamination N in the input image P, namely Q = P − N. Thus, the
optimization objective function can be expressed by

argmin ∑
i∈ωk

(Qi − Pi)
2 = argmin ∑

i∈ωk

(akIi + bk − Pi)
2 (4)

Further, a regularization parameter ε is applied to indicate the blurring extent of GF.
Therefore, Equation (4) can be rewritten as

E(ak, bk) = ∑
i∈ωk

(
(akIi + bk − Pi)

2 + εa2
k

)
(5)

Based on Equation (3), the output image Q can be obtained as long as ak and bk are
computed. From Equation (5), the above two variables can be estimated as

ak =

1
|ω| ∑

i∈ωk

IiPi − µk
¯
Pk

σ2
k + ε

(6)

bk =
¯
Pk − akµk (7)

¯
Pk =

1
|ω| ∑

i∈ωk

Pi (8)

where µk and σ2
k denote the mean and the variance of the guide image I within the neigh-

borhood ωk, respectively. |ω| indicates the number of pixels in ωk, and
¯
Pk is the mean of

the gray values within ωk.
Note that each pixel is commonly described by multiple linear functions, so the mean

of ak and the mean of bk are both required, which can be denoted by ak and bk, respectively.
The output image Q can be obtained by

Qi = akIi + bk, ∀i ∈ ωk (9)

2.3. Side Window Filter

Traditional filters often align the pixel to be processed with the center of a local window.
Thus, the intensity of the central pixel can be approximated by the pixels in the window
via certain rules. Although the above filters have several superiorities including simple
implementation and low complexity, they often suffer from information loss especially
when the pixel to be processed is located at the edge. To this end, Yin et al. [35] constructed
a novel filter model called the side window filter (SWF), which consists of three parameters,
namely θ, ρ and r. θ decides the angle between the local window and the horizontal
direction, r represents the radius of the filter window and ρ takes the value in the set {0, r}.
Compared with traditional filters, SWF can create multiple local windows with varying
angles and radii, which helps to preserve the information of the pixel being processed,
regardless of whether it is located on an edge or not.

For simplicity, the number of angles is commonly set as eight with an interval of 45
degrees. Here, the above eight angles are denoted by A1~A8, and the SWF function is
supposed to be F. Accordingly, eight different outputs can be obtained as

Yθ,ρ,r
i = F(Xi, θ, ρ, r) (10)

where X and Y denote the input image and the output image filtered by SWF, respectively.
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In order to preserve the pixel information as much as possible, the approximate angle
requires to be decided from A1~A8. To this end, the objective function is set as

R = argmin
∀Yθ,ρ,r

i

‖Xi − Yθ,ρ,r
i ‖2

2 (11)

where R denotes the final result of SWF.

3. Proposed Method

In this section, the proposed method is presented in detail. Concretely, Section 3.1
overviews the overall framework, followed by the details of the proposed method in
Section 3.2.

3.1. Overall Framework

Aiming to effectively fuse the medical images with various modalities, the overall
framework of the proposed method is provided in this subsection, and the schematic
illumination is shown in Figure 1. As can be observed, the proposed method consists
mainly of three components, namely framelet transform, fusion strategies and inverse
framelet transform. For simplicity, two preregistered multimodal medical images denoted
by A and B are taken into account here. Note that the proposed method can also be extended
to the fusion case of more than two source images.
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The proposed method can be implemented via the following steps.
Step 1: The source images A and B are decomposed into a pair of low-frequency

components expressed as (AL, BL) and a series of high-frequency ones denoted by (A(l, k),
B(l, k)), respectively. L is the FT decomposition level, and Z(l, k) indicates the high-frequency
component at the lth level and kth direction of image Z. Z = A or B, 1 ≤ l ≤ L, 1 ≤ k ≤ 8.

Step 2: The fusion strategies including SKWGF and SWF are employed to fuse the low-
frequency and high-frequency coefficients, respectively, producing the fused low-frequency
component FL and a series of fused high-frequency ones F(l, k).

Step 3: The inverse FT denoted by ~FT is performed on FL and F(l, k) to generate the
final fused image F.

3.2. Details of Proposed Method

In the proposed method, when performing FT once, the source image can be con-
verted into a low-frequency component and eight high-frequency components. As the FT
decomposition level L increases, more high-frequency components can be obtained.

As is known to us, the low-frequency component describes the approximate infor-
mation of the source image. Although GF manifested to be promising in terms of image
information preservation, its unchanged regularization parameter ε leads to halo artifacts.
To this end, an improved version of GF called weighted GF (WGF) appeared in which
an edge-aware weighting was applied to adjust ε adaptively. Compared with GF, WGF
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reduces the halo artifacts a great deal, but the edges of the image are likely to be blurred. In
order to overcome this defect, the steering kernel, which does well in edge detecting, was
combined with WGF to generate steering kernel WGF (SKWGF) [36]. In order to indicate
the superiority of SKWGF, a group of simulation experiments were conducted, and the
relevant results are shown in Figure 2.
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Obviously, the edge information detected by SKWGF is richer than that from GIF and
WGIF. Motivated by the above superiority, SKWGF is employed in this paper to fuse the
low-frequency components.

To begin with, the initial fusion map of low-frequency component denoted by IMap_low
can be obtained as

IMap_low(i, j) = SKWGF(AL(i, j)) (12)

Next, IMap_low is refined to obtain the final fusion map FMap_low as

FMap_low(i, j) =


IMap_low(i, j), i f thres∗ ≤ IMap_low(i, j) ≤ 1
1− IMap_low(i, j), i f 0 ≤ IMap_low(i, j) ≤ thres∗
0, else

(13)

where thres* and thres* are two thresholds used for measuring the importance of the pixel.
Large numbers of experiments suggest that the pixels distributed around two extremes
often carry significant information. Here, thres* and thres* are set as 0.8 and 0.2, respectively.

The fused low-frequency component denoted by FL can be obtained as

FL(i, j) = AL(i, j) ∗ FMap_low(i, j) + BL(i, j) ∗ (1− FMap_low(i, j)) (14)

Unlike the low-frequency component, the high-frequency component expresses much
more information on the edge, texture and other details of the source image. In order to
avoid the drawbacks of the conventional filters, the eight-direction SWF is employed in this
paper, and the high-frequency components at different levels and directions are provided
as inputs in SWF. Accordingly, the corresponding final results can be obtained as

I′Z(l, k)(i, j) = argmin
∣∣∣∣∣∣qZ(l, k)(i, j)− IZ,n(l, k)(i, j)

∣∣∣∣∣∣22, Z = A or B (15)

where n denotes the eight different angles in SWF.
The fused high-frequency component expressed by F(l, k) can be generated by

F(l, k)(i, j) =


A(l, k)(i, j), i f I

′
A(l, k)(i, j) > I

′
B(l, k)(i, j)

B(l, k)(i, j), i f I
′
B(l, k)(i, j) > I

′
A(l, k)(i, j)

(A(l, k)(i, j) + B(l, k)(i, j))/2, else
(16)
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4. Experiment and Result Analysis

In this section, a series of simulation experiments have been conducted to verify the
effectiveness of the proposed method. The structure of this paper is arranged as follows.
Section 4.1 introduces the runtime environment and the data sets used in the experiments.
Section 4.2 lists the applied objective evaluation metrics, followed by the representative
contrast methods in Section 4.3. Section 4.4 reports the experimental results in terms of
both subjective visual performance and objective statistics. More ablation experiments and
further discussions are conducted in Section 4.5.

4.1. Data Sets

In this paper, a large number of medical source images were obtained from the Whole
Brain Atlas website [37]. These images have all been preregistered and delivered in “tif”
files with the size of 256 × 256. Due to limited space, the experimental results on four
groups of medical images are given here, specifically two pairs of CT and MRI images (Pair
I and Pair II) and two pairs of MRI and PET images (Pair III and Pair IV).

In addition, the details of the runtime environment are as follows. All simulation
experiments are conducted on a PC equipped with Intel Core i7 CPU and 32 GB memory.
The simulation software is MATLAB R2019a.

4.2. Objective Evaluation Metrics

In order to ensure fairness, the experimental performance is evaluated in terms of both
subjective perception and objective assessment. As for the latter, four highly convictive
objective evaluation metrics are selected here, including information fidelity for fusion
(VIFF) [38], feature similarity (FSIM) [39], sum of the correlations of differences (SCD) [40],
and spatial frequency (SF) [41]. VIFF is a multi-resolution metric used for evaluating
the quality of the fused image based on the visual information fidelity. By combining
phase congruency and gradient magnitude, FSIM does well in detecting and capturing
the pixels of interest. SCD evaluates the sum of the correlation among the information
amount transferred from each source image to the fused image. SF measures the change
rate of the image grayscale. The above metrics have been widely used to compare the
performance of different image fusion methods. The larger the index value, the better the
fusion performance.

4.3. Contrast Methods

In this section, nine representative methods have been selected to be compared with
the proposed one, including Laplacian re-decomposition (LRD) [6], parameter-adaptive
PCNN (PAPCNN) [15], convolutional sparse representation (CSR) [23], convolutional
sparsity based morphological component analysis (CSMCA) [24], NSCT phase congruency
local Laplacian (NSCTPCLL) [28], structure-aware (SA) [42], cross bilateral filter (CBF) [43],
adaptive sparse representation (ASR) [44] and contrast and structure extraction (CSE) [45].
There are several points that need to be explained in advance. Firstly, the above nine
methods have all been publicly published in authoritative journals. Moreover, the MATLAB
codes for the nine contrast methods used in this study are freely available on the Internet,
which ensures the fairness and objectivity of the experimental results and statistics. More
details on the contrast methods can be found in references [6,15,23,24,28,42–45].

4.4. Experimental Results

In this subsection, four pairs of brain medical images are selected as the source ones
for simulation experiments. For simplicity, the four pairs of source images are termed as
Pair I–Pair IV. Regarding Pair I and Pair II, each pair consists of two grayscale images:
a CT image and an MRI image. Unlike the previous pairs, Pair III and Pair IV consist
of a grayscale MRI image and a pseudo-color PET image. It is important to note that
we applied a YUV color space transform to convert the pseudo-color image into three
individual channels: one luminance channel Y and two chrominance channels U and V. The
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proposed method is then applied to fuse a grayscale MRI image with the aforementioned Y
component. This produces an initial fused image, denoted as F’, which is treated as the new
Y component. Finally, F’ and the original chrominance components U and V, are converted
to the final fused image F with the RGB version.

The first group of fused images based on ten different fusion methods is shown
in Figure 3. As can be observed, the contour information with high brightness in the
CT image (Figure 3a) is not well expressed in Figure 3d–k. In Figure 3e, although most
information in the source images is extracted and fused into the result, the fused image still
suffers information loss in the upper left region (please see the red arrow). In contrast, the
fused images are based on LRD and the proposed method (Figure 3c,l) retains much more
information than the other eight methods. However, it should be noted that LRD introduces
the artifacts into the fused image (please see the red boxes). Therefore, the proposed method
demonstrates the best subjective visual performance during the simulation experiments on
Pair I.
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Figure 3. Source images of Pair I and corresponding fused images based on ten different fusion
methods.

Another group of common brain medial images are also used here, and the correspond-
ing fused images based on ten different fusion methods are shown in Figure 4. From the
contrast perspective, the fused images in Figure 4d,f,g,j all suffer insufficient image contrast
level. The central region in Figure 4c is blurred, implying that part of the information in the
original CT source image is lost. Similarly, the bilateral regions in Figure 4k are also blurred
(please see the red boxes). In addition, the haloes located in the bottom-right regions can
be clearly observed in both Figure 4h,i (please see the red arrows). The saw-like artifact is
introduced in Figure 4e (please see the red arrow). In comparison, the fused image based
on the proposed method has high quality in terms of both information preservation and
clarity level.
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methods.

The third group of fused images based on ten different fusion methods is shown in
Figure 5. Here, there is a gray-scale MRI image and a pseudo-color PET image. We can
obviously find that the fused images in Figure 5d–k all suffer from varying degrees of color
distortion. Compared with the other eight fusion methods, both LRD and the proposed
method have a strong ability to express information. However, by careful comparison, we
can observe that the dark blue region in the original PET image (Figure 5b) fades slightly in
Figure 5c. The proposed method not only preserves the grayscale information in MRI but
also retains the color information in PET effectively.

The last group of fused images based on ten different fusion methods is shown in
Figure 6. From the point of the image intensity, the performance of the fused images
in Figure 6e,f,i–k is not satisfactory, and the overall intensity level of the image is too
low (please see the red arrows). In contrast, the visual performance of the other five
fused images based on LRD, PAPCNN, NSCTPCLL, SA and the proposed method are
approximate.

Through a number of simulation experiments, four groups of brain medical images
have been fused by ten different fusion methods. On the whole, the proposed method has
manifested great superiorities over the other nine in terms of subjective visual performance.

In order to verify the effectiveness of the proposed method from other aspects, the
objective evaluation statistics on the ten methods are reported in Table 1. There are several
points requiring further explanation, as follows. Firstly, what cannot be ignored is that any
individual evaluation metric always has its own advantages and disadvantages. Therefore,
it is unreasonable to judge the method via any single metric. To this end, the comprehensive
consideration of multiple evaluation metrics provides a new feasible scheme. In this section,
the ranks of each metric are all given, and the sum of ranks for each method is calculated.
Thus, the smaller the sum is, the better the method’s performance. The red bold and blue
bold indicate the best and suboptimal methods, respectively. Furthermore, in the objective
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evaluation statistics of the ten methods, the proposed method ranked first three times and
second once, outperforming the other nine comparison methods. In addition, the objective
statistics are basically consistent with the subjective visual performance. Here, we take
LRD for instance. From the objective evaluation aspect, LRD achieves the second place four
times, which is second only to the proposed method. As we can observe in Figures 3–6, the
subjective visual performance of LRD is relatively satisfactory.
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Table 1. Objective evaluation statistics of the ten different methods.

LRD PAPCNN CSR CSMCA NSCT
PCLL SA CBF ASR CSE Proposed

Pair
I

SF 26.8121
(9)

29.9538
(3)

34.6401
(1)

28.0534
(7)

30.0566
(2)

28.1254
(6)

29.7505
(4)

27.0640
(8)

25.1767
(10)

29.3681
(5)

FSIM 0.9520
(2)

0.9416
(9)

0.9462
(6)

0.9563
(1)

0.9420
(8)

0.9476
(4)

0.9455
(7)

0.9466
(5)

0.9416
(9)

0.9513
(3)

SCD 1.5737
(1)

1.0319
(5)

0.9752
(8)

1.1536
(3)

1.0360
(4)

0.8739
(9)

0.8270
(10)

1.0059
(6)

0.9889
(7)

1.4117
(2)

VIFF 0.6033
(1)

0.4146
(6)

0.4240
(5)

0.4417
(3)

0.4251
(4)

0.2539
(8)

0.2238
(9)

0.3353
(7)

0.1860
(10)

0.5555
(2)

RANK 13 (2nd) 23 20 14 18 27 30 26 36 12 (1st)

Pair II

SF 18.6469
(8)

19.7244
(4)

23.4363
(1)

19.5172
(6)

19.5219
(5)

19.8635
(3)

21.2294
(2)

18.6255
(9)

16.0243
(10)

18.9910
(7)

FSIM 0.9317
(2)

0.9295
(4)

0.9252
(10)

0.9300
(3)

0.9292
(5)

0.9269
(7)

0.9253
(9)

0.9266
(8)

0.9347
(1)

0.9285
(6)

SCD 1.7753
(3)

1.6007
(9)

1.6585
(6)

1.7815
(1)

1.6200
(8)

1.6759
(5)

1.6295
(7)

1.5430
(10)

1.7632
(4)

1.7776
(2)

VIFF 0.5257
(3)

0.4287
(8)

0.5810
(2)

0.5103
(4)

0.4442
(7)

0.4953
(5)

0.4753
(6)

0.3444
(10)

0.4072
(9)

0.5821
(1)

RANK 16 (2nd) 25 19 14 (1st) 25 20 24 37 24 16 (2nd)

Pair III

SF 31.3911
(10)

32.1327
(8)

33.8108
(2)

32.7217
(5)

32.1942
(6)

34.2373
(1)

33.5904
(3)

32.0246
(9)

33.0751
(4)

32.1373
(7)

FSIM 0.9005
(4)

0.8946
(9)

0.9088
(1)

0.9026
(3)

0.8943
(10)

0.8970
(7)

0.8989
(5)

0.8969
(8)

0.9046
(2)

0.8983
(6)

SCD 1.7136
(1)

1.3566
(5)

0.4248
(10)

1.4074
(3)

1.3682
(4)

0.9932
(9)

1.0607
(8)

1.3235
(6)

1.0931
(7)

1.6352
(2)

VIFF 0.4528
(2)

0.4040
(4)

0.2106
(10)

0.2774
(5)

0.4075
(3)

0.2364
(9)

0.2479
(7)

0.2658
(6)

0.2372
(8)

0.5098
(1)

RANK 17 (2nd) 26 23 16 (1st) 23 26 23 29 21 16 (1st)

Pair IV

SF 33.7943
(6)

33.5398
(8)

34.0098
(3)

33.1408
(9)

33.6981
(7)

34.4743
(1)

33.8475
(5)

32.0853
(10)

33.8869
(4)

34.1113
(2)

FSIM 0.9806
(7)

0.9813
(1)

0.9812
(2)

0.9807
(6)

0.9800
(9)

0.9809
(4)

0.9804
(8)

0.9809
(4)

0.9787
(10)

0.9810
(3)

SCD 1.5594
(1)

1.5447
(2)

0.6316
(10)

0.9386
(6)

1.4146
(3)

0.7970
(9)

0.9291
(7)

0.9634
(5)

0.8268
(8)

1.2932
(4)

VIFF 0.7715
(2)

0.7768
(1)

0.7028
(6)

0.5910
(9)

0.7369
(4)

0.7162
(5)

0.7022
(7)

0.5006
(10)

0.6815
(8)

0.7689
(3)

RANK 16 (2nd) 12 (1st) 21 30 23 19 27 29 30 12 (1st)

4.5. More Ablation Experiments and Further Discussions

In the Section 4.4, we selected four different pairs of homogeneous or heterogenous
medical source images to verify the effectiveness of the proposed method. In this subsection,
more ablation experiments and further discussions are conducted in terms of performance
on other types of source images and average running time.

In order to verify the fusion performance of the proposed method on other types of
source images, another two groups of images are selected, including a pair of multi-focus
source images and a pair of light and infrared source images. For simplicity, the above
two pairs of source images are named Pair V and Pair VI, respectively, which are shown in
Figure 7. Both pairs of images share the size of 256 × 256, and they have been registered
in advance. In Figure 7a, the left area is in focus while the right area is out of focus;
the opposite situation is shown in Figure 7b. Therefore, there is much complementary
information between these two images. Figure 7c displays a visual light image with poor
lighting, while the corresponding infrared version of Figure 7c is shown in Figure 7d.
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Clearly, the combination of both images mentioned above is highly likely to provide us
with much richer information.
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Figure 7. Another two pairs of source images selected for further investigation.

The fusion experiments on Pair V are conducted here, and the corresponding result
images based on ten different fusion methods are shown in Figure 8. Generally speaking,
the main information of the source images is extracted and fused by most fusion methods,
except LRD. For comparison purposes, the enlarged close-ups of a representative region are
also depicted in Figure 9. It is found that the fused image based on the proposed method is
clearer than those of other methods.
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Figure 10. Fused images based on ten different fusion methods. 

In addition to the subjective visual evaluation, the objective evaluation statistics on 
the ten methods are reported in Table 2. With regard to the experimental results on the 
fusion of multi-focus images, three methods including SA, CSE and the proposed method 
achieve the top three places. Concerning the fusion of visual light and infrared images, 
the objective evaluation result is slightly inferior, and achieves fourth place. 

Table 2. Objective evaluation statistics of the ten different methods. 
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PCLL 
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Figure 9. Enlarged close-ups involved nine fusion methods on Pair V.

The fusion results based on ten different methods are displayed in Figure 10. Obvi-
ously, the fused image based on CSR suffers information distortion. Some artifacts are
introduced into the fused images based on LRD, PAPCNN, NSCTPCLL, SA and CBF,
especially in regions around the person. In the result images produced by CSMCA and
CSE, the individual’s contours appear blurred in both cases. Although ASR and the
proposed method do well in describing the information of the person and the cars, the
proposed method has superiority over the former in preserving and expressing the lighting
information in the original source images (please see the red arrow).
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Figure 10. Fused images based on ten different fusion methods.

In addition to the subjective visual evaluation, the objective evaluation statistics on
the ten methods are reported in Table 2. With regard to the experimental results on the
fusion of multi-focus images, three methods including SA, CSE and the proposed method
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achieve the top three places. Concerning the fusion of visual light and infrared images, the
objective evaluation result is slightly inferior, and achieves fourth place.

Table 2. Objective evaluation statistics of the ten different methods.

LRD PAPCNN CSR CSMCA NSCT
PCLL SA CBF ASR CSE Proposed

Pair
V

SF 12.7985
(10)

13.4532
(9)

15.8582
(4)

15.9873
(3)

16.0194
(2)

16.1320
(1)

15.2466
(7)

15.7746
(6)

15.7830
(5)

13.5003
(8)

FSIM 0.9896
(2)

0.9885
(4)

0.9869
(8)

0.9865
(9)

0.9859
(10)

0.9872
(7)

0.9890
(3)

0.9884
(5)

0.9880
(6)

0.9908
(1)

SCD 0.1550
(10)

0.2687
(9)

0.4864
(2)

0.4446
(6)

0.4572
(5)

0.4306
(7)

0.3798
(8)

0.4795
(3)

0.4677
(4)

0.5466
(1)

VIFF 0.7818
(10)

0.8047
(9)

0.9391
(4)

0.9291
(5)

0.9394
(3)

0.9504
(1)

0.9041
(8)

0.9235
(6)

0.9473
(2)

0.9190
(7)

RANK 32 31 18 23 20 16 (1st) 26 20 17 (2nd) 17 (2nd)

Pair VI

SF 20.2025
(7)

20.6165
(6)

23.7851
(1)

20.8746
(5)

21.5583
(3)

20.9258
(4)

22.2221
(2)

19.9784
(8)

18.9172
(10)

19.4269
(9)

FSIM 0.9392
(7)

0.9422
(3)

0.9387
(9)

0.9439
(2)

0.9490
(1)

0.9404
(6)

0.9335
(10)

0.9391
(8)

0.9419
(4)

0.9415
(5)

SCD 1.3405
(3)

1.3159
(5)

0.9424
(10)

1.5042
(1)

1.0946
(8)

1.0309
(9)

1.1058
(7)

1.4101
(2)

1.3217
(4)

1.1503
(6)

VIFF 0.4514
(8)

0.5622
(4)

0.5071
(6)

0.5910
(2)

0.5908
(3)

0.5461
(5)

0.4161
(9)

0.4134
(10)

0.4881
(7)

0.6608
(1)

RANK 25 18 26 10 (1st) 15 (2nd) 24 28 28 25 21

In addition to comparing subjective visual performance and objective evaluation,
running time is also an important metric for measuring method performance. Here, the
average running time of the ten methods is discussed. To ensure fairness and objectivity
of the comparison results, the average of the experimental results on six pairs of source
images for each method is treated as the final average running time, and the corresponding
results are reported in Table 3. Observed from Table 3, the statistics shows the trend of
polarization. Compared with the other six methods, LRD, CSR, CSMCA and ASR all
consume large computational resources, so that their average running time is very long. In
comparison, SA and CSE are the most time-saving, and they only cost 0.489 s and 0.774 s,
while the proposed method achieves third place. Although the proposed method is slightly
more time-consuming than SA and CSE, it falls within the acceptable range. Moreover,
the overall fusion performance based on the proposed method has much more significant
superiorities over those of the other nine methods.

Table 3. Average running time of ten different fusion methods (unit: seconds).

LRD PAPCNN CSR CSMCA NSCTPCLL SA CBF ASR CSE Proposed

58.693 7.901 23.695 76.551 3.813 0.489
1st 8.287 68.578 0.774

2nd
2.458
3rd

5. Conclusions

In this paper, a novel and effective fusion method is proposed to fuse the multimodal
medical images. The proposed method mainly consists of two parts including fusion
scheme and fusion strategy. As for the former, the current popular scheme such as NSCT
and NSST are replaced by FT in this paper, which owns much better fusion performance
and greatly lower computational costs. With regard to the fusion strategy, SKWGF and SWF
are exploited to accomplish the fusion of low-frequency sub-image and a series of high-
frequency sub-images, respectively. To verify the effectiveness of the proposed method, we
compared it with nine representative fusion methods using several pairs of medical images
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with different modalities. The experimental results indicate that the proposed method
outperforms the other nine methods in terms of both subjective visual performance and
objective evaluation metrics.

Overall, the main contributions of the proposed method mainly manifest in the fol-
lowing four points. Firstly, compared with the popular transform domain methods such as
NSCT and NSST, framelet transform results in much lower computation costs and better
fusion performance. Secondly, the enhanced version of GF can overcome its structural
limitations, allowing for a more effective extraction and representation of information
in LFIs. Thirdly, SWF is more sensitive to the detail information in HFIs than the cur-
rent representative models. Fourthly, the experimental results indicate that the proposed
method outperforms the current representative methods in terms of both visual quality
and quantitative evaluation.

Of course, it should be noted that, like all methods, the proposed method also has
its own limitations. Firstly, according to the experimental results, the proposed method
performs well in the fusion of homogeneous source images such as medical images and
multi-focus images, while the corresponding performance is slightly inferior in the fusion
experiments on heterogenous images such as visual light and infrared images. Secondly,
while the proposed method has a much shorter average running time compared with most
other methods, there is still room for further improvement. In the next step of our work,
we will optimize the proposed method to further decrease its running time, in order to
better meet the requirements of real-time applications.
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