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Abstract: Unmanned aerial vehicles (UAVs) are a highly sought-after technology with numerous
applications in both military and non-military uses. The identification of targets is a crucial aspect of
UAV applications, but there are challenges associated with complex detection models and difficulty
in detecting small targets. To address these issues, this study proposes the lightweight L-YOLO
algorithm for target detection tasks from a UAV perspective. The L-YOLO algorithm improves
on YOLOv5 by improving the model’s detection performance for small targets while reducing
the number of parameters and computational effort. The GhostNet module replaces the relevant
convolution in the YOLOv5 model to create a lightweight model. The EIoU loss is used as the loss
function of the algorithm to accelerate convergence and improve regression accuracy. Furthermore,
feature-level extensions based on YOLOv5 are implemented, and a new detection head is proposed to
improve the model’s detection accuracy for small targets. The size of the anchor boxes is redesigned
to suit the small targets using the K-means++ clustering algorithm. The experiments were conducted
on the VisDrone-2022 dataset, and the L-YOLO algorithm demonstrated a reduction in computational
effort by 42.42% and number of parameters by 48.6% compared to the original algorithm. Furthermore,
recall and mAP@0.5 improved by 2.1% and 1.4%, respectively. These results demonstrate that the
L-YOLO algorithm not only has better detection performance for small targets but is also a lighter
model, indicating promising prospects for target detection from a UAV perspective.

Keywords: UAV target detection; lightweighting; GhostNet module; EIoU loss; K-means++

1. Introduction

Advancements in unmanned aerial vehicle technology have enabled its widespread
use in various industries, such as environmental surveys, forest fire prevention, and
maritime rescue. Hence, target detection, a crucial component of UAV applications, has
become a research hotspot in recent years.

Anchor-based and anchor-free target detection algorithms are currently the two types
of deep-learning-based target detection algorithms. A two-stage anchor-based targeted de-
tection algorithm differs from one-stage anchor-based target detection algorithms. One-stage
target detection algorithms, such as the Single Shot MultiBox Detector (SSD) [1] and the
You Only Look Once (YOLO) series [2–12], are fast but lack accuracy, particularly for small
targets. As a result of its two-stage detection algorithm, the region-based convolutional neu-
ral networks class outperforms single-stage algorithms in terms of target detection accuracy.
This type of algorithm has been represented in various studies, including those referenced
in citations [13–16]. However, this improved accuracy comes at the cost of slower detection
speed. Therefore, depending on the specific needs of the user, it may be necessary to con-
sider both the accuracy and speed when selecting a target detection algorithm. Anchor-free
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target detection algorithms follow a new approach to corner point detection, represented
by CornerNet [17] and CenterNet [18], instead of using pre-defined frames.

Due to the operational environment of UAVs, target objects for detection are often
small, and therefore, target detection algorithms applied to UAVs must be efficient in de-
tecting small targets. However, conventional UAVs have limited processing power, making
it challenging to deploy algorithms with large network sizes and computations. As a result,
the number of parameters and computational power of the target detection algorithms
embedded in UAVs must be considered. Lightweight neural networks optimized for low-
power embedded devices, such as the MobileNet [19–21] and ShuffleNet [22,23] series,
have been developed in recent years, but their detection performance is significantly lower.
Therefore, it is crucial to simplify the algorithm model while ensuring its effectiveness in
detecting small targets.

YOLOv5 is a highly popular single-stage target detection algorithm that has been
gaining traction in recent years. It is widely used for target detection tasks, such as object
recognition in images and videos. This algorithm is designed to be fast and efficient,
making it an ideal choice for real-time applications where speed is crucial. In this study,
the YOLOv5 model is combined with the lightweight network module, GhostNet [24], to
reduce the number of parameters and computational effort, and the loss function is also
modified. To improve the model’s detection performance for small objects, a new feature
prediction layer is designed and implemented. The study uses images from the VisDrone-
2022 [25] dataset, obtained entirely by drones, as the detection target. The structure of this
paper includes an introduction to related work, a description of the improvement methods
adopted, a detailed demonstration of the method’s effectiveness through experiments, and
a summary.

2. Related Work

The detection of small targets is difficult due to their small size and low pixel density.
Researchers have explored data augmentation techniques, contextual information, and
multi-scale feature learning to enhance the performance of neural networks in detecting
small targets. One proposed data augmentation method for addressing the issue of the
limited number and diversity of small targets in a dataset is copy-pasting [26], which
involves randomly duplicating small targets in the image. However, copy-pasting often
results in issues such as scale and background mismatches, compromising the integrity of
the image. To address these problems, researchers have proposed an adaptive copy-pasting
method called AdaResampling [27]. Scale Match [28] also adjusts the scale of external
datasets based on the scale of small targets in the dataset and integrates them into the
training set to improve the feature representation of small targets.

Contextual information refers to the relationship between the pixels of a specific target
and its neighboring objects, such as the contextual information around a person’s eyes
including their eyebrows and nose. The contextual feature information around a target
can be useful for object recognition during detection. The SODet [29] backbone network
utilizes the global computational properties of the Transformer [30] to establish connections
between objects in an image that is relatively far from a particular target while using
convolutional neural networks (CNN) to extract local information from the image. The
Feature-Fused SSD [31] algorithm reconstructs the image back into pixel space through
deconvolution, thus visualizing and finding the most suitable and effective receptive field
as a small target for feature fusion, thereby enhancing the connection between contexts
and improving the detection accuracy of the algorithm for small targets. Combining FA-
SSD [32] extracts contextual information from the surrounding pixels of a small target and
connects it with contextual features in tandem to enrich the features of small targets, thus
enabling the model to better detect targets.

As a result of developing methods for extracting useful information from images of
various sizes and feature maps of various scales, researchers have been able to improve the
accuracy of detection of small targets by performing feature extraction and predicting fea-
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tures from multiple scaled feature maps. The SSD algorithm detects objects by performing
softmax classification and position regression on multiple feature scales, with each scale
responsible for detecting objects of different sizes. DSSD [33] builds on SSD by replacing its
original VGG16 [34] backbone network with Resnet-101 [35], which has a deeper network
level and stronger feature expression ability, and by adopting a feature fusion method
to fuse the feature information of different layers together. Similarly, FPN [36] adds an
upsampling and side connection structure to SSD, significantly improving target detection
accuracy. PANet [37] shortens the information transfer distance between bottom-level and
top-level features using a bottom-up path augmentation method, while BiFPN [38] applies
a bidirectional path to each feature layer for feature fusion and repeats the fusion process
multiple times to achieve higher-level multi-scale feature enhancement. QueryDet [39] uses
a novel query algorithm to radically speed up the process of object detection based on the
feature pyramid.

Embedded devices often have limited computing power and storage space, making it
difficult to deploy large neural network models. To address this issue, researchers have
focused on developing lightweight neural network designs. The MobileNet series, devel-
oped by Google, uses depthwise separable convolution as the basic unit to create efficient
and lightweight CNN models. The ShuffleNet series, developed by Megvii Technology,
achieves a balance between model performance and computational load with low memory
and computing power. PP-LCNet [40], proposed by the Baidu team, is a lightweight CPU
network that improves the performance of lightweight models on multi-tasking.

3. L-YOLO

Owing to the limitations of a UAV’s own on-board processor and power losses, there
are few parameters for target detection algorithms applied to UAVs. As UAVs often operate
at high altitudes and the scale of target detectors varies highly, algorithms embedded
in UAVs need to consider the detection performance of small targets while ensuring
conventional target detection. Therefore, enhancing the algorithm model to simultaneously
meet the requirements of low power consumption and efficient small target detection is a
problem that must be addressed.

The speed at which YOLOv5 detects targets is good, but its accuracy is not as
good as for a typical two-stage detection algorithm. Two objectives are achieved in this
study with the L-YOLO algorithm proposed in this study as an improvement to the
YOLOv5 algorithm:

(1) Make the algorithm model more suitable for embedded devices with limited
hardware conditions by reducing its parameters.

(2) Improve small target detection performance by further optimizing the model.

3.1. L-YOLO Model

In this study, a small target detection model named L-YOLO is proposed. This model
uses the YOLOv5 detection algorithm as its basis. As part of L-YOLO, GhostNet is intro-
duced into the backbone network and neck of the YOLOv5 model, and additionally, loss
function and feature prediction layers are modified. The model of L-YOLO is shown in
Figure 1.
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Figure 1. L-YOLO model structure.

3.2. L-YOLO Model

Given the specific limits of the drone, the computing power of the deep learning
model embedded in it is relatively limited. In the original network structure of YOLOv5,
a large amount of redundant data is generated when extracting image features, which
occupies hardware storage space, reduces computing speed, and does not meet the re-
quirements of rapid detection. For the algorithm model to adapt to the UAV equipment,
this study introduces the GhostNet network structure, which is specially designed for
mobile equipment.

The majority of convolution operations begin with point convolution for dimension-
ality reduction and end with depth convolution for feature extraction. In addition to
extracting more feature information from an input image, CNN-trained neural networks
also generate more redundant feature maps. In addition to enhancing the performance of a
model, performing numerous convolution operations increases memory and computing
resource consumption. Most lightweight networks today achieve lightweight effects by
removing some redundant features. GhostNet combines standard convolution and linear
operations while maintaining the original network’s output feature map and channel size.
In this way, parameterization and computation are simplified.

The Huawei Noah’s Ark Laboratory has proposed GhostNet, a lightweight network
for feature extraction. The Ghost module can generate more features with less computation.
Figure 2a is an ordinary convolution structure, and Figure 2b is the convolution structure in
the Ghost module. The Ghost module divides the original convolution into two parts, first
generating a small number of feature maps using fewer convolution kernels, then using
resource-intensive linear operations to produce the remaining feature layers, and finally
stitching all the feature layers together to expand the target feature map.

Ordinary convolution calculations convolve three channels simultaneously and pro-
vide a single value as output. Depthwise separable convolution splits the traditional
convolution into two steps. First, the three channels are convoluted to obtain three separate
values, and then, these three values are passed through a pointwise kernel with a size of
1× 1× 3 to obtain the final value. For images of H×W with the same size, when the offset
is not considered, the parameters and calculations are as follows:

PT = c× L× L + c× X (1)

FT = H ×W × c× L× L + c× X× H ×W (2)
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(a) Ordinary convolutional layers

(b) The Ghost Module

Figure 2. Illustration of the normal convolution and Ghost convolution modules when the input and
output are the same.

In the above equation, the convolution kernel size is represented by L, the input
channel size is represented by C, the output channel size is indicated by X, and the input
map size is H. The length of the input feature map is W, and the width is H. However, any
convolution kernel can be of any size.

If each basic feature corresponds to S redundant features, then the kernel of a Ghost
convolution is D× D. For a GhostNet convolution, assuming the bias parameter is set to
zero, the following parameters and calculations are generated:

Pghost = X/S× c× L× L + (S− 1)/S× X× D× D (3)

Fghost = X/S× H ×W × c× L× L + (S− 1)/S× H ×W × X× D× D (4)

This gives the ratio of the number of parameters to the amount of computation for
Ghost convolution versus conventional convolution, which can be expressed as:

RP =
Pghost

PT
=

X/S× c× L× L + (S− 1)/S× X× D× D
X× c× L× L

≈ 1
S

(5)

RF =
Fghost

FT
=

X/S× c×W × H × L× L + (S− 1)/S× X×W × H × D× D
X× c×W × H × L× L

≈ 1
S

(6)

The Ghost bottleneck was constructed based on the strengths and features of the Ghost
module, as shown in Figure 3. It borrows the residual block structure from the ResNet
model, integrating multiple convolutions and shortcuts. As shown in Figure 3a, the step
size is 1, and after the two ghost modules, a batch normalization layer is added, followed
by a Rectified Linear Unit activation function. Figure 3b utilizes a two-step convolution
algorithm to downsample between two Ghost modules.
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(a) Step size of 1 (b) Step size of 2

Figure 3. Ghost bottleneck structure.

Therefore, by introducing the GhostNet module, the original model has fewer param-
eters and requires less computing effort. In Figure 4, we see the model after GhostNet
is introduced.

Figure 4. Achieving lightweight models.

3.3. Loss Function

In YOLOv5, the boundary loss is calculated using the Complete-IoU (CIoU) loss in
order to determine the distance between the true bounding box and the predicted bounding
box. This takes into account not only the overlapped area between the predicted and real
frames but also the distance between their central points and their aspect ratios. The
formula for this is as follows:

LCIoU = 1− IoU +
ρ2(b, bgt)

c2 + αv (7)

v =
4

π2

(
arctan

wgt

hgt − arctan
w
h

)2

(8)

α =
v

(1− IoU) + v
(9)
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ρ2(b, bgt) is the Euclidean distance between the two frames, IoU is the intersection
ratio between them, c is the diagonal length of the smallest outer rectangle between them, v
is the positive equilibrium parameter, and wgt

hgt and w
h is the aspect ratio consistency between

the two frames.
It can be seen from Equation (8) that the penalty for this item in CIoU is no longer effec-

tive when the aspect ratio of the predicted frame satisfies
{(

w = kwgt, h = khgt) | k ∈ R+
}

,
despite the fact that CIoU loss considers the distance between the centroids of the real and
predicted frames, the overlap area, and the aspect ratio. Furthermore, we have

∂v
∂w

=
8

π2

(
arctan

wgt

hgt − arctan
w
h

)
· h

w2 + h2 (10)

∂v
∂h

= − 8
π2

(
arctan

wgt

hgt − arctan
w
h

)
· w

w2 + h2 (11)

Therefore,

∂v
∂w

= − h
w

∂v
∂h

(12)

The above equation shows that ∂v
∂w and ∂v

∂h are inversely related; that is, when the
value of w or h increases during training, the other value is bound to decrease. Efficient-
IoU (EIoU) loss is used as the loss function of the algorithm in this study to solve the
two problems described above. According to CIoU loss, EIoU loss introduces information
about the real and predicted frames’ lengths and widths. Its formula is as follows:

LEIoU = 1− IoU +
ρ2(b, bgt)

c2 +
ρ2(w, wgt)

cw2 +
ρ2(h, hgt)

ch
2 (13)

In this equation, cw and ch represent the width and height of the smallest bounding
box covering the ground truth and predicted boxes, respectively. By using the EIoU loss as
a basis, we can split the aspect ratio loss into the predicted width and height as well as a
minimum bounding box. This results in faster convergence, better regression accuracy, and
a focus on high-quality anchor boxes during regression. In addition, EIoU loss introduces
Focal loss into its bounding box regression task, which optimizes sample imbalances.

3.4. Prediction Feature Layer

Small sample sizes and the relatively high downsampling multiplier of the model
contribute to the poor detection of small targets in YOLOv5. Due to the difficulty of
learning features of small targets, shallower feature maps should incorporate a small target
detection layer.

YOLOv5 originally performed feature prediction only in the last three C3 layers, as
shown in Figure 5a. However, the detection of small targets is inadequate as it loses
feature information during the continuous downsampling process. Hence, this study adds
a feature prediction layer, as shown in Figure 5b. Predictions in the newly added layer
are more precise, and small objects are less likely to be downsampled, which helps the
model to gain insight. Inspired by BiFPN, this study improves the connection method of
the feature fusion layer, as shown in Figure 5c. In the original PANet model, bottom-up
and top-down path aggregation were used to improve multi-scale feature fusion. However,
the input features of the bottom-up feature fusion stage had no original output features
from the backbone network. Using cross-connection, this study removes nodes that do not
contribute to feature fusion and adds skip connections between input and output nodes
of the same scale to fuse more features. We consider each bidirectional path as a layer on
the same feature scale. Higher-level feature fusion is achieved by reusing the same layer
multiple times.
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(a) YOLOv5 simplified structure diagram

(b) Simplified structure diagram of the prediction layer

(c) Simplified structure diagram of the model for high-level feature fusion

Figure 5. Implementation process of high-level feature fusion.

For the detection of small targets, the feature fusion network is enhanced with a
second feature layer, as shown in Figure 5b. However, retaining extra shallow semantic
information in the network leads to the loss of deep semantic information. The cross-scale
connectivity approach adopted in this study can fuse more feature information without
increasing the computational cost.
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3.5. Anchor Box

The YOLOv5 algorithm obtains the anchor box size through edge clustering with
the K-means [41] algorithm on the MS COCO [42] dataset, which is dominated by large
and medium targets. This study used the VisDrone-2022 dataset, which contains a large
number of small targets, so the anchor box size is not suitable for the dataset, as screening
out inappropriate bounding boxes by the YOLO detection head would severely affect
the model. To address this issue, this study modified the size of the anchor box in the
VisDrone-2022 dataset using the K-means++ [43] clustering algorithm, which improved the
model’s detection accuracy for small targets.

By optimizing the selection of initial points, the K-means++ clustering algorithm
improves the accuracy of classification results compared to K-means. For the VisDrone-
2022 dataset, this study used K-means++ clustering to calculate anchor box sizes. Using this
method, we selected the first cluster center randomly from the dataset and then chose the
remaining cluster centers based on the distance between each sample xi in the dataset and
the initialized cluster centers, indicated by D(x). Once the cluster centers were determined,
we used the following formula for the relationship:

P(x) =
D(x)2

∑N
i=1 D(xi)

2 (14)

The point with the highest probability value was chosen as the next clustering center.
Each clustering center was selected in this manner until K were selected. In the dataset,
each sample was assigned to the class with the smallest distance from the K cluster centers
based on its distance to the K cluster centers. Continuous updates were performed until
the cluster centers were fixed in their positions.

4. Experiments

An Intel Xeon Gold 5118 CPU@2.30 GHz CPU and NVIDIA Quadro P5000 16 G GPU
were used in this experiment for model training, and the same platform was used for model
test inference. The software ran on the Windows operating system and included Python
3.8.13, PyTorch 1.9.0, and the Cuda11.1 deep learning framework.

For the validation of the proposed method, the following experiments were conducted
on VisDrone-2022:

(1) L-YOLO ablation experiments: L-YOLO, which is proposed in this study, is based
on YOLOv5, with several improvements. Ablation experiments were conducted on the
VisDrone-2022 dataset to verify the effect of each improvement on the detection process.

(2) Our comparison experiments with the most advanced target detection algorithms
demonstrated L-YOLO’s effectiveness.

4.1. Dataset

A traditional dataset has a relatively small proportion of small targets and an uneven
distribution of them. As a result of uneven distributions, the model is biased toward
learning large and medium targets during training. The VisDrone-2022 dataset, a profes-
sional dataset with predominantly small objects, was used to address this issue. A random
selection of VisDrone-2022 images is shown in Figure 6.

Figure 6. VisDrone-2022 images selected at random.
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The VisDrone-2022 dataset was collected by the Machine Learning and Data Mining
Laboratory at Tianjin University. Compared to MS COCO, this dataset contains twice as
many small objects, thus making it suitable for detecting small targets. For each scale,
Table 1 displays the percentages of targets based on these data.

Table 1. MS COCO and VisDrone-2022 scale target comparison (%).

Size (%) MS COCO VisDrone-2022

Small 41.43 87.77
Medium 34.33 11.97

Large 24.24 0.26

4.2. Ablation Experiment

As the UAV can only carry target detection algorithms with few parameters and
low power consumption, this study proposes a lightweight L-YOLO model. This model
features the GhostNet module as the neck and backbone networks. Upon incorporating the
lightweight modules, to ensure the algorithm’s detection performance, we also combined
the original model with ShuffleNetV2, MobileNetV3, PP-LCNet, and GhostNet modules
for a comparison experiment. The position and number of lightweight modules inserted
in the model were consistent, and the experiment was conducted on the VisDrone-2022
dataset; the results are shown in Table 2.

Table 2. Experimental comparison of YOLOv5 in combination with different lightweight modules.

Models R (%) mAP@0.5 (%) Parameters GFLOPs

YOLOv5s 34.5 33.9 7.2M 16.5
ShuffleNetV2-YOLOv5s 22.5 19 2.7M 6.5
MobileNetV3-YOLOv5s 26.2 20.5 3.9M 7.3

PP-LCNet-YOLOv5s 27.4 27 3.8M 8.2
GhostNet-YOLOv5s 31.4 30.6 3.6M 8.1

As seen in Table 2, although the ShuffleNetV2, MobileNetV3, and PP-LCNet modules
reduce the number of parameters and the computational complexity of the original model,
the detection performance is also reduced by a large amount. In contrast, the algorithm
model combined with the GhostNet module sacrifices recall and mAP values to a lesser
extent but reduces the number of parameters and computational complexity. ShuffleNetV2
reduces the parameters of the original model to 2.7 M, and the calculation amount is
reduced to 6.5 G, providing the best lightweight effect among the four modules. However,
it also has the greatest impact on the detection of the model, reducing the recall rate by
12% and the mAP value by 14.9%. The introduction of the GhostNet module reduces the
recall rate of the model by 3.1%, the mAP by 3.3%, the number of parameters by 50%,
and the amount of calculations by 50.9%. This enables the model to achieve a lightweight
effect, and the detection performance of the model is only slightly reduced. Therefore,
the GhostNet module was inserted into the backbone network and neck of the algorithm
model, replacing the initial complex convolution structure of the original algorithm.

When the GhostNet module was introduced, the algorithm’s detection performance
slightly degraded. Adding the feature detection layer to the model improved the perfor-
mance of the detection algorithm by modifying the loss function. The ablation experiments
performed on the VisDrone-2022 dataset were used to verify the effectiveness of the im-
provements proposed in this study. As a fair evaluation, this study kept the parameters of
each variable consistent; the experimental results can be found in Table 3.
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Table 3. Comparison of results of ablation experiments.

Methods GhostNet EIoU
Loss

New Pre-
diction
Layer

New
Anchor R (%) mAP@0.5

(%) mAP@0.5:0.95 (%) Parameters GFLOPs

YOLOv5s
baseline 34.5 33.9 18.2 7.2 M 16.5

M1 X 31.4 30.6 15.6 3.6 M 8.1
M2 X 35.8 35.3 19.2 7.2 M 16.5
M3 X 39.4 39.2 22.3 7.3 M 19
M4 X 35.6 34.7 18.9 7.2 M 16.5
M5 X X 31.9 31.8 16.3 3.6 M 8.1
M6 X X X 36.3 35 19.1 3.7 M 9.5
M7 X X X X 36.6 35.3 19.2 3.7 M 9.5

All the proposed methods in this study were compared against YOLOv5s as the
baseline, and the results showed that they all improved its efficiency. The first method
involved replacing the convolutional blocks in the original model with GhostNet modules;
owing to this, the model achieved the effect of lightweighting, but with a slight reduction
in the detection performance.

The second method was to use EIoU loss as the loss function of the model. Model
parameters are usually not changed by changing the loss function. The introduction of
EIoU loss enhanced the detection ability of the model and increased the recall rate and
mAP@0.5 by 1.3% and 1.4%, respectively.

The third method was to add a new feature prediction layer. As this was based on the
original feature layer with an additional small target prediction layer and changes in the
connection method, it led to an increase in the number of parameters and computation of
the original model. The number of parameters of the model increased from 7.2 to 7.3 M,
and the computation volume increased from 16.5 to 19 (Table 3). However, the detection
ability of the model improved significantly, the recall rate increased by 4.9%, and mAP@0.5
increased from 33.9% to 39.2%.

For the VisDrone-2022 dataset, the fourth method involved resizing the anchor box
using the K-means++ algorithm. The comparison results show that this method had no
impact on the number of parameters and calculations of the model, but it did improve the
detection performance of the model. The recall rate increased from 34.5% to 35.6%, and
mAP@0.5 also increased by 0.8%.

The next three methods focused on developing a lightweight model with higher detec-
tion performance. The methods used in this study improved the efficiency of the model,
and the final model not only reduced the number of parameters from 7.2 to 3.7 M but also
reduced the number of calculations from 16.5 to 9.5 compared to the original YOLOv5s
model (Table 3). Additionally, the detection performance of the model significantly im-
proved, and the recall rate and mAP@0.5 increased by 2.1% and 1.4%, respectively, which
fully proves the effectiveness of the proposed method.

4.3. Comparative Experiment

Experiments were conducted to compare L-YOLO with other state-of-the-art target
detection algorithms to demonstrate the superiority of L-YOLO over other algorithms, and
the results are shown in Table 4.
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Table 4. Comparison with different target detection algorithms.

Methods R (%) mAP@0.5 (%) Parameters GFLOPs

SSD 35.5 23.9 24.5M 87.9
RetinaNet (ResNet-18) 37.9 21.2 19.8 M 93.7

YOLOv3 34.8 32.3 63 M 157.3
YOLOv5s 34.5 33.9 7.2 M 16.5
YOLOv5m 37.9 37.8 21.2 M 49
YOLOX-s 39.6 33.8 9.0 M 26.8
YOLOv7 39 34.5 36.9 M 104.7
YOLOv8s 39.8 39 11.2 M 28.5

L-YOLO (ours) 36.6 35.3 3.7 M 9.5

The results from Table 4 show that L-YOLO not only surpasses YOLOv5s in detection
performance but also reduces the amount of parameters and calculations by a significant
amount. The performance of L-YOLO compared with the early detection algorithms such
as SSD and RetinaNet is high in all aspects. Although the recall of L-YOLO is slightly
lower compared to YOLOX-s and YOLOv7, its mAP value is higher, and the number of
parameters and computation is much lower. Compared to the latest YOLOv8s, L-YOLO has
a slightly weaker detection performance, but the number of parameters and the number of
computations are only about one-third of that of YOLOv8s. In summary, L-YOLO not only
meets the lightweight requirement; it also has a strong detection performance.

Visual comparisons were made between images captured from different scenes in
the VisDrone-2022 test set to determine L-YOLO’s detection performance. The results are
shown in Figure 7, where group (a) is a graph of detection results of YOLOv5s, group (b) is
a graph of the detection results after changing the feature prediction layer, and group (c)
is the detection result of the proposed L-YOLO model. We marked the main differences
of the images with positive red boxes and used numbers to label them. Plot (d) shows
randomly selected images from the results of a comparison of visualizations, with areas
enlarged to facilitate visual comparison. Graphs comparing the detection effects of the
groups show that group (b) shows the most effective detection effect, proving that the
small target detection layer proposed in this study improves detection on small targets and
reduces missed detections. The detection effect of L-YOLO, although inferior to that of
group (b), is better than that of YOLOv5s. The same number in the diagram represents the
same area. This shows that this study does reduce the detection effect of the model after the
model is lightened, but by modifying the loss function and other aspects of optimization,
the detection effect of L-YOLO exceeds that of the original YOLOv5s, which fully proves
the effectiveness of the proposed method.

Figure 8 shows the experimental performance of different models, where YOLOv5s+P
represents the model after adding the new detection layer proposed in this study. The
results show that the detection performance of L-YOLO exceeds that of YOLOv5, proving
that the proposed method reduces the computational and parametric quantities of the
model and improves the detection performance of the model for small targets.
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(a) YOLOv5s (b) YOLOv5s+P (c) L-YOLO

(d) Visualization versus zoom-in

Figure 7. Comparison of algorithm visualization effects.
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(a) mAP@0.5 for the experiment.

(b) mAP@0.5:0.95 for the experiment.

Figure 8. mAP0.5, mAP0.5:0.95 for the experiment.

5. Conclusions

The small internal storage capacity and limited computing power of embedded de-
vices make them difficult to use for large-scale data storage. Therefore, the target detection
algorithms applied to embedded devices must be lightweight while demonstrating high
detection performance. To address the above issues, this study proposes the L-YOLO
algorithm using YOLOv5 as a baseline. In this study, the GhostNet module is introduced
into the algorithm model, the loss function of the original model is modified, a new predic-
tive feature layer is proposed, and an anchor box suitable for small targets is redesigned
using the K-means++ clustering algorithm. This study tests the proposed algorithm on
the VisDrone-2022 dataset. The experimental data show that, compared to the YOLOv5,
the number of calculations of L-YOLO was reduced by 42.42%; this resulted in a 48.6%
reduction in parameters. Simultaneously, the recall rate increased from 34.5% to 36.6%, and
the mAP@0.5 also increased by 1.4%, proving that the proposed method not only reduces
the number of parameters and number of calculations but also improves the detection
performance of the model.



Electronics 2023, 12, 2739 15 of 16

Author Contributions: Funding acquisition, W.L.; investigation, R.Y.; methodology, R.Y.; project
administration, R.Y. and J.Z.; resources, W.L. and X.S.; software, R.Y.; supervision, W.L. and X.S.;
writing—original draft, R.Y.; writing—review and editing, R.Y., X.S. and J.Z. All authors have read
and agreed to the published version of the manuscript.

Funding: This research was funded by the National Natural Science Foundation of China (Grant
Nos. 61972040).

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Not applicable.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Liu, W.; Anguelov, D.; Erhan, D.; Szegedy, C.; Reed, S.; Fu, C.Y.; Berg, A.C. Ssd: Single shot multibox detector. In Proceedings of

the Computer Vision—ECCV 2016: 14th European Conference, Amsterdam, The Netherlands, 11–14 October 2016; pp. 21–37.
2. Redmon, J.; Divvala, S.; Girshick, R.; Farhadi, A. You only look once: Unified, real-time object detection. In Proceedings of the

IEEE Conference on Computer Vision and Pattern Recognition, Las Vegas, NV, USA, 27–30 June 2016; pp. 779–788.
3. Redmon, J.; Farhadi, A. YOLO9000: Better, faster, stronger. In Proceedings of the IEEE Conference on Computer Vision and

Pattern Recognition, Honolulu, HI, USA, 21–26 July 2017; pp. 7263–7271.
4. Redmon, J.; Farhadi, A. Yolov3: An incremental improvement. arXiv 2018, arXiv:1804.02767.
5. Bochkovskiy, A.; Wang, C.Y.; Liao, H.Y.M. Yolov4: Optimal speed and accuracy of object detection. arXiv 2020, arXiv:2004.10934.
6. Jocher, G. Yolov5. Code Repository. 2022. Available online: https://www.github.com/ultralytics/yolov5 (accessed on 14 June

2023).
7. Li, C.; Li, L.; Jiang, H.; Weng, K.; Geng, Y.; Li, L.; Ke, Z.; Li, Q.; Cheng, M.; Nie, W.; et al. YOLOv6: A single-stage object detection

framework for industrial applications. arXiv 2022, arXiv:2209.02976.
8. Wang, C.Y.; Bochkovskiy, A.; Liao, H.Y.M. YOLOv7: Trainable bag-of-freebies sets new state-of-the-art for real-time object

detectors. arXiv 2022, arXiv:2207.02696.
9. JOCHER. Network Data. 2023. Available online: https://github.com/ultralytics/ultralytics (accessed on 14 June 2023).
10. Ge, Z.; Liu, S.; Wang, F.; Li, Z.; Sun, J. Yolox: Exceeding yolo series in 2021. arXiv 2021, arXiv:2107.08430.
11. Huang, X.; Wang, X.; Lv, W.; Bai, X.; Long, X.; Deng, K.; Dang, Q.; Han, S.; Liu, Q.; Hu, X.; et al. PP-YOLOv2: A practical object

detector. arXiv 2021, arXiv:2104.10419.
12. Xu, S.; Wang, X.; Lv, W.; Chang, Q.; Cui, C.; Deng, K.; Wang, G.; Dang, Q.; Wei, S.; Du, Y.; et al. PP-YOLOE: An evolved version of

YOLO. arXiv 2022, arXiv:2203.16250.
13. Girshick, R.; Donahue, J.; Darrell, T.; Malik, J. Rich feature hierarchies for accurate object detection and semantic segmentation.

In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Columbus, OH, USA, 23–28 June 2014;
pp. 580–587.

14. Girshick, R. Fast r-cnn. In Proceedings of the IEEE International Conference on Computer Vision, Santiago, Chile, 11–18 December
2015; pp. 1440–1448.

15. Ren, S.; He, K.; Girshick, R.; Sun, J. Faster r-cnn: Towards real-time object detection with region proposal networks. In Proceedings
of the Advances in Neural Information Processing Systems, Montreal, QC, Canada, 7–12 December 2015; p. 28.

16. Liang, T.; Bao, H.; Pan, W.; Pan, F. Traffic sign detection via improved sparse R-CNN for autonomous vehicles. J. Adv. Transp.
2022, 2022, 3825532 . [CrossRef]

17. Law, H.; Deng, J. Cornernet: Detecting objects as paired keypoints. In Proceedings of the European Conference on Computer
Vision (ECCV), Munich, Germany, 8–14 September 2018; pp. 734–750.

18. Duan, K.; Bai, S.; Xie, L.; Qi, H.; Huang, Q.; Tian, Q. Centernet: Keypoint triplets for object detection. In Proceedings of the
IEEE/CVF International Conference on Computer Vision, Seoul, Republic of Korea, 27 October–2 November 2019; pp. 6569–6578.

19. Howard, A.G.; Zhu, M.; Chen, B.; Kalenichenko, D.; Wang, W.; Weyand, T.; Andreetto, M.; Adam, H. Mobilenets: Efficient
convolutional neural networks for mobile vision applications. arXiv 2017, arXiv:1704.04861.

20. Sandler, M.; Howard, A.; Zhu, M.; Zhmoginov, A.; Chen, L.C. Mobilenetv2: Inverted residuals and linear bottlenecks. In
Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Salt Lake City, UT, USA, 18–23 June 2018;
pp. 4510–4520.

21. Howard, A.; Sandler, M.; Chu, G.; Chen, L.C.; Chen, B.; Tan, M.; Wang, W.; Zhu, Y.; Pang, R.; Vasudevan, V.; et al. Searching
for mobilenetv3. In Proceedings of the IEEE/CVF International Conference on Computer Vision, Seoul, Republic of Korea,
27 October–2 November 2019; pp. 1314–1324.

22. Zhang, X.; Zhou, X.; Lin, M.; Sun, J. Shufflenet: An extremely efficient convolutional neural network for mobile devices. In
Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Salt Lake City, UT, USA, 18–23 June 2018;
pp. 6848–6856.

https://www. github. com/ultralytics/yolov5
https://github.com/ultralytics/ultralytics
http://doi.org/10.1155/2022/3825532


Electronics 2023, 12, 2739 16 of 16

23. Ma, N.; Zhang, X.; Zheng, H.T.; Sun, J. Shufflenet v2: Practical guidelines for efficient cnn architecture design. In Proceedings of
the European Conference on Computer Vision (ECCV), Munich, Germany, 8–14 September 2018; pp. 116–131.

24. Han, K.; Wang, Y.; Tian, Q.; Guo, J.; Xu, C.; Xu, C. Ghostnet: More features from cheap operations. In Proceedings of the
IEEE/CVF Conference on Computer Vision and Pattern Recognition, Seattle, WA, USA, 14–19 June 2020; pp. 1580–1589.

25. Zhu, P.; Wen, L.; Du, D.; Bian, X.; Fan, H.; Hu, Q.; Ling, H. Detection and tracking meet drones challenge. IEEE Trans. Pattern
Anal. Mach. Intell. 2021, 44, 7380–7399. [CrossRef] [PubMed]

26. Kisantal, M.; Wojna, Z.; Murawski, J.; Naruniec, J.; Cho, K. Augmentation for small object detection. arXiv 2019, arXiv:1902.07296.
27. Chen, C.; Zhang, Y.; Lv, Q.; Wei, S.; Wang, X.; Sun, X.; Dong, J. Rrnet: A hybrid detector for object detection in drone-captured

images. In Proceedings of the IEEE/CVF International Conference on Computer Vision Workshops, Seoul, Republic of Korea,
27 October–2 November 2019; pp. 4917–4926.

28. Yu, X.; Gong, Y.; Jiang, N.; Ye, Q.; Han, Z. Scale match for tiny person detection. In Proceedings of the IEEE/CVF Winter
conference on Applications of Computer Vision, Snowmass Village, CO, USA, 1–5 March 2020; pp. 1257–1265.

29. Zhao L.; Liu, S.P. Small Target Detection Algorithm Based on Adaptive Fusion of Global and Local Image Features. 2022. Available
online: https://xueshu.baidu.com/usercenter/paper/show?paperid=1d2w06s0an6r0rw01k660ex0kj632154&site=xueshu_se
(accessed on 14 June 2023)

30. Vaswani, A.; Shazeer, N.; Parmar, N.; Uszkoreit, J.; Jones, L.; Gomez, A.N.; Kaiser, Ł.; Polosukhin, I. Attention is all you need. In
Proceedings of the Advances in Neural Information Processing Systems, Long Beach, CA, USA, 4–9 December 2017; p. 30.

31. Cao, G.; Xie, X.; Yang, W.; Liao, Q.; Shi, G.; Wu, J. Feature-fused SSD: Fast detection for small objects. In Proceedings of the Ninth
International Conference on Graphic and Image Processing (ICGIP 2017), Qingdao, China, 14–16 October 2017; Volume 10615,
pp. 381–388.

32. Lim, J.S.; Astrid, M.; Yoon, H.J.; Lee, S.I. Small object detection using context and attention. In Proceedings of the 2021
International Conference on Artificial Intelligence in Information and Communication (ICAIIC), Jeju Island, Republic of Korea,
13–16 April 2021; pp. 181–186.

33. Fu, C.Y.; Liu, W.; Ranga, A.; Tyagi, A.; Berg, A.C. Dssd: Deconvolutional single shot detector. arXiv 2017, arXiv:1701.06659.
34. He, K.; Zhang, X.; Ren, S.; Sun, J. Deep residual learning for image recognition. In Proceedings of the IEEE Conference on

Computer Vision and Pattern Recognition, Las Vegas, NV, USA, 27–30 June 2016; pp. 770–778.
35. Simonyan, K.; Zisserman, A. Very deep convolutional networks for large-scale image recognition. arXiv 2014, arXiv:1409.1556.
36. Lin, T.Y.; Dollár, P.; Girshick, R.; He, K.; Hariharan, B.; Belongie, S. Feature pyramid networks for object detection. In Proceedings

of the IEEE Conference on Computer Vision and Pattern Recognition, Honolulu, HI, USA, 21–26 July 2017; pp. 2117–2125.
37. Liu, S.; Qi, L.; Qin, H.; Shi, J.; Jia, J. Path aggregation network for instance segmentation. In Proceedings of the IEEE Conference

on Computer Vision and Pattern Recognition, Salt Lake City, UT, USA, 18–23 June 2018; pp. 8759–8768.
38. Tan, M.; Pang, R.; Le, Q.V. Efficientdet: Scalable and efficient object detection. In Proceedings of the IEEE/CVF Conference on

Computer Vision and Pattern Recognition, Seattle, WA, USA, 14–19 June 2020; pp. 10781–10790.
39. Yang, C.; Huang, Z.; Wang, N. Querydet: Cascaded sparse query for accelerating high-resolution small object detection. In

Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, New Orleans, LA, USA, 18–24 June 2022;
pp. 13668–13677.

40. Cui, C.; Gao, T.; Wei, S.; Du, Y.; Guo, R.; Dong, S.; Lu, B.; Zhou, Y.; Lv, X.; Liu, Q.; et al. PP-LCNet: A lightweight CPU
convolutional neural network. arXiv 2021, arXiv:2109.15099.

41. MacQueen, J. Classification and analysis of multivariate observations. In Proceedings of the Fifth Berkeley Symposium on
Mathematical Statistics and Probability, Los Angeles, LA, USA, 1 January 1967; pp. 281–297.

42. Lin, T.Y.; Maire, M.; Belongie, S.; Hays, J.; Perona, P.; Ramanan, D.; Dollár, P.; Zitnick, C.L. Microsoft coco: Common objects in
context. In Proceedings of the European Conference on Computer Vision, Zurich, Switzerland, 6–12 September 2014; pp. 740–755.

43. Arthur, D.; Vassilvitskii, S. K-means++ the advantages of careful seeding. In Proceedings of the Eighteenth Annual ACM-SIAM
Symposium on Discrete Algorithms, New Orleans LA, USA, 7–9 January 2007; pp. 1027–1035.

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

http://dx.doi.org/10.1109/TPAMI.2021.3119563
http://www.ncbi.nlm.nih.gov/pubmed/34648430
https://xueshu.baidu.com/usercenter/paper/show?paperid=1d2w06s0an6r0rw01k660ex0kj632154&site=xueshu_se

	Introduction
	Related Work
	L-YOLO
	L-YOLO Model
	L-YOLO Model
	Loss Function
	Prediction Feature Layer
	Anchor Box

	Experiments
	Dataset
	Ablation Experiment
	Comparative Experiment

	Conclusions
	References

