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Abstract: Traditional deep-learning-based fusion algorithms usually take the original image as input
to extract features, which easily leads to a lack of rich details and background information in the
fusion results. To address this issue, we propose a fusion algorithm, based on mutually guided
image filtering and cross-transmission, termed MGFCTFuse. First, an image decomposition method
based on mutually guided image filtering is designed, one which decomposes the original image
into a base layer and a detail layer. Second, in order to preserve as much background and detail as
possible during feature extraction, the base layer is concatenated with the corresponding original
image to extract deeper features. Moreover, in order to enhance the texture details in the fusion
results, the information in the visible and infrared detail layers is fused, and an enhancement module
is constructed to enhance the texture detail contrast. Finally, in order to enhance the communication
between different features, a decoding network based on cross-transmission is designed within
feature reconstruction, which further improves the quality of image fusion. In order to verify the
advantages of the proposed algorithm, experiments are conducted on the TNO, MSRS, and RoadScene
image fusion datasets, and the results demonstrate that the algorithm outperforms nine comparative
algorithms in both subjective and objective aspects.

Keywords: image fusion; mutually guided image filtering; detail enhancement; cross-transmission

1. Introduction

Infrared and visible image fusion is an important research direction in the field of
heterogeneous sensor information fusion. Infrared images contain rich quantities of thermal
radiation information and have strong resistance to external environmental interference,
but their resolution is low, and the texture details are insufficient. Although visible images
have high resolution and contain a large number of detailed textures, they are susceptible
to interference from external light changes, foreign object occlusion, and other factors [1,2].
Therefore, fully utilizing the advantages of these two images and fusing them can obtain
images with prominent targets, rich details, and significant visual effects [3]. Currently,
image fusion is widely applied in target detection [4], military reconnaissance [5], medical
image analysis [6], etc.

At present, there are two main image fusion algorithms: traditional methods and
deep-learning-based methods [7]. Traditional methods typically process images in trans-
formation or spatial domains. First, the original image’s features are extracted using
specific transformations, and then appropriate rules are designed to fuse these features.
Finally, the corresponding inverse transformation of the fused features is carried out to
obtain the fused image [8]; examples include multiscale transformation [9-11], sparse
representation [12-15], saliency [16-18], and subspace methods [19,20]. Although tradi-
tional methods can achieve good fusion results under certain conditions, they typically
require manual design of complex decomposition and fusion rules, which has drawbacks
such as computational complexity, low fusion efficiency, and limited generalization ability.
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In recent years, due to the strong feature extraction ability of the Convolutional
Neural Network (CNN), deep-learning-based methods have been successful in image
fusion tasks [21]. Yue et al. [22] proposed Dif-Fusion, which directly put the three-channel
visible image and single-channel infrared image into the multi-channel fusion module to
generate the three-channel fusion image. Prabhakar et al. [23] proposed DeepFuse, which
divided the image fusion into coding and decoding layers. However, due to insufficient
utilization of information from various layers in the fusion network, some information in
the original image was prone to loss. Based on DeepFuse, Li et al. [24] proposed DenseFuse,
which introduced the Densely Connected Convolutional Network (DenseNet) [25] into the
coding layer to extract more effective original image features. Liu et al. [26] developed
a model based on CNN, which completed the image fusion task through activity level
measurement and weight allocation. However, this method still requires manual design of
fusion strategies. Inspired by Generative Adversarial Network (GAN) [27], Ma et al. [28]
proposed FusionGAN. The generator was responsible for generating fusion images, while
the discriminator was used to ensure that sufficient gradient information was retained.
However, due to the use of a single adversarial mechanism in the above methods, it was
easy to cause blurring of target edges and loss of texture details in the fusion results. To
solve this problem, Ma et al. [29] created DDcGAN, which used an infrared and visible
dual discriminator network to distinguish differences between source and fusion images,
so that the results of fusion could preserve more information.

Although deep-learning-based fusion methods have certain advantages compared to
traditional fusion algorithms, they still have the following drawbacks:

(1) Inthe encoding stage, due to insufficient utilization of details and background infor-
mation, the expression of background and detail information in the fusion results
is insufficient.

(2) In the decoding stage, due to the lack of information exchange between different
features, some essential feature information in the fused image is lost.

To solve these defects, we propose a novel fusion framework (MGFCTFuse). Figure 1
presents an objective comparison between different fusion algorithms and MGFCTFuse.
The enlarged views within the red and green rectangles indicate that the proposed algorithm
has more prominent infrared targets and clearer background details.

Visible Densefuse FusionGAN

Figure 1. Comparison diagram with different fusion algorithms.

The main innovations and contributions of this paper are as follows:

e  We propose an image decomposition based on mutual guided image filtering, one
which can obtain the base layer and the detail layer. On this basis, the base layer and
the corresponding original image are concatenated to form the base image, and the
infrared and visible detail layers are concatenated to form the detail image, where they
are used as input for subsequent feature extraction.

e  We design an SE-based DenseNet module to extract the base image features, one which
can refine the features along the channel dimension and enhance feature delivery.
Meanwhile, a detail enhancement module is designed to enhance the contrast and
texture details.

e  We propose a dual-branch feature reconstruction network based on cross-transmission,
one which enhances the information exchange and integration at different levels, thus
improving the quality of image fusion.
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The rest of this article is organized as follows: In Section 2, a brief review is given of
the theory of mutually guided image filtering. In Section 3, the MGFCTFuse algorithm is
described. In Section 4, experimental analysis is carried out, with subjective evaluation,
objective indicators and an evaluation of running efficiency. The full work of this article is
summarized in Section 5.

2. Mutually Guided Image Filtering

Mutually Guided Image Filtering (MuGIF) [30] fully considers identical and different
information of different modes within an image in the same scene. It not only effectively
preserves the edges of the input image, improving edge blur issues, but also maintains
the mutual structure of the two images, avoiding misleading structural inconsistencies.
Therefore, in this article, MuGIF is used to decompose the original images. The principle of
MuGIF will be introduced below.

MuGIF is achieved by designing related structures. First, three structures are defined,
namely, mutual, inconsistent, and flat, with the premise that the two images are in the same
coordinate position. The mutual structure indicates that the pixel gradients of both images
are large enough. The inconsistent structure indicates that there is a difference in pixel
gradients between the two images, with one being large and the other being small. The flat
structure indicates that both images have small pixel gradients. The purpose of MuGIF is
to maintain the mutual structure of the images and smooth out the inconsistent and flat
structures. Therefore, the concept of related structure is proposed in order to formulate
filtering rules. The definition of a related structure is as follows:

R(T,I) _ Z |VdT(xry)| (1)
(x,y) de{h,v} ‘ le(xr ]/) ‘
where T(x, y) is the target image, I(x, y) is the guide image,  denotes the row, v denotes the
column, and V; denotes the first-order row gradient or column gradient.

The related structure expression measures the inconsistency of the target image relative
to the reference image from a gradient perspective. If the target image belongs to an
inconsistent structure at (x, y) relative to the guide image, then calculations of the local
pixels average for the related structure R(T, I) will vary significantly from 1. Conversely, if
the guide image belongs to a consistent structure at (x, y), then calculating the local pixels
average for the related structure R(T, I) will approach 1. Based on the definition of related
structure, the rules for establishing a mutual conduction filter are as follows:

arg min a,R(T, 1) + Bo|| T = Toll3 + &R, T) + Br|[1 =~ o3 @)

where R(T, I) and R(l, T), as smoothing terms, are the key to preserving the consistent
structure while removing the inconsistent structure. ||T — T0||§ and ||I - IOHﬁ, as data
fidelity terms, constrain T and I to avoid significant deviations from the input, thus avoiding
trivial solutions. Values «,, a;, Bo, By are non-negative constants and can be adjusted for
data fidelity and smoothing terms. The expression || - ||, represents the L, norm.

The filtered image can be obtained by the global optimization of Equation (2). For ease
of description, the algorithm of mutually guided image filtering is represented in this study
as MuGIF(T, I, «,B).

3. Proposed MGFCTFuse

In Section 3, we provide the details of MGFCTFuse. First, the network architecture
of fusion framework is described. Second, the detailed design of network structure is
explained. Finally, the loss function is introduced.
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3.1. Network Structure

The fusion framework of the MGFCTFuse is shown in Figure 2. There are four parts of
the framework: image decomposition, feature extraction, fusion, and feature reconstruction.
Initially, MuGIF is used to decompose the original images into base and detail layers.
Subsequently, the base layer is concatenated with the original image, serving as the input of
DNSE Block. At the same time, the infrared and visible detail layers are concatenated, and
the concatenation is put into the detail enhancement module. Then, the detail layer’s fusion
features (F3) are fused with infrared (F1) and visible (F2) image features, resulting in fusion
features FF1 and FF2. Finally, the fusion features are put into the feature reconstruction
network to generate the fused image.

Detail | ([ 1) ____L____

L
[ | -
Enhancement F3 |} 1 Fused feature}) B
I -2 Transmission

Fused image
c4s{cs

Cross :

Figure 2. Network architecture of the fusion framework.

3.2. Details of the Network Architecture
3.2.1. Image Decomposition

MuGIF has strong structure transfer characteristics, and this can effectively smooth out
inconsistencies between two original images. Therefore, an image decomposition method
based on MuGIF has been designed. First, the base layers of infrared and visible images
are obtained by Equation (3):

B = MuGIF(IR,VIS,a,B) 6)
BZ = MuGIF(VIS/ IR/“l.B)

where « and B represent balance parameters, with « = 0.01, and = 1. B; and B, represent
the filtering results.
Then, the detail layers D; and D, are obtained by Equation (4).

D; = IR - B
{ Dy =VIS—B, @)

As shown in Figure 3, the base layer primarily contains the structure information of
the target, and the detail layer mainly reflects texture details and edge information.
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Detail layer of IR

Base layer of VIS Detail layer of VIS

Figure 3. The base layer and detail layer of the original image.

3.2.2. Feature Extraction

Given the distinct modalities and information contents of the visible and infrared
images, their features are extracted via separate branches. After image decomposition, the
base layers (B1, B,) and detail layers (D;, D) can be obtained. The base layer indicates
large-scale changes, and the detail layer captures small-scale changes and texture details.
Then, the base layer is concatenated with the source image to form the base image, as
demonstrated in Equations (5) and (6).

If)’l‘-‘sse = concat(By, Lys) (5)
19%¢ = concat(By, I;;) (6)

where concat () represents concatenation along channel dimensions.
(1) DNSE Block

As shown in Figure 4, the base image is put into the convolution layers to extract
the deeper features. During this process, a four-layer convolutional neural network is
employed, with each layer utilizing 3 x 3 convolution kernels, Batch Normalization (BN),
and ReLU Activation. Moreover, an SE module [31] is added after each convolutional layer,
one which can help learn correlations between channels so that the extracted features are
refined and enhanced. On this basis, DenseNet is also added into the feature extraction
module; it can reduce the disappearance of network gradients and enhance feature delivery
and reuse. For the convenience of description, this feature extraction module is briefly
written as “DNSE Block’.

Source
= o]
Image g =] E»—] lLE B ‘J'EB WY
S & S & m Sgn TS m »
LR M+ @ = aE @ F
- B & & & & - B
Base \ | | -
Layer }_____v_____:____x/
|
I =) I
I 'E Eéa EO+Wl wz. W, |
\ = @

Figure 4. DNSE Block.

(2) Detail Enhancement
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To ensure that fusion image possess more texture detail, detail layers are also involved
in the fusion process. The detail layers D1 and D, are concatenated, and the concatenation
is termed a detail image, as shown in Equation (7).

Igetail = concat (Dq, D3) ()

The detail enhancement module has three streams, specifically, a main stream and
two residual streams, as shown in Figure 5. The main stream incorporates downsampling,
which deploys four 3 x 3 convolutional layers. Downsampling expands the receptive field,
providing more detailed information. The first residual stream combines the Sobel operator,
to preserve texture features, with a 3 x 3 convolutional layer to eliminate differences
in channel dimensions. The second residual stream utilizes the Laplacian operator to
extract weak texture features. Then, the outputs of the second residual stream are added
to the detail images, and these are used as the input for downsampling. The input first
passes through one convolution to obtain the characteristics of 16 channels, and then
undergoes multiple convolutions, expanding the number of channels to 32 and 64, in turn.
Furthermore, outputs from the downsampling and first residual stream are concatenated
along the channel dimension.

Laplacian
operator

Detail
Feature

3%3conv

BN-+ReLU
v

3x3conv

v
3x3conv

BN+ReLU

Idetail

v
3Ix3conv

A
BN+ReLU

v
3%3conv

Sobel
operator

Figure 5. Detail Enhancement Module.

3.2.3. Feature Fusion

In the feature fusion network, visible features (F1) are concatenated with detail features
(F3) to generate fusion feature FF1. Infrared features (F2) are concatenated with detail
features (F3) to produce fusion feature FF2, as depicted in Equations (8) and (9). This
approach takes into account the redundancy and complementarity between the structures
of the two heterologous images, allowing the fusion image to better express complementary
details during feature reconstruction.

FF1 = concat(F1, F3) 8)

FF2 = concat(F2,F3) )

3.2.4. Feature Reconstruction

In order to enhance the communication between different features, a decoding network
based on cross-transmission has been designed, as shown in Figure 6. First, different fusion
features from the fusion network, FF1 and FF2, are put into two independent decoding
branches. Then, during the decoding process, different features can fully be exchanged,
facilitating information complementarity among distinct features. Finally, the feature
obtained from two branches are added together, and a convolution layer is used to generate
the fused image.

The details of each convolutional layer in feature extraction and feature reconstruction
are shown in Table 1.
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Figure 6. Cross-Transmission Module.
Table 1. Details of each convolutional layer.
Kernel Input Output S
Part Block Layer Size Channel Channel Activation
Convl_ir/vi 3x3 2 16 ReLU
DNSE Conv2_ir/vi 3x3 16 16 ReLU
Block Conv3_ir/vi 3x3 32 16 ReLU
Conv4_ir/vi 3x3 48 16 ReLU
Feature
extraction Convl_L 3x3 2 16 ReLU
Detail Conv2_L 3x3 16 32 ReLU
_— etai Conv3_L 3x3 32 64 ReLU
nhancement Conv4_L 3x3 64 64 -
Convl_S 3x3 1 64 -
Conv1_FF1/FF2 3x3 192 64 ReLU
Feature CT Conv2_FF1/FF2 3x3 128 32 ReLU
reconstruction Block Conv3_FF1/FF2 3x3 64 32 ReLU
Conv4_F 3x3 32 1 ReLU

3.3. Loss Function

The loss function consists of two parts: SSIM and gradient loss. SSIM loss primarily focuses
on structural features. Gradient loss restricts the image to preserve more gradient information.

SSIM combines the structure, brightness, and contrast of the image to comprehensively
measure image quality. For any two images A and B, it can be expressed by Equation (10):

(2uapp + C1)(2048 + C2)
(4% + 3+ C1) (05 + 0%+ C2)

SSIM(A,B) = (10)

where p and o represent the standard and mean deviation, and o435 is the factor that
correlates between A and B. C; and C; are stability coefficients, which are both small
constants when the variance and mean are close to zero. In calculation, the standard
deviation is set to 1.5. As suggested in [32], setting C; = 1 x 1074, and C, = 9 x 1074,

The value of the SSIM is measured by calculating the average intensity of local window
pixels [33]. When E(I;,|W) is greater than E(I,;|W), it indicates that the local window
of the I;, contains more information about thermal radiation. Then, the SSIM guides the
network to retain infrared image features, making the local area of the I; similar to [;;, and
vice versa. The expressions are shown in Equations (11) and (12):

1 mxn

:mxnzpi (1)

i=1

E(I|W)

SSIM(I, Iir‘w

)
SCOT’E(If, Iir/ Iw'|W) = if E(IHW) - E§IM|W) (12)
E(

SSIM(If, I
if E(I;|W) <

L,i|W)
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1 N
Lssim = 1—— Y Score(If, Iip, Ii|W) (13)
NWzl

where W denotes the sliding window, the step size is set to 1, P; denotes the value of pixel

i, m and n are the dimensions, and N is the total number of sliding windows in a single

image. In this paper, as suggested in [32], the size of a sliding window is set to 11 x 11.
To ensure the fused image retains more gradient information, a gradient loss function

is introduced, as shown in Equation (14):

(14)

Lgmd = HVIf — vIvis i'f‘ HVIf - vIir

2
F

where || - || denotes the Frobenius norm and V represents the gradient calculation.
The total loss function is the sum of SSIM loss and gradient loss, as shown in Equation (15):

Lioss = Lssim + Lgmd (15)

For ease of understanding, Algorithm 1 gives the pseudo-code of the proposed MGFCTFuse.

Algorithm 1: MGFCTFuse

Input: Infrared image(IR), visible image(VIS)
Step1: Image decomposition
do: Apply MuGIF on source images to obtain the base layers By and B, respectively.
By = MuGIF(IR,VIS,u, B)
{ B, = MuGIF(VIS, IR, u, B)
then: Obtain the detail layers D; and D, respectively.
D; =IR—-B;
{ D, =VIS—B;
Step2: Image concatenation
The detail layers, base layers, and source image are concatenated according to the rules as the input to
the feature extraction network.
1%%¢ = concat(By, Ijs)
197 = concat(By, I;y)
Lgetai1 = concat(Dy, Dy)
Step3: Feature extraction
The designed DNSE Block and detail enhancement module are used to extract image features of the
concatenation to obtain the features F1, F2, and F3, respectively.

1) Apply DNSE Block on I base o obtain visible feature maps F1

vis

2) Apply DNSE Block on I Z’r”se to obtain infrared feature maps F3

1

3) Apply Detail enhancement module on Ige, to obtain detail feature maps F2

Step4: Feature fusion
The extracted features are fused to obtain fusion feature maps FF1 and FF2.
FF1 = concat(F1, F3)
FF2 = concat(F2,F3)
Step5: Feature reconstruction
A dual-branch feature reconstruction network based on cross-transmission in FF1 and FF2 is applied to
obtain the fused image.
Output: Fused image

4. Experiments and Analysis

First, the dataset and related parameter settings required for the experiment are intro-
duced. Then, the MGFCTFuse is compared with nine comparative algorithms according
to subjective evaluation, objective indicators, and running efficiency. Finally, an ablation
experimental analysis is performed.
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4.1. Dataset and Parameter Settings

In this paper, the TNO [34], MSRS [35], and RoadScene [36] datasets were used for
experiments. The TNO Dataset contains non-spectral night images of different military-
related scenes. The MSRS dataset mainly consists of aligned visible and infrared images of
multi-spectral road scenes, and the spatial resolution is 640 x 480. The images in RoadScene
are derived from the FILR road scene dataset, with a spatial resolution of 500 x 329. In the
experiment, we selected 32 sets of infrared and visible images in different scenarios from
these datasets, all of which were grayscale versions with a bit depth of 8 bits.

In order to train a good model and enhance robustness, the dataset needs to be
augmented. In this paper, 32 sets of visible and infrared images are cropped by sliding
window. The cropping step was set to 12, and the cropped image block size was 120 x 120;
24,200 infrared and visible image pairs were obtained. The Adam optimizer was used
to minimize the loss. The epoch and learning rate were initialized at 100 and 1 x 1074,
respectively. Moreover, the network was implemented on the Pytorch platform. The
hardware platform configuration used in the all experiments: AMD Ryzen 5 5600X 6-Core
Processor CPU, clocked at 3.70 GHz; and the GPU was an NVIDIA GeForce RTX 3070 8GB.

4.2. Experimental Analysis

To validate the advantages of the MGFCTFuse, 21 source images were randomly se-
lected from three datasets for subjective and objective analysis. In addition, the MGFCTFuse
was compared with Densefuse [23], FusionGAN [28], GTF [37], MDLatLRR [38], MGFF [39],
ResNet-ZCA [40], TS [16], Vgg19 [41] and VSM-WLS [18], nine classical fusion algorithms.

4.2.1. Subjective Evaluation

The MGFCTFuse was subjectively compared with nine classical fusion algorithms.
Some comparison results are shown in Figures 7-13. For ease of observation and analysis,
local details of the fusion results are boxed and enlarged.

VSM-WLS

Figure 7. Comparison results for ‘Kaptein_1123".
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FusionGAN

MDLatLRR ResNet-ZCA

Vagl9 VSM-WLS Ours

Figure 8. Comparison results for ‘Camp’.

Infrared Visible Densefuse FusionGAN

GTF MDLatLRR

Vegl9 VSM-WLS Ours

Figure 9. Comparison example for ‘Movie_18" image set.
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Infrared Densefuse FusionGAN

Veglo VSM-WLS Ours

Figure 10. Comparison results for ‘Sandpath’.

Vegl9 ] VSM-WLS

Figure 11. Comparison results for ‘FLIR_03952".
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Infrared

GTF i

TS Vegl9 ] VSM-WLS

Visible

|

Figure 12. Comparison results for ‘00002D" image set.

Infrared Visible Densefuse FusionGAN

GTF

TS

Vggl9

VSM-WLS

Figure 13. Comparison results of ‘00839N" image set.

Figure 7 displays the comparison results for ‘Kaptein_1123’, which show that the fusion
images obtained by MDLatLRR, Densefuse, MGFF, TS, ResNet-ZCA and Vgg19 retain tree
texture details well, but the human thermal infrared target has a certain loss. FusionGAN
maintains the infrared salient target to a certain extent, but the outline of the trees and the
edges of the people are blurred. GTF focuses more on extracting infrared information, which
leads to the loss of tree texture detail. The VSM-WLS preserves rich infrared information,
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but the background of trees is not clear. The fusion result of our algorithm has richer texture
detail, more prominent infrared targets, and a clearer background and outline.

The comparison results for ‘Camp” are shown in Figure 8. Densefuse, GTF, MDLatLRR,
ResNet-ZCA, and Vgg19 suffer from severe thermal infrared target information loss, such as
the character information marked in the red box. FusionGAN does not fully extract visible
image information, leading to a blurred and unclear target edge contour in the fused image.
MGEFF, TS, and VSM-WLS have noise interference, resulting in poor clarity. The fused
image produced by our algorithm has more significant target contrast and background
texture detail.

Figure 9 displays the comparison example for the ‘Movie_18" image set. MGFEF, TS,
and VSM-WLS have better subjective effect than the other six comparison algorithms, and
the character target is clearer. However, they could not preserve improved background
area texture details as well, as seen, for example, in the loss of window details in the red
frame callout. In contrast, our algorithm can better highlight important targets and has
better visual effects.

Figure 10 displays the comparison results for ‘Sandpath’. Densefuse, MDLatLRR,
ResNet-ZCA, and Vgg19 are quite similar; the fused images tend to preserve visible texture
details, but typical infrared target information is still severely lost, such as the person
information marked in the red box. Conversely, the result of FusionGAN tends to favor
infrared information, but the edge of the target is blurred, and background texture detail is
severely lost. The fusion result of GTF smooths visible details and edges without causing
infrared targets to stand out, resulting in poor overall visual effects. The results of MGFF,
TS and VSM-WLS are greatly improved compared with the above algorithms, but there is
still local feature loss, such as the outline of the road in the green box not being clear, and
the contrast is not obvious. The result of our algorithm has clearer target information and
retains richer gradient information.

The comparison results for ‘FLIR_03952" are shown in Figure 11. The results of
Densefuse, FusionGAN, GTF, ResNet-ZCA, and Vggl9 show unclear thermal infrared
targets, such as the character targets information marked in the green box. MDLatLRR,
MGEFF, TS, and VSM-WLS effectively preserve the hot target information, making the
character target information clearer. However, some of the visible details and background
information are lost, such as the road arrow and the background information marked in the
red box. Our algorithm better preserves the target information of the characters, enriching
more visible details and background information.

Figure 12 displays the comparison results for ‘00002D’". In the fusion results of Densefuse,
FusionGAN, GTE, MDLatLRR, ResNet-ZCA, TS, and Vggl9, the visible targets are not clear,
and the edge contours are blurred. In contrast, MGFF and VSM-WLS results show clearer
car targets, but the branch texture of the tree does not retain enough information in detail, as
marked in the green box. The result of our algorithm shows a clear car target and rich texture
details of the tree branch.

Figure 13 displays the fusion results for ‘00839N’. The character targets of the Fu-
sionGAN and GTF are not clear, and the contours are blurred. Densufuse, MDLatLRR,
ResNet-ZCA, TS, and Vgg19 retain the character target information better, but there are
some details lost, such as the window detail marked in the green box not being clear. MGFF
and VSM-WLS have more significant character targets, but their results are still missing
some visible details; for example, the lighting part of the bicycle is not highlighted. In our
result, the infrared thermal target of the character is clear and significant, and the visible
detail information is rich, which has a good fusion effect.

4.2.2. Objective Analysis

Subjective evaluation has a certain degree of one-sidedness and is easily influenced by
human factors. Therefore, the objective evaluation indicators, namely, entropy (EN) [42],
standard deviation (SD) [43], mutual information (MI) [44], average gradient (AG) [45],
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and visual information fidelity (VIF) [46] are selected for analysis. The definitions of each
indicator are as follows:

(1) ENis usually used to measure the amount of information contained in the image. The
larger its value, the more information the fused image contains from the source image,
defined as follows:

L-1
= - pilogp; (16)
i=0

p="o<ici (17)

where L represents the pixel-level distribution of the image and p; represents the
distribution of pixels with grayscale i points.

(2) SD characterizes the degree of discretization of the information from the average value,
which can reflect image distribution and contrast. The larger its value, the higher the
image contrast, and the better the fusion effect of the image, defined as follows:

H W
SD = (18)
1 L&
=g W;;I(z,]) (19)

This obtains where I(7, j) denotes the pixel gray value of image I at pixel (i, j), the image
size [ is H x W, and y is the average gray value of image I.

(3) Mlis used to measure the amount of information in the fused image obtained from
the source image. The larger the value, the more information is retained, and the
better the quality of fusion, defined as follows:

Pa(a,b)
Mag =Y Puglab)log —AB\2) (20)
A,B % A,B( ) gP ( )PB(b)
MI = MA,H+MB,H (21)

where P4(a) and Pg(b) represent the edge histograms of A and B, and P4, g(a,b) repre-
sents the joint histogram.

(4) AGis used to measure the gradient information of the fused image, which can reflect
the detailed texture of the image to a certain extent, defined as follows:

11/\/%%\/ “NG 1P NG = NG+ o
i=1j

2

where W and H denote the width and height of the fused image, respectively, and
N(i, ) represents the pixel value at the (i, j) position.

(5) VIFis usually used to evaluate the information fidelity. The larger its value, the better
the subjective visual effect of the image. Its calculation is achieved through four steps,
giving a simplified formula:

VID
VIND

where VID and VIND represent the visual information of the fused image extracted
from the source image.

VIF =

(23)

Table 2 shows the average values of 21 sets of image evaluation indicators in three
datasets; the optimal values are marked in bold.
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Table 2. Averages of 21 pairs of image evaluation indicators.
Algorithm EN SD MI AG VIF
Densefuse 6.0519 23.6291 2.3142 2.4781 0.6475
FusionGAN 6.3162 26.8713 2.1156 2.3614 0.5995
GTF 6.7116 33.6217 2.2149 3.2213 0.6127
MDLatLRR 6.2946 21.7386 2.2301 2.4591 0.6653
MGFF 6.6215 32.4519 1.5219 4.3147 0.7111
ResNet-ZCA 6.3736 25.9146 2.2214 2.6610 0.6984
TS 6.6413 27.5519 1.5549 3.8497 0.7958
Vggl9 6.2910 23.1463 2.0017 2.5479 0.6664
VSM-WLS 6.6619 36.4002 2.2242 4.7649 0.8126
Ours 6.8796 38.4795 3.7378 3.3831 0.8922

Table 2 shows that our algorithm has the optimal values for EN, SD, MI, and VIE The
optimal EN and Ml illustrate that the fused image preserves more source image information,
rich texture details, and prominent targets. The optimal SD illustrates that the fusion result
has better contrast information. The optimal VIF indicates that the fusion image has a high
image quality and a good visual effect.

4.2.3. Running Efficiency Analysis

In addition, to further evaluate the complexity and running efficiency of our algorithm
with other fusion algorithms, any five sets of images were selected for testing in three
datasets, respectively. As shown in Table 3, the average running time of each algorithm
was compared. The experimental results show that our algorithm has the best running
efficiency on different test datasets.

Table 3. The average running time of each comparison fusion algorithm (units: s).

Dataset Densefuse FusionGAN GTF MDLatLRR MGFF
TNO 0.091 1.571 6.715 5.397 0.362
MSRS 0.085 1.329 6.809 4.948 0.231
RoadScene 0.064 1.112 6.569 5.165 0.134
Dataset ResNet-ZCA TS Vggl19 VSM-WLS Ours
TNO 1.481 0.759 2.746 2.054 0.048
MSRS 1.6328 0.846 3.215 1.541 0.077
RoadScene 1.390 0.669 3.672 1.088 0.058

4.3. Ablation Experiments

The innovation of the MGFCTFuse includes three parts: image decomposition, feature
extraction, and feature decoding network based on cross-transmission. To verify each part’s
superiority, ablation experiments were carried out under the following four conditions.
Condition_1: The source images are directly used as input, and feature extraction and
reconstruction are implemented using regular convolutions. Condition_2: On the basis of
Condition_1, image decomposition is introduced, wherein the base layer is concatenated to
the corresponding source image, and the two detail layers are concatenated directly. The
feature extraction is performed separately; the other network structures remain unchanged.
Condition_3: On the basis of Condition_2, the proposed feature extraction network is
introduced, and other network structures remain unchanged. Condition_4: On the basis of
Condition_3, cross-transmission is introduced in the feature reconstruction network; this
condition is also known as MGFCTFuse. In the TNO, MSRS, and RoadScene datasets, the
fusion results of one set of images are randomly selected for subjective comparison, and
the results of 21 sets of images are selected for objective comparison.
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The subjective results of the four conditions are shown in Figure 14. In Condition_1,
the extracted features are not enough to retain the source image’s information, such as the
aircraft fuselage target not being significant. Compared with Condition_1, Condition_2
carried out feature extraction on the basis of image decomposition, and the fused result
retains more information to a certain extent, with the aircraft fuselage target being more
significant. Compared with Condition_2, Condition_3 introduced a novel feature extrac-
tion network, which can enhance the contrast and texture details, and make the aircraft
bottom bracket clearer. Compared with Condition_3, Condition_4 constructed a feature
reconstruction network based on cross-transmission, which improved the fusion quality by

strengthening information exchange between different features and levels.

Condition_3

Condition_1 Condition_2

2] rd

Condition 4

Figure 14. Example of subjective results of ablation experiments.

As shown in Figure 15, the objective evaluation index of the ablation experiment
includes EN, SD, MI and VIF. Condition_4 maintains the optimal average value among the

four evaluation indicators, which verifies the advantages of our algorithm.
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Figure 15. Comparative results of objective indicators.

P S S S S S S S S S S S S T T T S T T T S S SO ST SO SO S MY
1 2 3 4 5 6 7 8 9 1011 12 13 14 15 16 17 18 19 20 21 12 3 4 5 6 7 8 9 1011 12 13 14 15 16 17 18 19 20 21




Electronics 2023, 12, 2740 17 of 19

5. Conclusions

In the field of research of image fusion, we propose a novel fusion algorithm, MGFCT-
Fuse. First, we designed an image decomposition method based on MuGIF. Then, the
base layer was concatenated with source images to extract deeper background information,
and a detail enhancement module was designed to enhance the texture details and the
contrast of the detail layers. Last, in feature reconstruction, a cross-transmission network is
proposed to enhance communication between different features, one which can improve
the quality of the image fusion.

The results of experiment show that the MGFCTFuse not only has a better subjective
effect, but that the algorithm also improves the objective evaluation indicators EN, SD, MI,
and VIF by 6.82%, 37.80%, 82.84%, and 29.32%, respectively. In addition, our algorithm has
good running efficiency.
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