
Citation: Liao, Z.; Duan, K.; He, J.;

Qiu, Z.; Li, B. Robust Adaptive

Beamforming Based on a

Convolutional Neural Network.

Electronics 2023, 12, 2751. https://

doi.org/10.3390/electronics12122751

Academic Editor: Adão Silva

Received: 10 May 2023

Revised: 6 June 2023

Accepted: 15 June 2023

Published: 20 June 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

electronics

Article

Robust Adaptive Beamforming Based on a Convolutional
Neural Network
Zhipeng Liao 1 , Keqing Duan 1,*, Jinjun He 1 , Zizhou Qiu 1 and Binbin Li 2

1 School of Electronics and Communication Engineering, Sun Yat-sen University (SYSU),
Shenzhen 510275, China; liaozhp6@mail2.sysu.edu.cn (Z.L.)

2 Early Warning Academy, Wuhan 430019, China; bin1025@aliyun.com
* Correspondence: duankeqing@aliyun.com; Tel.: +86-180-8666-1613

Abstract: To address the advancements in jamming technology, it is imperative to consider robust
adaptive beamforming (RBF) methods with finite snapshots and gain/phase (G/P) errors. This paper
introduces an end-to-end RBF approach that utilizes a two-stage convolutional neural network.
The first stage includes convolutional blocks and residual blocks without downsampling; the blocks
assess the covariance matrix precisely using finite snapshots. The second stage maps the first stage’s
output to an adaptive weight vector employing a similar structure to the first stage. The two stages are
pre-trained with different datasets and fine-tuned as end-to-end networks, simplifying the network
training process. The two-stage structure enables the network to possess practical physical meaning,
allowing for satisfying performance even with a few snapshots in the presence of array G/P errors.
We demonstrate the resulting beamformer’s performance with numerical examples and compare it to
various other adaptive beamformers.

Keywords: robust adaptive beamforming; convolutional neural network; jamming cancellation; finite
snapshots; gain/phase error

1. Introduction

Adaptive digital beamforming (ADBF) has found extensive applications in various
fields such as radar, sonar, speech processing, etc., as it enhances the desired signal (signal-
of-interest or SoI) while suppressing interference (signal of avoidance or SoAs) at the
array output [1–5]. The minimum variance distortionless response (MVDR) beamformer
is a popular adaptive beamformer that adaptively selects the weight vector to minimize
the array output power, subject to the linear constraint that the target signal remains
undistorted [6]. However, the MVDR beamformer’s performance degrades significantly
with imprecise knowledge of steering vectors and insufficient available snapshots, requiring
the use of more robust beamforming (RBF) techniques in practical applications [7].

Over the years, several studies have been conducted to introduce an effective RBF
method. There are three primary categories of RBF techniques.

• Diagonal loading methods [8] augment the sample covariance matrix (SCM) with a
coefficient-scaled identity matrix to enhance the system’s robustness to SoI mismatches
and the finite snapshot effect. However, these methods require determining the
optimal diagonal loading factor in various scenarios, which remains challenging.

• Feature subspace projection-based RBF [9,10], which projects the SoI steering vector
onto both the noise and signal plus interference subspaces to mitigate interference.
However, this method may struggle at differentiating between subspaces when the
signal to interference plus noise ratio (SINR) is low.

• Convex optimization-based RBF extends the diagonal loading technique by obtaining
the diagonal loading factor through an optimization problem. Different approaches
have been proposed, including minimizing a quadratic function with non-convex

Electronics 2023, 12, 2751. https://doi.org/10.3390/electronics12122751 https://www.mdpi.com/journal/electronics

https://doi.org/10.3390/electronics12122751
https://doi.org/10.3390/electronics12122751
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/electronics
https://www.mdpi.com
https://orcid.org/0000-0002-2913-5844
https://orcid.org/0000-0001-9568-3438
https://orcid.org/0000-0001-5006-6372
https://doi.org/10.3390/electronics12122751
https://www.mdpi.com/journal/electronics
https://www.mdpi.com/article/10.3390/electronics12122751?type=check_update&version=1

Electronics 2023, 12, 2751 2 of 15

quadratic constraints [11], shrinking the unbiased SCM [12], employing an iterative
method to reduce the estimation error of the SCM [13], and obtaining the diagonal
loading factor adaptively via a shrinkage method [14]. However, these methods often
have a gap in output SINR compared to the optimal SINR and do not directly relate
the adaptive weight vector to the scene’s error [15].

Additionally, there is another type of RBF method that reconstructs the interference
plus a noise covariance matrix from the signal using a spectral estimator, effectively elimi-
nating the target component in the SCM [16–21].

The neural network boasts robust nonlinear fitting abilities, thereby being extensively
utilized to tackle optimization problems. Deep learning (DL) has showcased promising
potential in radar signal processing encompassing radar imaging [22], spectral estima-
tion [23], space-time adaptive processing [24], and radar target recognition [25]. In fact,
researchers have made attempts to leverage DL techniques for ADBF, as evidenced by
relevant literature. In [26], the application of a deep convolutional neural network (CNN) to
adaptive beamforming resulted in a reduction in computation time. The proposed network
inputs an image-like radiation pattern that encodes the desired behavior, subsequently com-
puting the optimal currents necessary to adapt the antenna to the new beam specification.
Furthermore [27], presented a deep neural network (DNN) that efficiently learns to perform
fast and high-quality ultrasound beamforming using only a few snapshots. The proposed
framework holds promise for a range of array and signal processing applications, par-
ticularly in scenarios where data efficiency and robustness play crucial roles. In [28], a
data-driven method was proposed for designing sparse array configurations that maximize
SINR in a narrowband interfering environment. Through various design examples, it
was demonstrated that the DNN-based method enables efficient real-time implementation.
Similarly [29], employed a recurrent neural network based on the gated recurrent unit
architecture to serve as a beamformer, generating appropriate complex weights to feed
into the antenna array. Meanwhile, in [30], a DL-based approach that utilizes a deep 1D
complex-valued convolutional neural network (CVCNN) was proposed to compute an
almost optimal beamformer. In [31], the authors proposed a data-driven model employing
the Bat algorithm in conjunction with the general regression neural network (GRNN) to
address the wide nulling challenges encountered in an ADBF array. These studies highlight
how DL-based ADBF techniques are feasible. However, there exist some common and
noteworthy limitations. For instance, the data utilized by these approaches to training
neural networks typically consist of beam patterns or spatial spectra instead of raw echoes,
which incur additional computational costs and information loss. Additionally, factors such
as G/P errors have yet to be taken into account. Furthermore, the effect of finite available
snapshots on the DL-based ADBF methods has not yet been studied in depth.

This paper proposes an end-to-end RBF method with a unique CNN structure to
address the aforementioned issues. The proposed network features a two-stage factored
structure, where each stage serves a distinct function and holds physical significance.
The first stage, involving several convolutional blocks and residual blocks without down-
sampling, accurately estimates the SCM using finite snapshots. The second stage then
takes the SCM as input, generating the adaptive weight vector. Inside the second stage,
convolution blocks and residual blocks are also present. Unlike the first stage, the second
stage additionally incorporates a downsampling layer and a linear layer to reduce compu-
tational load and linearize the feature map. It is worth noting that there is no distortion at
the input term as the original signal is directly fed into the proposed CNN. Additionally,
the real and imaginary parts of the input data are combined to form a new real-valued
matrix based on the Hermitian structure of the SCM. In summary, this article presents
threefold contributions:

1. Most DL-based ADBF methods utilize radiation patterns or direction of arrival (DoA)
as the network input, resulting in undesired computational load and information loss.
To solve this issue, we propose an end-to-end RBF network with a factored architecture.

Electronics 2023, 12, 2751 3 of 15

2. To account for real-world effects, such as the G/P errors of array channels and the
shortage of available snapshots, our dataset incorporates various G/P errors and
involves the calculation of input data using just a few snapshots.

3. Our proposed two-stage network has a clear physical meaning. Specifically, stage 1
utilizes several conventional blocks and residual blocks to estimate the SCM accurately,
while in stage 2, a similar structure with an additional downsampling layer and linear
layer is employed to compute the MVDR weights.

The remaining sections of this paper are structured as follows. Section 2 provides a
problem formulation, while Section 3 presents detailed information on the proposed CNN
architecture, data set, and training strategy. Numerical simulation results are presented in
Section 4. Finally, Section 5 provides conclusions.

Notation: In this paper, vectors are denoted by boldface lowercase letters and matrices
by boldface uppercase letters. The conjugate transpose, transpose, and inverse of a matrix
are denoted by (·)H, (·)T, and (·)−1, respectively. Additionally, Tr(·) and diag[·] represent
the trace of a matrix and the diagonal matrix, respectively. The l2-norm and Frobenius norm
of a vector and matrix are denoted by ‖·‖ and ‖·‖F, respectively. The real and imaginary
parts of a complex number are represented by real(·) and imag(·), respectively. We use
rand[·] and rand(·) to denote discrete and continuous random sampling, respectively.

2. MVDR Estimator

In this paper, we consider a uniform linear array (ULA) consisting of M elements, as
depicted in Figure 1. The array receives N snapshot data, where each snapshot contains the
SoI and multiple SoAs. Moreover, we take into account the G/P errors, which are expressed
as an error matrix Γ. The received signal model can be expressed as

x(n) = ΓAxJ(n) + Γa0xs(n) + xn (1)

here, n = 1, 2, ..., N represents the discrete time index. The vector xJ = [xJ1, xJ1, ..., xJL]
T

denotes the complex envelopes of L interferences, and xn represents the Gaussian white
noise vector. The complex envelope of the SoI and its corresponding array steering vector
a0 are denoted by xs and A, respectively. The matrix ΓA is the array manifold matrix, where
Γ corresponds to the G/P error matrix, and A contains the steering vectors for different
angles of arrival (AoAs). The G/P error matrix Γ is given by the following formula:

Γ = diag[r1 r2 ... rN] (2)

where
ri = (1 + Ai)ejφi , (3)

and Ai and φi represent the gain and phase errors, respectively. Finally, we express the
AoAs using the following notation:

A =


1 1 · · · 1

e−jβ sin θJ1 e−jβ sin θJ2 · · · e−jβ sin θJL

...
...

. . .
...

e−jβ(M−1) sin θJ1 e−jβ(M−1) sin θJ2 · · · e−jβ(M−1) sin θJL

, β =
2πd

λ
(4)

where θJl represents the AoA of the lth SoA, d is the distance between the adjacent array
elements, and λ is the wavelength of the received signal.

Electronics 2023, 12, 2751 4 of 15

source (far field)

Figure 1. Diagram of ULA.

The MVDR algorithm computes the array weight vector by minimizing the array
output power subject to the constraint that the SoI is passed without distortion. The opti-
mization problem can be expressed mathematically as{

min
w

wHRw

s.t. wHa0 = 1
(5)

here, w is the complex-valued weight vector, and R denotes the known covariance matrix
of the array output vector. The solution to the optimization problem is given by

w =
R−1a0

aH
0 R−1a0

. (6)

This algorithm ensures that the array output is steered towards the SoI by minimizing
the power of the interference and noise signals. The MVDR algorithm can effectively
suppress the interferences for far-field sources, where the number of interferences is less
than the array aperture.

As obtaining the exact covariance matrix R can be challenging in practical settings,
the SCM R̂ is typically used instead, which can be expressed as

R̂ =
1
N

N

∑
n=1

y(n)Hy(n) (7)

where
y(n) = ΓAxJ(n) + xn(n) (8)

denotes the noise-plus-interference vector and is employed to compute the SCM based on
a finite observation frame of length N.

Furthermore, it is important to note that a mismatch may exist between the true
steering vectors a0 and the assumed steering vectors a. In such cases, the weight vector of
the MVDR method, which utilizes the SCM and a, can be expressed as

ŵMVDR =
R̂−1a

aHR̂−1a
. (9)

In practical scenarios, where the number of snapshots is limited, the performance of
the MVDR method can deteriorate substantially even when the steering vector for the SoI
is accurately known [32]. Additionally, the mismatch between the true steering vector a0
and the assumed steering vector a can significantly impact the performance of MVDR.

Electronics 2023, 12, 2751 5 of 15

The SINR is used to evaluate the MVDR method’s performance, which can be formulated as

SINR =
σ̂2

0 ŵH
MVDRa0aH

0 ŵMVDR

ŵH
MVDRQŵMVDR

(10)

where
σ̂2

0 =
1

aHR̂−1a
(11)

and Q denote the power of the SOI and the true interference-plus-noise covariance matrix,
respectively. As N increases, the value of the output SINR will approach the optimal one,
which is defined as

SINRopt = σ̂2
0 aH

0 Q−1a0. (12)

3. A Deep Neural Network for Robust Adaptive Beamforming
3.1. Architecture

DL-based array signal processing is data-driven, and it does not depend on prior
assumptions about the array geometry or precisely estimated SCM [33]. In this study, an
RBF method based on data-driven principles is expected to possess inherent adaptability
to usual G/P errors as well as finite snapshot scenarios.

The proposed CNN-based model comprises an SCM estimator and an adaptive weight
calculator, as shown in Figure 2. Leveraging the Hermitian property of the SCM, we
transform it into a real-valued matrix, which preserves all the information. To this end,
each element of the SCM is operated to obtain a corresponding element of the real-valued
matrix, expressed as

R̃i,j =

{
real(R̂i,j)

imag(R̂i,j)
, for i, j ∈ {1, 2, ..., M} (13)

where R̂i,j represents an element of the SCM and the subscripts i and j denote its row and
column, respectively. Notably, there exist duplicate blocks in the proposed CNN-based
model, specifically, the convolution block and residual block. The composition of these
two blocks is illustrated in Figure 3. The convolution block includes a convolutional
layer employing a convolution kernel of (3× 3), a batch normalization layer, and a ReLU
activation function layer. The residual block is designed to address the issue of vanishing or
exploding gradients and enhance the network performance [34]. To enable this, a residual
connection is added to the convolution block. The convolution block and residual block are
mathematically expressed as follows:

co = ReLU(Wk × c + bk) (14)

ro = ReLU(Wk × r + bk) + r (15)

where Wk and bk are the convolution kernel and bias of the kth layer, respectively. co, c, ro,
and r represent the output of the convolution block, the input of the convolution block, the
output of the residual block, and the input of the residual block, respectively.

Stage 1 is primarily a data-driven estimator that forms the backbone of most RBF
algorithms and has a significant impact on the proposed network’s performance. Given
this, downsampling layers are not included in stage 1, thereby ensuring a larger feature
map. Alternatively, stage 2 contains a downsampling layer to avoid making the network
overly redundant.

Tables 1 and 2 depict the parameter settings of stage 1 and stage 2, respectively, in our
proposed network. It should be noted that the tables are arranged in a top-to-bottom order
to represent the connection order of each block in stage 1 and stage 2. The meaning of the
parameters specified in Tables 1 and 2 is as

• Input layer and Output layer: The data size of the input and output layers.

Electronics 2023, 12, 2751 6 of 15

• Convolution block: The number of channels used in the convolution block.
• Residual block: The number of channels used in the residual block.
• Linear layer: The number of channels used in the linear layer.
• Downsampling layer: The downsampling size used in the Downsampling layer.

Stage 1 Stage 2

Input OutputIntermediate

L
in

ea
r

E
m

b
ed

d
in

g

C
o
n

v
o
lu

ti
o
n

 B
lo

ck
 ×

2

R
es

id
u

a
l

B
lo

c
k

×

3

R
es

id
u

a
l

B
lo

c
k

×

2

C
o
n

v
o
lu

ti
o
n

 B
lo

c
k

 ×
2

D
o
w

n
S

a
m

p
li

n
g

L
in

ea
r

Preprocessed

data

Output

transform

Real part

Imaginary part

Figure 2. Overview of the proposed model.

Convolution Block

Conv2D(3,3)

BN

ReLU

Conv2D(3,3)

BN

ReLU

Residual Block

Figure 3. Blocks.

Here, the left column presents the layer name, while the right column provides a brief
explanation of each associated parameter.

Table 1. The Parameter Settings of Stage 1.

Type Parameter

Input (16,16)
Convolution block 4
Convolution block 16
Residual block 16
Residual block 16
Residual block 16
Output (16,16)

Electronics 2023, 12, 2751 7 of 15

Table 2. The Parameter Settings of Stage 2.

Type Parameter

Input (16,16)
Convolution block 4
Convolution block 16
DownSampling (2,2)
Residual block 16
Residual block 16
Linear 1024
Output (32,1)

3.2. Dataset and Training

The proposed network uses simulated datasets, and a ULA with a half-wavelength
element spacing is employed. The primary simulation conditions are listed in Table 3.
To simulate scenarios with strong interference, the signal-to-noise ratio (SNR) is set to 0 dB,
while the interference-to-noise ratio (INR) varies randomly between 30 and 35. Equation (3)
is used to define the G/P error, with a constraint imposed on the range of Ai ∈ [0, σ2

r] and
φi ∈ σ2

r × [−π, π]. Here, σ2
r is the G/P error variance ranging from 0 to σ2

r_max, which is the
upper bound.

Table 3. Simulation Conditions.

Parameter Value

Num_array M = 16
snapshots N = 4
SOI rand[−40 : 1 : 40]◦

SNR 0 dB
SOAs rand[−70 : 1 : 70]◦

INR rand[30 : 1 : 35] dB
G/P error maximum variance σ2

r_max = rand(0 : 0.05)

The proposed network undergoes a two-stage training process that involves separate
pre-training stages using unique datasets, followed by fine-tuning as an end-to-end model.
Two primary benefits of this approach include: Firstly, the two-stage training process
enhances the neural network’s connection to the actual physical context by reinforcing
its learned features, which increases its ability to capture the relevant information for
the beamforming task. Secondly, the fine-tuning stage enhances the network’s stability,
thereby enabling more efficient optimization and convergence, which results in improved
performance on the target task.

To implement the proposed two-stage training process, we begin by pre-training the
network stages separately using a large-scale dataset consisting of 4× 105 records. Follow-
ing this, we fine-tune the pre-trained network on downstream tasks using a smaller dataset
comprising 5× 104 records. Before inputting the data into the network, we normalize and
convert it to real-valued format. The network output is represented as a label w̄, which is
defined by the equation:

w̄ = [real(wT), imag(wT)]T , (16)

where w is the weight vector. This formulation enables the calibration of the beamformer
via a gradient descent optimization algorithm.

The network’s input comprises a real-valued SCM, denoted by R̃, which is estimated
using finite snapshots. The input undergoes two stages of processing. In stage 1, the
network maps R̃ to an intermediate output, R̄. In stage 2, R̄ is further processed and
mapped to a linear output, w̃. The primary objective of the network is to minimize the loss

Electronics 2023, 12, 2751 8 of 15

between the output w̃ and the label w̄ on the downstream tasks. Towards this goal, we
define the loss function as follows:

loss ,
1
2
‖w̃− w̄‖2. (17)

The aim of minimizing the loss function is to obtain accurate and stable beamforming
weights that accurately capture the desired signal while suppressing interference and noise.

The training process for the network is formulated as an optimization problem, as
shown below: {

Ŵk, b̂
k}K

k=1
= arg min
{Wk ,bk}K

k=1

loss . (18)

Once training is complete, the network can be used to predict adaptive weights ŵ
corresponding to a new SCM R̂. The adaptive weights can be obtained as follows:

ŵt = w̃t + i ∗ w̃t+M , t = 1, 2, ..., M, (19)

where t denotes the position of the element in the vector, and i is the imaginary unit.
The proposed method aims to achieve accurate and reliable beamforming while

mitigating the adverse effects of interference and noise. By training the network on large-
scale datasets and fine-tuning on downstream tasks, we can obtain highly optimized
beamforming weight vectors that can be used in real-world scenarios.

4. Experiments

In this section, we assess the performance of the proposed CNN method through
numerical simulations. We implement our method using TensorFlow and train the network
using an NVIDIA GeForce RTX 3070 GPU and an Intel(R) Core(TM) i7-11700K CPU.
We conduct several experiments to evaluate our method’s performance. In Experiment 1,
we study the network convergence performance. In Experiments 2–4, we compare the
performance of the oracle approximating shrinkage (OAS), the general linear combination
(GLC), and our proposed method. We note that we do not compare our method with
existing DL-beamformers for the following reasons:

• In [27], the output of the network is an ultrasound image obtained after adaptive
processing, which can be essentially regarded as a spectral estimator. This differs from
our CNN beamformer’s output, which is a set of adaptive weights.

• In [29], the DoA of the signal must be known a priori, which is not required in our
CNN beamformer.

• In [30], the 1D CVCNN RBF method uses much larger training samples (100 to
400 snapshots) compared to our proposed method, which only requires four snapshots
or fewer.

4.1. Network Convergence Performance

We utilize stochastic gradient descent [35] during training to update the network’s
parameters. To dynamically compute the learning rate (LR), we employ the Adam opti-
mization algorithm [36] with parameters β1 = 0.9, β2 = 0.999, and η = 1× 10−7. We also
use a gradual warm-up method with 10 steps to gradually increase the LR. The initial
LR and base LR are set to 2× 10−2 and 0.05, respectively. Once the LR reaches the preset
base LR, it decays exponentially with a decay rate of 1× 10−5 until the end of training.
The training epoch is set to 150 by default.

Figure 4 shows the network convergence performance. Figure 4a,b present the mean
squared error (MSE) loss per epoch for pre-training and fine-tuning, respectively. The figure
indicates that the pre-training and fine-tuning stages converge quickly and do not exhibit
signs of overfitting. Furthermore, the MSE loss of the whole network is further reduced
after the fine-tuning stage.

Electronics 2023, 12, 2751 9 of 15

Overall, our results demonstrate that our proposed approach can achieve high predic-
tion accuracy while mitigating overfitting issues.

20 40 60 80 100 120 140

Epoch

0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

0.09

0.1

L
o

s
s

train-stage1

validation-stage1

train-stage2

validation-stage2

(a)

20 40 60 80 100 120 140

Epoch

0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

0.09

0.1

L
o

s
s

train

validation

(b)

Figure 4. Assessing the Network Convergence Performance. (a) MSE loss per epoch of stage 1 and
stage 2 during pre-training. (b) MSE loss per epoch during fine-tuning.

4.2. Adaptive Pattern Comparison in the Case of Finite Snapshots

To intuitively and fairly illustrate the performance of our proposed network, we use
adaptive patterns. These patterns are generated using a fixed G/P error of zero to represent
the performance in the absence of G/P errors. The number of snapshots used is set to 4,
which is far less than the array element number. The pattern can be defined as follows:

P(θ) = wHa(θ) (20)

Electronics 2023, 12, 2751 10 of 15

where a(θ) is the steering vector related to the azimuth angle θ.
We generate adaptive patterns using GRNN [31], OAS [13], GLC [14], and CNN

methods. The ideal adaptive pattern, calculated using the MVDR method with thirty
thousand snapshots, gives the upper bound of performance. Figure 5 shows some typical
examples in the presence of a single interference. To aid observation, we marked the
interference position with red arrows on the pattern and partially enlarged the region
near the interference. The GRNN, OAS, GLC, and CNN methods all form nulls in the
locations of the interference without obvious distortion. Our proposed method achieves
deeper notches than other methods (15 dB higher) with less positional offset. Figure 6
shows typical examples in the presence of double interferences. Interestingly, we note that
the positional offset of OAS, GLC, and GRNN increases significantly with the increasing
number of interferences, while our method still maintains stability.

-80 -60 -40 -20 0 20 40 60 80
-80

-70

-60

-50

-40

-30

-20

-10

0

A
m

p
lit

u
d

e
 (

d
B

)

IDEAL

GRNN

OAS

GLC

Proposed

-44.5 -44 -43.5

-100

-80

-60

-40

(a)

-80 -60 -40 -20 0 20 40 60 80
-80

-70

-60

-50

-40

-30

-20

-10

0

A
m

p
lit

u
d

e
 (

d
B

)

IDEAL

GRNN

OAS

GLC

Proposed

-58.5 -58 -57.5
-100

-80

-60

-40

(b)

-80 -60 -40 -20 0 20 40 60 80
-80

-70

-60

-50

-40

-30

-20

-10

0

A
m

p
lit

u
d

e
 (

d
B

)

IDEAL

GRNN

OAS

GLC

Proposed

39.5 40 40.5

-80

-70

-60

-50

-40

(c)

Figure 5. Single interference performance comparison in the absence of G/P errors. The desired signal
positions of (a–c) are 17°, 0°, and −20°, respectively. The interference positions of (a–c) are 21°, −54°,
and−46°, respectively. The INR of used interference in (a–c) are 30 dB, 31 dB, and 34 dB, respectively.

Electronics 2023, 12, 2751 11 of 15

-80 -60 -40 -20 0 20 40 60 80
-80

-70

-60

-50

-40

-30

-20

-10

0

A
m

p
lit

u
d

e
 (

d
B

)

IDEAL

GRNN

OAS

GLC

Proposed

-58.5 -58 -57.5
-100

-80

-60

-40

-20

47.5 48 48.5
-100

-80

-60

-40

-20

(a)

-80 -60 -40 -20 0 20 40 60 80
-80

-70

-60

-50

-40

-30

-20

-10

0

A
m

p
lit

u
d

e
 (

d
B

)

IDEAL

GRNN

OAS

GLC

Proposed

-46.5 -46 -45.5
-100

-50

0

32.5 33 33.5
-100

-50

0

(b)

-80 -60 -40 -20 0 20 40 60 80
-80

-70

-60

-50

-40

-30

-20

-10

0

A
m

p
lit

u
d

e
 (

d
B

)

IDEAL

GRNN

OAS

GLC

Proposed

-13.5 -13 -12.5
-100

-50

0

51.5 52 52.5
-100

-50

0

(c)

Figure 6. Double interference performance comparison in the absence of G/P errors. The desired
signal positions of (a–c) are −8°, 0°, and 26°, respectively. The position and INR of used two
interference in (a) are −14° & 33 dB and 15° & 33 dB; in (b) are −34° & 31 dB and 13° & 32 dB; in (c)
are −61° & 35 dB and 10° & 30 dB.

4.3. Performance Comparison of Convergence

We compare the convergence of different methods based on the output SINR. The op-
timal SINR (obtained using (10)) is included for reference. For this scenario, the SNR
and INR are fixed to 0 dB and 30 dB, respectively. We perform 5000 Monte Carlo trials.
Figure 7 shows the beamformer output SINR versus the snapshot number N. The angular
sector of the desired signal is set to Θ = [−6◦, 6◦], while the complement sector of Θ is
Θ̄ = [−90◦,−6◦) ∪ (6◦, 90◦] for the beamformers of MEPS [18] and SVPE [19].

As MEPS, SVPE, and MVDR cannot work when N is less than M, the corresponding
parts are excluded from Figure 7. Note that OAS and GLC methods can still work when
R̂ is rank deficient (N < M) but CNN significantly outperforms them. The output SINR
of GLC and OAS methods gradually approaches that of the proposed CNN method with
increasing N. Furthermore, even when N > M, our proposed method achieves output
SINR closer to the optimal SINR than the other comparison methods.

Electronics 2023, 12, 2751 12 of 15

50 100 150 200 250

N

2

3

4

5

6

7

8

9

10

11

12

13

S
IN

R
 (

d
B

)

SINR
opt

OAS

GLC

MEPS

SVPE

MVDR

Proposed

5 10 15
2

4

6

8

10

12

Figure 7. Performance comparison with different snapshots.

4.4. Performance Comparison in the Presence of G/P Errors

Table 4 shows the average output SINR of the OPT, GLC, OAS, and our proposed
CNN methods in the presence of different G/P errors. For this scenario, SNR and INR are
fixed at 0 dB and 30 dB, respectively. The G/P errors are increased from 0 to 0.05 in steps
of 0.005, and 5000 Monte Carlo trials are performed at each step. Note that the G/P error
typically does not exceed 0.05 in practical applications.

The results suggest that the performance of the CNN method is close to the upper
bound and significantly better than OAS and GLC methods when the G/P error is minor.
Although the GLC and OAS algorithms can exhibit certain robustness when the G/P error
changes, there is still a performance gap compared to the OPT. Furthermore, although
the SINR of the CNN method gradually decreases with increasing G/P errors, it remains
superior to the OAS and GLC methods. Overall, our proposed method provides an average
SINR gain of 3–5 dB in the presence of G/P errors compared to the OAS and GLC methods.

Table 4. Performance in the Presence of Different G/P Errors.

G/P Errors
SINR (dB)

OPT GLC OAS Proposed

0.000 12.0327 5.4625 5.5570 11.3433
0.005 12.0325 5.3563 5.4843 10.8617
0.010 12.0321 5.2422 5.3666 9.8965
0.015 12.0321 5.3172 5.4270 8.8833
0.020 12.0324 5.3730 5.4808 8.0496
0.025 12.0322 5.3916 5.4918 7.3809
0.030 12.0320 5.3638 5.4664 6.9473
0.035 12.0316 5.3609 5.4643 6.5472
0.040 12.0315 5.3320 5.4362 6.2157
0.045 12.0303 5.3125 5.4056 5.8945
0.050 12.0299 5.3886 5.4646 5.5795

4.5. Computational Complexity Comparison

DL requires considerable time during network training, which may hinder its im-
plementation in real-time applications. However, the proposed approach in this work

Electronics 2023, 12, 2751 13 of 15

overcomes this issue by conducting the training offline. After the network is trained, online
computations only entail basic matrix and vector operations such as multiplication and
addition. Additionally, the computational complexity of the proposed approach based on
CNN can be accurately formulated by

O

(
K

∑
k=1

f 3
k (M− fk + 1)2nk

)
(21)

where K represents the number of layers in the CNN network, fk represents the dimension
of the convolution kernel in the k-th layer, and nk represents the number of convolution
kernels in the k-th layer of the network. By substituting the network parameters set in this
article into (21), the computational complexity of the proposed method can be obtained.

Table 5 presents a comprehensive comparison of the computational complexity and
online running time of OAS, GLC, and the proposed method. Notably, the online running
time was calculated using M = 16, N = 4, and the average of 1000 runs to minimize the
influence of any potential randomness. As demonstrated in the table, the computational
complexity of the CNN method is of the order of M2, while OAS and GLC algorithms’
computational complexity is of the order of M3. However, it should be acknowledged that
OAS and GLC algorithms can complete computations swiftly when M is small. Although
the CNN algorithm’s online running time is slightly longer than that of the OAS and GLC
algorithms, it is still within the realistic time requirements for practical applications.

Table 5. Analysis of Computational Complexity and Running Time.

Method Computational Complexity Running Time (s)

Proposed O(2808M2) 0.0118
OAS O(2M3 + NM2 + 5M2) 0.0025
GLC O(M3 + 3NM2 + N2 M + 2N2) 0.0017

5. Conclusions

In this paper, we propose a new method for generating adaptive weights for beam-
forming. We build a factored network where the two stages are pre-trained separately with
different datasets and then fine-tuned as an end-to-end network. Our CNN-based RBF
approach is data-driven, which does not require prior model parameters such as array
manifold and accurate SCM, making it advantageous for obtaining robust performance in
the presence of G/P errors and finite snapshots.

We compare the proposed method with classical techniques in terms of performance.
Simulation results demonstrate that our proposed CNN method outperforms OAS and
GLC methods under non-ideal conditions such as small N or in the presence of G/P errors.
In conclusion, the proposed approach offers a promising alternative for beamforming that
can drastically improve its accuracy and robustness.

Author Contributions: Conceptualization, Z.L. and K.D.; methodology, Z.L. and K.D.; software,
Z.L., K.D. and J.H.; validation, B.L., K.D. and Z.Q.; formal analysis, B.L., K.D. and Z.Q.; data curation,
Z.L.; writing—original draft preparation, Z.L.; writing—review and editing, Z.L., K.D., J.H., Z.Q. and
B.L.; funding acquisition, K.D. and B.L. All authors have read and agreed to the published version of
the manuscript.

Funding: This research was funded by the National Natural Science Foundation of China grant
numbers 61871397 and 62001510.

Conflicts of Interest: The authors declare no conflict of interest.

Electronics 2023, 12, 2751 14 of 15

References
1. Bryn, F. Optimum signal processing of three-dimensional arrays operating on Gaussian signals and noise. Acoust. Soc. Am. 1962,

34, 289–297. [CrossRef]
2. Applebaum, S. Adaptive arrays. IEEE Trans. Antennas Propag. 1976, 24, 585–598. [CrossRef]
3. Green, P.E., Jr.; Kelly, E.J., Jr.; Levin, M.J. A comparison of seismic array processing methods. Geophys. J. Int. 1966, 11, 67–84.

[CrossRef]
4. Choi, S.; Shim, D. A novel adaptive beamforming algorithm for a smart antenna system in a CDMA mobile communication

environment. IEEE Trans. Veh. Technol. 2000, 49, 1793–1806. [CrossRef]
5. Navarro-Camba, E.A.; Felici-Castell, S.; Segura-García, J.; García-Pineda, M.; Pérez-Solano, J.J. Feasibility of a Stochastic

Collaborative Beamforming for Long Range Communications in Wireless Sensor Networks. Electronics 2018, 7, 417. [CrossRef]
6. Capon, J. High-resolution frequency-wave number spectrum analysis. Proc. IEEE 1969, 57, 1408–1418. [CrossRef]
7. Shahbazpanahi, S.; Gershman, A.B.; Luo, Z.Q.; Wong, K.M. Robust adaptive beamforming for general-rank signal models. IEEE

Trans. Signal Process. 2003, 51, 2257–2269. [CrossRef]
8. Cox, H.; Zeskind, R.; Owen, M. Robust adaptive beamforming. IEEE Trans. Acoust. Speech Signal Process. 1987, 35, 1365–1376.

[CrossRef]
9. Feldman, D.D.; Griffiths, L.J. A projection approach for robust adaptive beamforming. IEEE Trans. Signal Process. 1994, 42, 867–876.

[CrossRef]
10. Lee, C.C.; Lee, J.H. Eigenspace-based adaptive array beamforming with robust capabilities. IEEE Trans. Antennas Propag. 1997,

45, 1711–1716.
11. Vorobyov, S.A.; Gershman, A.B.; Luo, Z.Q. Robust adaptive beamforming using worst-case performance optimization: A solution

to the signal mismatch problem. IEEE Trans. Signal Process. 2003, 51, 313–324. [CrossRef]
12. Ledoit, O.; Wolf, M. Improved estimation of the covariance matrix of stock returns with an application to portfolio selection.

J. Empir Finance 2003, 10, 603–621. [CrossRef]
13. Chen, Y.; Wiesel, A.; Eldar, Y.C. Shrinkage algorithms for MMSE covariance estimation. IEEE Trans. Signal Process. 2010, 58,

5016–5029. [CrossRef]
14. Du, L.; Li, J.; Stoica, P. Fully automatic computation of diagonal loading levels for robust adaptive beamforming. IEEE Trans.

Aerosp. Electron. Syst. 2010, 46, 449–458. [CrossRef]
15. Wu, R.; Bao, Z.; Ma, Y. Control of peak sidelobe level in adaptive arrays. IEEE Trans. Antennas Propag. 1996, 44, 1341–1347.
16. Gu, Y.; Leshem, A. Robust Adaptive Beamforming Based on Interference Covariance Matrix Reconstruction and Steering Vector

Estimation. IEEE Trans. Signal Process. 2012, 60, 3881–3885.
17. Mohammadzadeh, S.; Kukrer, O. Adaptive beamforming based on theoretical interference-plus-noise covariance and direction-of-

arrival estimation. IET Signal Process. 2018, 12, 819–825. [CrossRef]
18. Mohammadzadeh, S.; Nascimento, V.H.; De Lamare, R.C.; Kukrer, O. Maximum Entropy-Based Interference-Plus-Noise Covari-

ance Matrix Reconstruction for Robust Adaptive Beamforming. IEEE Signal Process. Lett. 2020, 27, 845–849. [CrossRef]
19. Zheng, Z.; Zheng, Y.; Wang, W.Q.; Zhang, H. Covariance Matrix Reconstruction With Interference Steering Vector and Power

Estimation for Robust Adaptive Beamforming. IEEE Trans. Veh. Technol. 2018, 67, 8495–8503. [CrossRef]
20. Zhu, X.; Xu, X.; Ye, Z. Robust adaptive beamforming via subspace for interference covariance matrix reconstruction. Signal

Process. 2020, 167, 107289. [CrossRef]
21. Mohammadzadeh, S.; Nascimento, V.H.; De Lamare, R.C.; Kukrer, O. Robust adaptive beamforming based on virtual sensors

using low-complexity spatial sampling. Signal Process. 2021, 188, 108172. [CrossRef]
22. Davoli, A; Guerzoni, G.; Vitetta, G.M. Machine learning and deep learning techniques for colocated MIMO radars: A tutorial

overview. IEEE Access 2021, 9, 33704–33755. [CrossRef]
23. Pan, P.; Zhang, Y.; Deng Z.; Qi, W. Deep learning-based 2-D frequency estimation of multiple sinusoidals. IEEE Trans. Neural

Networks Learn. Syst. 2022, 33, 5429–5440. [CrossRef]
24. Duan, K.; Chen, H.; Xie, W.; and Wang, Y. Deep learning for high-resolution estimation of clutter angle-Doppler spectrum in

STAP. IET Radar Sonar Navig. 2022, 16, 193–207. [CrossRef]
25. Rogers, J.; Ball, J.E.; Gurbuz, A.C. Estimating the Number of Sources via Deep Learning. In Proceedings of the 2019 IEEE Radar

Conference (RadarConf), Boston, MA, USA, 22–26 April 2019; pp. 1–5.
26. Bianco, S.; Napoletano, P.; Raimondi, A.; Feo, M.; Petraglia, G.; Vinetti, P. AESA Adaptive Beamforming Using Deep Learning.

In Proceedings of the 2020 IEEE Radar Conference (RadarConf20), Florence, Italy, 21–25 September 2020; pp. 1–6.
27. Luijten, B.; Cohen, R.; de Bruijn, F.J.; Schmeitz, H.A.; Mischi, M.; Eldar, Y.C.; van Sloun, R.J. Adaptive ultrasound beamforming

using deep learning. IEEE Trans. Med. Imaging 2020, 39, 3967–3978. [CrossRef] [PubMed]
28. Hamza, S.A.; Amin, M.G. Learning Sparse Array Capon Beamformer Design Using Deep Learning Approach. In Proceed-

ings of the 2020 IEEE Radar Conference (RadarConf20), Florence, Italy, 21–25 September 2020.
29. Mallioras, I.; Zaharis, Z.D.; Lazaridis, P.I.; Pantelopoulos, S. A novel realistic approach of adaptive beamforming based on deep

neural networks. IEEE Trans. Antennas Propag. 2022, 70, 8833–8848. [CrossRef]
30. Mohammadzadeh, S.; Nascimento, V. H.; De Lamare, R. C.; Hajarolasvadi, N. Robust Beamforming Based on Complex-Valued

Convolutional Neural Networks for Sensor Arrays. IEEE Signal Process. Lett. 2022, 29, 2108–2112. [CrossRef]

http://doi.org/10.1121/1.1928112
http://dx.doi.org/10.1109/TAP.1976.1141417
http://dx.doi.org/10.1111/j.1365-246X.1966.tb03493.x
http://dx.doi.org/10.1109/25.892584
http://dx.doi.org/10.3390/electronics7120417
http://dx.doi.org/10.1109/PROC.1969.7278
http://dx.doi.org/10.1109/TSP.2003.815395
http://dx.doi.org/10.1109/TASSP.1987.1165054
http://dx.doi.org/10.1109/78.285650
http://dx.doi.org/10.1109/TSP.2002.806865
http://dx.doi.org/10.1016/S0927-5398(03)00007-0
http://dx.doi.org/10.1109/TSP.2010.2053029
http://dx.doi.org/10.1109/TAES.2010.5417174
http://dx.doi.org/10.1049/iet-spr.2017.0462
http://dx.doi.org/10.1109/LSP.2020.2994527
http://dx.doi.org/10.1109/TVT.2018.2849646
http://dx.doi.org/10.1016/j.sigpro.2019.107289
http://dx.doi.org/10.1016/j.sigpro.2021.108172
http://dx.doi.org/10.1109/ACCESS.2021.3061424
http://dx.doi.org/10.1109/TNNLS.2021.3070707
http://dx.doi.org/10.1049/rsn2.12176
http://dx.doi.org/10.1109/TMI.2020.3008537
http://www.ncbi.nlm.nih.gov/pubmed/32746139
http://dx.doi.org/10.1109/TAP.2022.3168708
http://dx.doi.org/10.1109/LSP.2022.3212637

Electronics 2023, 12, 2751 15 of 15

31. Xiao, X.; Lu, Y. Data-Based Model for Wide Nulling Problem in Adaptive Digital Beamforming Antenna Array. IEEE Antennas
Wirel. Propag. Lett. 2019, 18, 2249–2253. [CrossRef]

32. Carlson, B.D. Covariance matrix estimation errors and diagonal loading in adaptive arrays. IEEE Trans. Aerosp. Electron. Syst.
1988, 24, 397–401. [CrossRef]

33. Liu, Z.M.; Zhang, C.; Philip, S.Y; Direction-of-arrival estimation based on deep neural networks with robustness to array
imperfections. IEEE Trans. Antennas Propag. 2018, 66, 7315–7327. [CrossRef]

34. He, K.; Zhang, X.; Ren, S.; Sun, J. Deep Residual Learning for Image Recognition. In Proceedings of the IEEE Conference on
Computer Vision and Pattern Recognition (CVPR), Las Vegas, NV, USA, 27–30 June 2016; pp. 770–778.

35. Amari, S.I. Backpropagation and stochastic gradient descent method. IEEE Trans. Antennas Propag. 1993, 5, 185–196. [CrossRef]
36. Kingma, D.P.; Ba, J. Adam: A Method for Stochastic Optimization. In Proceedings of the International Conference on Learning

Representations (ICLR), San Diego, CA, USA, 7–9 May 2015.

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

http://dx.doi.org/10.1109/LAWP.2019.2925419
http://dx.doi.org/10.1109/7.7181
http://dx.doi.org/10.1109/TAP.2018.2874430
http://dx.doi.org/10.1016/0925-2312(93)90006-O

	Introduction
	MVDR Estimator
	A Deep Neural Network for Robust Adaptive Beamforming
	Architecture
	Dataset and Training

	Experiments
	Network Convergence Performance
	Adaptive Pattern Comparison in the Case of Finite Snapshots
	Performance Comparison of Convergence
	Performance Comparison in the Presence of G/P Errors
	Computational Complexity Comparison

	Conclusions
	References

