
Citation: Zhao, Y.; Dai, W.; Wang, S.;

Xi, L.; Wang, S.; Zhang, F. A Review

of Cuckoo Filters for Privacy

Protection and Their Applications.

Electronics 2023, 12, 2809. https://

doi.org/10.3390/electronics12132809

Academic Editor: Djuradj Budimir

Received: 30 May 2023

Revised: 21 June 2023

Accepted: 21 June 2023

Published: 25 June 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

electronics

Review

A Review of Cuckoo Filters for Privacy Protection and
Their Applications
Yekang Zhao 1, Wangchen Dai 2, Shiren Wang 3, Liang Xi 3, Shenqing Wang 4 and Feng Zhang 4,*

1 Engineering Research Center of Digital Forensics, Ministry of Education, School of Computer Science,
Nanjing University of Information Science and Technology, Nanjing 210044, China;
zyk13812311766@163.com

2 Research Center for Basic Theories of Intelligent Computing, Research Institute of Basic Theories,
Zhejiang Lab, Hangzhou 310000, China; w.dai@my.cityu.edu.hk

3 Beijing Institute of Computer Technology and Application, Beijing 100082, China; vivenrabbit@163.com (S.W.);
xlcorn@163.com (L.X.)

4 College of Computer Science and Technology, Nanjing University of Aeronautics and Astronautics,
Nanjing 210016, China; shenqingtongxun@163.com

* Correspondence: njtongxun100@163.com; Tel.: +86-1732-611-7703

Abstract: As the global digitalization process continues, information is transformed into data and
widely used, while the data are also at risk of serious privacy breaches. The Cuckoo filter is a
data structure based on the Cuckoo hash. It encrypts data when it is used and can achieve privacy
protection to a certain extent. The Cuckoo filter is an alternative to the Bloom filter, with advantages
such as support for deleting elements and efficient space utilization. Cuckoo filters are widely
used and developed in the fields of network engineering, storage systems, databases, file systems,
distributed systems, etc., because they are often used to solve collection element query problems. In
recent years, many variants of the Cuckoo filter have emerged based on ideas such as improving the
structure and introducing new technologies in order to accommodate a variety of different scenarios,
as well as a huge collection. With the development of the times, the improvement of the structure
and operation logic of the Cuckoo filter itself has become an important direction for the research of
aggregate element query.

Keywords: Cuckoo filter; aggregate element query; approximate membership query structure;
hashing strategy; false positive rate; privacy protection

1. Introduction

With the rapid development of the big data era, numerous new service models and
applications have emerged [1]. These services and applications collect a large amount
of information related to users while providing them with accurate and personalized
services. Information is data that have meaning and value. It can contain text, images,
sound, video, and other forms. When this information is transformed into digital data, it
can be stored, processed, and transmitted [2,3]. The process of digitization involves the
use of technical tools and methods to extract the characteristics of the information and
encode it into a digital form that computers can understand and process [4]. Digitization
transforms information into a form of data that makes them available for manipulation
and utilization in computer systems. Through digitization, information can be analyzed,
searched, shared, protected, and passed on to other systems or devices. The collected
information often contains a large amount of private data, including phone numbers,
ID numbers, and other personal identification information, as well as financial, medical,
and health care information and other sensitive information [5,6]. This makes data among
the most-valuable resources in the world [3,7]. The main risks associated with privacy
breaches during data transformation include data leakage, data misuse, data association,

Electronics 2023, 12, 2809. https://doi.org/10.3390/electronics12132809 https://www.mdpi.com/journal/electronics

https://doi.org/10.3390/electronics12132809
https://doi.org/10.3390/electronics12132809
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/electronics
https://www.mdpi.com
https://doi.org/10.3390/electronics12132809
https://www.mdpi.com/journal/electronics
https://www.mdpi.com/article/10.3390/electronics12132809?type=check_update&version=1

Electronics 2023, 12, 2809 2 of 23

and data sharing [8–10]. The querying of data is the most-common operation when using
data [11–13]. Because the data are very large, using the entire collection to query is very
inefficient, and the process of traversal is also prone to data leakage [14]. A common
processing method is to save the fingerprints of all elements in a collection in a hash table,
using the one-way nature of the hash function to secure the data, while only the hash
mapping is needed to determine whether the elements belong to the collection during the
query. However, in maintaining the hash table representation both to store the fingerprints
of all the elements and to save other structures that handle hash collisions, the space usage
of the hash table is low. If the amount of data in the collection is very large, the hash
table cannot be kept in memory. This results in queries that require iterative operations in
memory and secondary storage, causing significant and unnecessary consumption. In some
usage scenarios, certain errors are tolerated for aggregate element queries, a feature that
motivates the creation of approximate member query (AQM) structures to answer such
interactive query problems, of which the Cuckoo Filter (CF) is a typical representative.

The CF is derived from the Cuckoo hash algorithm, which maintains two hash tables,
each using two different hash functions. When new data are inserted, the corresponding
mapping location is calculated based on the fingerprint, and the fingerprint is present in
one of these two locations. If both positions are occupied, a fingerprint is randomly kicked
out and occupies its position, and the kicked-out data look for the corresponding position
in the same way. By continuously kicking out data, eventually, all the data will find their
corresponding locations. The CF, as an alternative to the Bloom Filter (BF) [11], preserves
the advantages of the BF in handling problems such as near-membership queries while
providing better query efficiency and space utilization on top of the BF. It can work with
deletions, insertions, and queries without increasing the storage space. These good features
have led to the use of CFs in several applications [15,16]. (Rao et al. proposed other more
theoretical solutions for the BF, enabling it to have similar advantages [17]).

1.1. Advantages and Main Uses of Cuckoo Filters

CFs have four main advantages over Bloom filters, as follows:

(1) CFs support the dynamic addition and deletion of items.
(2) CFs have a higher lookup performance than standard Bloom filters, even when 95% of

the space is occupied; CFs’ lookup performance is still better than standard Bloom fil-
ters.

(3) Compared with some variants of Bloom filters (such as quotient filters), CFs are easier
to achieve.

(4) With a target false positive rate of less than 3%, CFs use less space than Bloom filters
in practical applications.

The main uses of CFs are as follows:
Determining whether an element exists in a collection: CFs can quickly determine

whether an element exists in a collection by comparing the hash function with the finger-
print information. They can complete the query operation in a constant time, so they are
widely used in scenarios that need to quickly determine whether an element exists, such as
network security, database query, etc.

Improve query efficiency: CFs have the feature of fast query and can complete the
query operation in constant time. Compared with traditional data structures such as hash
tables or binary search trees, CFs have higher query efficiency, especially in the case of large-
scale data collections. Therefore, they are widely used in scenarios that require efficient
querying, such as search engines, network routing, etc.

Reduce conflict and optimize storage space: CFs adopt the Cuckoo hash algorithm,
which can effectively reduce the occurrence of hash conflict and optimize the utilization of
storage space. Through the reasonable design of the hash function and the way of storing
fingerprint information, CFs can achieve a low conflict rate with a small storage space.
Therefore, they are widely used in scenarios that require efficient use of storage space, such
as the storage and indexing of large-scale data collections.

Electronics 2023, 12, 2809 3 of 23

Support for distributed system applications: CFs can be extended to distributed
system applications, and high availability and load balancing can be achieved by distribut-
ing data collections across multiple nodes. With reasonable data slicing and inter-node
communication protocols, CFs can realize distributed query and update operations, thus
supporting the application requirements of large-scale distributed systems.

Encryption and privacy protection: CFs use hash functions and fingerprint informa-
tion to encrypt and obfuscate elements, thus protecting the privacy of data. They can
transform sensitive information into irreversible fingerprints, ensuring that the original
data cannot be restored and compromised. Therefore, CFs can play an important role in
scenarios where data privacy needs to be protected.

1.2. Cuckoo Filters and Privacy Protection

The evolution of CFs is closely related to the overall development of digitization and
data privacy protection. As digitization progresses, individuals and organizations are
handling larger amounts of data containing more sensitive information [18,19]. At the same
time, issues such as privacy leakage and data misuse are becoming increasingly promi-
nent [20,21]. In order to effectively protect data privacy, related technologies and methods
are constantly evolving.

The introduction of CFs can handle large-scale datasets more efficiently and alleviate
the privacy leakage problem to some extent. By using Cuckoo filters, sensitive information
can be desensitized and duplicate data detected and quickly filtered to reduce the risk of
exposure of sensitive information.

In addition, the nature and features of CFs (e.g., spatially efficient and fast querying)
make them an effective tool for large-scale data processing and privacy protection. They
can be combined with other privacy-protection technologies, such as encryption, access
control, and anonymization, to build a better data-privacy-protection system.

Thus, the evolution of CFs is closely related to the overall development of digitization
and data privacy protection, and they provide a useful technical tool to meet the growing
data challenges.

CFs can achieve a certain degree of privacy protection against the four privacy-breach-
related risks in data transformation: data leakage, data misuse, data association, and data
sharing. The following are a few ways to use CFs to mitigate privacy leakage issues:

(1) Data desensitization: Before converting or storing data, sensitive information can
be desensitized using CFs. CFs can help detect the presence of known sensitive
information, such as specific ID numbers, cell phone numbers, etc. If sensitive infor-
mation is matched, the corresponding processing measures can be triggered to protect
personal privacy.

(2) Preventing duplicate data: CFs can be used to detect duplicate data and avoid storing
sensitive information repeatedly during data conversion. This helps reduce the chance
and risk of sensitive information leakage.

(3) Fast filtering: CFs can be used to quickly filter out non-sensitive data, thereby reducing
the amount of data that need to be further processed. With this filter, data that do
not contain sensitive information can be quickly excluded, thus reducing the risk of
exposure of sensitive information.

1.3. Recent Developments to Cuckoo Filters

Due to the above advantages, CFs can be adapted to most application scenarios and
are the best tool to solve the “does the element belong to a collection” problem. CFs were
first proposed in 2014 to solve the problem of the low efficiency of BF queries and low space
utilization. CFs can be used for redis cache penetration, web applications, like BFs [22,23],
push de-duplication for news clients, distributed databases [24–26], black and white lists,
spell checking [27,28], and so on. CFs can also be used to improve the efficiency of other
related applications, such as methods to protect the privacy of predictions in the federated
learning phase [29], IoT smart cities [30–32], queries in wireless sensor networks [33,34],

Electronics 2023, 12, 2809 4 of 23

and clustering algorithms [35,36]. Specific applications of CFs in several major scenarios
can be found in Section 2.

However, CFs still have a number of problems:

(1) Deletion problem: Deletion only removes a copy of the fingerprint, and it is not
certain that this copy of the fingerprint is the fingerprint of the element to be deleted.
Furthermore, the deletion does not confirm whether the fingerprint exists in the CF.
This situation can generate false positives.

(2) The insertion complexity is relatively high. As the number of inserted elements
increases, the complexity becomes higher. When the bucket is full, the kick-out
operation needs to be repeated, requiring the fingerprint of the proposed element to
be recalculated.

(3) The size of the storage space must be an exponential multiple of 2, which creates a
problem of low space utilization.

(4) The same element can be inserted at most kb-times (k refers to the number of hash
functions, and b refers to the number of fingerprints that can be contained in the
bucket, which can also be said to be the size of the bucket). Inserting the same item
kb + 1-times will cause the insertion to fail.

The above problems will be more prominent when dealing with large amounts of data.
After research and development, a large number of improvement schemes for the above
problems have emerged. These improvement schemes are generally developed in four
directions: the hashing strategy, the CF’s own structure, the introduction of compression
structure and filter integration; below are the recent advances of CFs in these directions.

The recent development in CFs in terms of the hashing strategy is Adaptive Cuckoo
Filters (ACFs) [37]. Instead of using the standard CF’s partial key Cuckoo hash, ACFs
directly determine the bucket into which an element is inserted by the element’s hash value
(instead of only the fingerprint), thus allowing adaptive modification of the fingerprint
when removing elements that cause false positives. This reduces the rate of false positives
when dealing with large numbers of data queries.

In terms of improvements to the structure of the CF itself, the recent progress is the
Marked Cuckoo Filter (MCF) [38], which adds an additional bit to each slot in the bucket to
indicate the set to which the elements stored in that slot belong, for the multi-level ensemble
scenario, which often occurs when processing large amounts of data.

In terms of introducing compression structures, the recent advancement in CFs is the
XOR+ filter [39]. The core idea of the XOR+ filter is to group together the empty entries in a
hash table and use a bit array to indicate the occupancy of the entries in the table and then
transfer only those entries that are stored with elements during the transfer process, thus
saving the memory space needed at runtime.

In terms of filter integration, the recent progress of CFs is Multiple Cuckoo Filter
(MCF) [40]. In order to solve the problem that it is difficult to query whether a certain
element exists in all data streams in a certain period of time in a huge amount of data,
the MCF integrates multiple CFs so that each CF corresponds to a data stream to support
concise membership queries for multiple data streams.

1.4. Motivation and Our Contributions

However, although there have been many studies on the improvement of the structure
and operation logic of CFs, there is no systematic analysis and summary of these works
in recent years in the literature. We believe that the improvement of CFs’ structure and
operation logic is an important research direction for the following reasons:

Improvement of query efficiency: The main goal of CFs is to quickly determine
whether an element exists in the set or not. Therefore, optimizing the structure and
operation logic of the Cuckoo filter can improve the query efficiency and reduce the query
time and resource consumption. This is very important for the processing of large-scale
datasets and efficient querying.

Electronics 2023, 12, 2809 5 of 23

Improvement of conflict handling: CFs use hash functions to map elements to differ-
ent locations, and conflict handling is required when there is a hash conflict. Improving the
conflict handling algorithm of CFs can reduce the incidence of conflict and improve the
accuracy and reliability of the data.

Optimization of storage space: The storage space of CFs is limited, so how to optimize
the efficiency of storage space utilization is an important research direction. By improving
the structure and operation logic of the Cuckoo filter, the storage space occupation can be
reduced and the storage efficiency can be improved.

Distributed system support: With the widespread use of distributed systems, CF
support in distributed environments has also become a research hotspot. Improving the
structure and operation logic of the Cuckoo filter can allow adapting to the needs of
distributed systems and improve the scalability and concurrency of the system.

Therefore, this paper provides an overview of the existing optimization schemes by
classifying the different optimization methods from each scheme.

The Section 2 introduces Cuckoo hashing, the basic principles and operations of CFs,
and the main application scenarios of CFs.

The Section 3 introduces the role of hash functions in CFs and the elaboration of CFs
for optimizing hash functions.

The Section 4 presents a variety of improvement options for improving the CFs’ struc-
ture.

The Section 5 describes the integration scheme for CFs and CFs with the introduction
of compression structures.

The Section 6 compares the various options presented in the text and presents a vision
for future development.

The Section 7 provides a summary of the article.

2. Standard Cuckoo Filter
2.1. Cuckoo Hash

Cuckoo hashing is an easy-to-implement hashing strategy. We assumed that all
functions are independent and consistent. These assumptions are usually reasonable in
practice [41]. The Cuckoo hash derives the mapped positions h1(x) and h2(x) about the
elements using two mutually independent hash functions h1 and h2 [42]. It performs an
insert element operation in the hash table. If one of the two mapped positions is free,
the element is inserted directly into this position. (If both mapped positions are free, then
insert the element in either position.) If both mapped positions have elements inserted,
as in Figure 1, one of the elements is kicked out and the element to be inserted is inserted
into this position. For the kicked-out element, it is inserted into the other of its two mapped
positions. If there is still an element alreadykicked out and inserted into the next position,
this will continue until a free position is inserted or the number of kicked-out elements
reaches the threshold. The latter situation means that the table is full of elements and can
no longer accept new ones. The insertion operation has failed, resulting in the need to
expand the hash table’s capacity.

In Figure 1, element E is computed by Cuckoo hashing to obtain the indexes h1(E)
and h2(E) of two insertion positions. First, check the position corresponding to h1(E),
and determine whether the position is already occupied by element A. Then, check
the position corresponding to h2(E), and determine whether the position is occupied by
element B. Therefore, kick out A or B randomly (in this case, kick out A), and insert E
into the position. Element A is kicked out and looks for another mapping position of its
own, and it turns out that the position happens to be occupied by B, so B is kicked out and
A inserted in that position. the kicked-out element B then repeats the above process and
finds another mapping position of its own, finds that the position is free, and inserts B in
that position.

Electronics 2023, 12, 2809 6 of 23

Figure 1. The element insertion operation of Cuckoo hash.

2.2. Standard Cuckoo Filter

The CF is a Cuckoo hash-based filter that outperforms most of the BF improvement
schemes in terms of space usage, operational performance, and ease of implementation.
Each CF location can store a fixed number of elements and stores the elements’ finger-
prints [43].

2.2.1. Basic Operation of the Cuckoo Filter

An important operation of the CF is insertion, a technique first introduced in a previous
work [44]. However, since the computation of element fingerprints using a hash function is a
one-way operation, it is not possible to compute two mapping positions of its corresponding
elements for a particular fingerprint in the filter. The approach used by the CF for this is a
partial key Cuckoo hash. For each fingerprint, only one hash function is used to compute a
mapping position:

i1 = hash(x). (1)

The other mapping position is derived by the further calculation of the result of
Equation (1):

i2 = i1 ⊕ hash(f), (2)

i1 and i2 are the indices of the two buckets computed. The equation of exchanging the posi-
tions of i1 and i2 in Equation (2) still holds according to the properties of the heterogeneous
OR operation. That is, any one mapping position can be derived from a hash of another
mapping position and an element fingerprint f by performing an XOR operation.

The specific fingerprint f is obtained by taking a certain number of bits by means of a
hash function f = f ingerprint(x).

For CF query operations, take the process of querying a given element x as an example.
The algorithm first takes a certain number of bits of x as the fingerprint f through the hash
function f = f ingerprint(x) and then obtains the positions of the two buckets through
Formulas (1) and (2); it compares f with the fingerprints in the bucket, and if any fingerprint
in the bucket matches f , the CF returns true; if there are no fingerprints matching f in both
buckets, the CF returns false. Through the above process, it can be seen that, in the absence
of bucket overflow, there are no false positives.

The CF is like the counting Bloom filter, which removes inserted elements by removing
the matching fingerprints, which are in the hash table; other filters that can perform similar
deletion functions are more sophisticated than the CF [45,46]. For a given element x,
the specific deletion process is to check two corresponding buckets; if the fingerprint in any
bucket matches the fingerprint f of x, the copy of the matching fingerprint is deleted from
that bucket.

2.2.2. Dimensions of the Drum

The maximum number of fingerprints that can fit in each bucket is called the bucket
size, and changing the bucket size while keeping the total CF size constant leads to
two consequences:

Electronics 2023, 12, 2809 7 of 23

(1) Larger buckets improve table utilization (the larger the bucket, the greater the false
positive rate is). The load factor α is 50% when using two hash functions when the bucket
size is 1 (i.e., direct mapping of the hash table), but increases to 84%, 95%, and 98% when
using bucket sizes of 2, 4, and 8, respectively [47].

(2) Larger buckets require longer fingerprints to maintain the same false alarm rate
(i.e., the larger the bucket, the larger the fingerprint). When using larger buckets, more
entries are checked for each lookup, thus increasing the probability of fingerprint conflicts.

2.3. Application Scenarios

The CF is mainly used in network engineering, caching systems, database systems,
and distributed systems.

Network engineering: The CF can be used for fast matching of routing tables to speed
up route lookup and forwarding operations. Reference [48] proposed a new filter called the
length-aware Cuckoo filter (LACF) for faster IP lookups with limited additional storage.
In addition, the CF has applications in wireless sensor networks. A wireless sensor network
is a network consisting of a large number of wireless sensor nodes distributed in space
for sensing information in the environment and transmitting it to a central node or other
nodes [49–51]. In wireless sensor networks, an adversary may use critical data obtained
from captured nodes to deploy a large number of cloned nodes in the network, thus
affecting the network problem, i.e., cloned node attack [52,53]. A recent development in
the solution to this problem was presented in [54], where a CF-based clone-node-detection
algorithm for wireless sensor networks was proposed. Due to the simplicity and high
efficiency of the CF in terms of the insertion and deletion of elements, the scheme in [54] had
better detection time, power consumption, and detection accuracy, i.e., was 92% positive
rate was achieved with 20% power consumption and a 98% detection rate.

Caching systems: In caching systems, the CF can be used to quickly determine
whether an object is in the cache, thus accelerating cache hits and efficiency. Recent
advances in CF research in this area are given in [55,56]. In [55], a CF-based hot-detection
method with high spatiotemporal efficiency and support for deletion was proposed, as well
as a cache replacement policy that combines the CF and an adaptive two-level LRU tech-
nique to obtain a significant improvement in the cache hit rate and a reduction in the time
and space complexity. In [56], a CF-based scheme called PiPoMonitor was proposed to
detect ping-pong patterns and prefetch specific cache lines to interfere with the adversary’s
cache probes to resist against cross-core cache attacks.

Database systems: Cuckoo filters can be used to speed up database query operations,
for example, to determine whether an element exists in the database before querying
it, thus avoiding unnecessary query operations. Reference [57] used the CF instead of
traditional Bloom filters, thus improving the execution performance of query operations in
big data warehouses. In addition, Reference [15] proposed an efficient CF-based scheme
for database-driven cognitive radio networks (CRNs) that preserves the location privacy of
secondary users (SUs), while allowing them to learn about the available channels in their
vicinity; the latest advancement in this field was presented in [58], which proposed a new
scheme using an object-level locking mechanism of the CF for improving the performance
of very large object-storage-based database; the new scheme reduced the elapsed time to
60% while increasing the throughput to 171% compared to the scheme using a table-level
locking mechanism.

Distributed systems: Cuckoo filters can be used for data consistency checking and
de-duplication operations in distributed systems, e.g., in scenarios such as distributed
caching, distributed storage, etc., to quickly determine whether data exist in other nodes in
the cluster [59]. Reference [60] used the CF in the core lightweight client of the lightweight
quantum-resistant distributed ledger protocol IOTA to avoid address reuse. A recent devel-
opment in this area was presented in [61], which proposed a scheme applied to distributed
big data systems, using the CF to improve the performance of lookups after data deletion;
the CF was used to perform lookups before querying remote nodes, thus avoiding unneces-

Electronics 2023, 12, 2809 8 of 23

sary network round-trip queries, and the scheme can improve the execution performance
of query operations up to twice as much.

In addition, the CF has some applications related to smart cities. The term Smart
City (Smart City) refers to the application of advanced technologies such as information
technology and Internet of Things (IoT) technology to build an intelligent and sustainable
city with the goal of improving the efficiency of city operations, optimizing the use of
resources, and improving the quality of life of residents [21,62,63]. Among them, smart
transportation is an important part of smart cities [64]. The scheme proposed in [65] used
the CF to design big data generated in Vehicular Self-Organizing Networks (VANETs)
for secure communication between vehicles and edge nodes. Reference [66] introduced
Cuckoo filters in 5G vehicular networks to revoke malicious users to prevent re-attacks.

2.4. Some Related Studies on the Improvement of Cuckoo Filters

In 2016, Reference [48] proposed the Length-Aware Cuckoo Filter (LACF), which
considers the problem of the popularity of collection elements and uses different insertion
methods for elements with high and low popularity, effectively reducing the false alarm
rate of the CF in scenarios such as IP address lookup. In 2017, Reference [67] proposed
the d-Ary Cuckoo Filter (d-Ary CF), which solves the problem of the low space utilization
of CFs in the face of a collection of useful and large numbers of elements by adjusting
the bucket allocation strategy and sacrificing the efficiency of a small number of inser-
tion queries. In 2017, Reference [68] proposed the Dynamic Cuckoo Filter (DCF), which
extends the functionality of the CF, is the first data structure to support reliable element
deletion and flexible structure expansion/compression, and enables the CF to be applied
to dynamic collections. In 2018, Reference [69] proposed Position-Aware Cuckoo Filters
(PACFs), which halved the false alarm rate of standard CF by telling in advance whether
a fingerprint has been inserted into the first or second bucket. In 2019, Reference [70]
proposed the Cuckoo Filter With an Integrated Bloom Filter (CFBF), which integrated a
BF to enable insertion when no empty cell was found in the CF to be performed on the
BF, thus reducing the insertion time. It supports removing all inserted elements. In a
hardware implementation of the CF, the CFBF supports a large number of consecutive
insertions. In 2019, Reference [71] proposed the Consistent Cuckoo Filter (CCF), which is
able to be applied to many different scenarios by setting the parameters’ flexibly. In 2020,
Reference [72] proposed the Conditional Cuckoo Filter (Conditional CF), which added
equational predicates to queries and introduced a new linking technique that enabled CFs
to handle special sets determined by predicates and the insertion of duplicate keys. In 2022,
Reference [40] proposed the Multiple Cuckoo Filter (Multiple CF), which implemented
membership queries for multiple data streams by integrating multiple CFs. Various CF
alternatives have also emerged during this period, resulting in enhancements in different
aspects such as insertion, querying, space utilization, and false positive rate.

3. Cuckoo Filter for Improving Cuckoo Strategy

The hash function is an important part of CFs. It enables collection elements to be
stored in filters in a very space-efficient manner and also unifies the data types and lengths
of collection elements. Both short and long strings and large and small values can be turned
into data of the same type and size by hash function calculation, thus making it easy to
query and manage. In CFs, the output value of the hash function usually has two uses:

(1) As an address: Store an element in a bit vector table, and use the hash function to
generate a number of stored random addresses.

(2) As the fingerprint of an element: When the data types between the elements of a
CF-stored collection are inconsistent, the fingerprint of the element is usually obtained by
first performing a hash operation on the element, and then, the fingerprint of the element
is stored in the filter using the first method mentioned above. This ensures the diversity
of data types stored in the CF and also achieves storage consistency while ensuring data
privacy security to a certain extent.

Electronics 2023, 12, 2809 9 of 23

However, no hash function is completely random, and as long as the mapping range
is finite, there is bound to be the possibility of collision. The Cuckoo hash used in the
standard CF uses eviction to solve the conflict problem, and as the number of inserted
elements increases, the cost of insertion and lookup increases greatly, as well as the rate of
false positives. This section describes two improvements to the CF hashing strategy: The
LACF uses a different number of hash functions to store and search entries based on the
prefix length and popularity of the routing entries. Adaptive Cuckoo Filters (ACFs) allow
fingerprints to use different hash functions.

3.1. Length-Aware Cuckoo Filter

The main role of the LACF is to perform faster IP lookups. The LACF classifies
elements into popular-length elements and unpopular-length elements based on the preva-
lence of their prefix length and uses this to distinguish their corresponding routing entries.
For unpopular length elements, the LACF performs double insertion for them, so that,
when querying a previous unpopular-length element, it needs to check two locations in the
filter to determine its existence, thus reducing the false positive rate. For popular-length
elements, the LACF inserts them only once, so the effect on the false positive rate can be
ignored. Figure 2 shows a double insertion, where, for each element, the second insertion
uses a separate set of hash functions (h1b, h2b). In Figure 2, the left half represents a normal
primary insertion for a popular-length element, while the right half shows a secondary
insertion for a non-popular-length element. In the right half of Figure 2, to insert a non-
popular length element x into the filter, first, a set of partial key Cuckoo hash functions
(h1, h2) is used to compute the two positions (a1, a2) for the first insertion performed on x
and insert the fingerprint f p of element x into position a1. Then, another independent set
of Cuckoo hash functions (h1b, h2b) is used to compute the second set of insertion positions
for x, i.e.,(a1b, a2b), and insert f p into position a2b. The LACF actively adapts, identifies the
element causing the false positives, and removes it, but still finds the element during the
search, then inserts it again in a different way [48].

Figure 2. Element insertion in (left) Cuckoo filter and (right) double insertion.

The false positive rate of the CF is approximately o(8
2 f), where f represents the number

of bits in the fingerprint, 8 is the number slots provided for each element in the filter,
and o represents the occupancy rate, i.e., the percentage of filled positions in the filter to
the total number of positions. For unpopular-length elements, the false positive rate of
double insertion can be approximated as o2(8

2 f)
2

since both sets of hash functions have the
possibility of false positives and their probabilities of false positives are independent of
each other.

3.2. Adaptive Cuckoo Filters

For the set S of elements to be queried, the ACF stores the elements in it in a Cuckoo
hash table. A copy of the Cuckoo hash table is also constructed to store the fingerprints
corresponding to the elements in the set S, and this copy is used for the CF. The main
feature of the ACF is that no partial key Cuckoo hash is used, and the ACF uses the hash of
the complete elements instead of the fingerprints to determine the bucket to which each

Electronics 2023, 12, 2809 10 of 23

element belongs [37]. When a query is performed on an element in S, a false positive
occurs if a fingerprint in a bucket found during the query is the same as the fingerprint
corresponding to that element. Therefore, when a positive result appears, the ACF checks
the hash table, and if the fingerprint in the bucket does not correspond to the same element
as the one being queried, it is determined to be a false positive. To remove false positives,
the fingerprint associated with the element needs to be changed using a different fingerprint
function. The ACF uses a method that identifies the element causing the false positive,
removes it, but still finds the element when searching, and then inserts it again in a different
way. This method ensures that no further false alarms occur when the same element is
queried later, thus achieving the goal of reducing the false alarm rate.

4. Improved Structure of Cuckoo Filter

This section presents eight filter optimization schemes with an improved structure
that essentially improve the structure of the CF, including the number of buckets in the
filter and how bucket indexes are computed, the size of tables in the filter, eligibility testing
of elements, finding connections between elements before use, and eviction strategies.

4.1. d-Ary Cuckoo Filter

To improve space utilization, one idea for CF improvement is to increase the number
of candidate buckets corresponding to each element, and d-ary Cuckoo hashing takes
advantage of this idea. Therefore, the CF is generalized to d-Ary CF to further improve the
space utilization. However, it is difficult to add candidate buckets because only fingerprints
are available for computing candidate positions. Therefore, a digitwise heteroskedastic
operation based on d is introduced as a basis for computing d candidate buckets for each
element in a round-robin fashion.

With 3-Ary CFs (three candidate buckets for each project), for example, you need to
ensure that A = AopBopBopB [48].

The base-3 digitwise XOR operation computes three candidate buckets for each ele-
ment in a round-robin fashion. The operation op is XOR3, and XOR3 is equal to the digit
mode operation in the base-3 digit system. The XOR3 computation rules are shown in
Table 1.

Table 1. The rule of calculation of XOR3.

0 1 2

0 0 1 2
1 1 2 0
2 2 0 1

4.2. Consistent Cuckoo Filter

With several CF schemes previously described, it can be found that there is a depen-
dency between the index of the bucket in which the elements are stored and the length
of the filter, and the Index-Independent Cuckoo Filter (I2CF) eliminates this relationship.
The core of the I2CF is to maintain a consistent hash ring, and when assigning buckets to
elements, the I2CF can assign k candidate buckets for each element; the value of k is not
fixed, so that the size can be adjusted by itself as needed. In this way, the I2CF achieves
bucket-level capacity adjustment, allowing it to be used for dynamic collection presentation.

By organizing multiple I2CFs, a Consistent Cuckoo Filter (CCF) can be obtained.
The capacity of the consistent Cuckoo filter is flexible, and when the set base increases or
decreases suddenly, the CCF can be adjusted in time by merging underutilized I2CFs and
adding unused I2CFs to the filter’s capacity.

Within the CCF framework, the membership query can check all I2CF vectors. For I2CFi,

the false positive rate is ξi = 1− (1− 1
2 f)

ki•bi . This yields the global false positive rate of

the CCF as ξCCF = 1−∏s−1
i=0 (1− ξi). To ensure the run-time false positive rate, the CCF

Electronics 2023, 12, 2809 11 of 23

sets a threshold value for s. When s is about to reach the threshold value, in order to
make room for new elements, the CCF will no longer add unused I2CFs, but choose to
perform bucket-level capacity adjustment operations or perform compression operations
by merging underused I2CFs. In this case, the value of s will not be added again, thus
achieving control of the false positive rate. Consistent CF implements the design principle
of dynamic set representation, but with a slightly higher complexity.

4.3. AniFilter

Advances in Non-Volatile Memory (NVM) technology have given persistent memory
the advantage of high performance. Since AMQ is often used for persistent memory, CF,
as a kind of AMQ, can also take advantage of the high performance of NVM to achieve
persistence—AniFilter is such a special CF. Compared with plain CF, AniFilter achieves
improved insertion throughput on NVM through spillable buckets and lookahead eviction,
while achieving improved query throughput through a bucket primacy strategy.

In the AF, when there are not enough slots in a bucket, this bucket can borrow slots
from its neighboring buckets. For example, when inserting a fingerprint FP into the i-th
bucket (b[i]) in the AF, if all slots in b[i] are full, then the AF does not kick a fingerprint
from b[i], but asks the buckets behind it if there is an empty slot; if there is a free slot in
bucket b[i + k], then insert the FP into that slot. At this point, we refer to the FP, bucket
b[i + k], and the slot where the FP is stored as the overflow fingerprint, overflow bucket,
and overflow slot, respectively.

Under high load, fingerprints inserted in the CF face massive recycling, resulting in
inefficient insertion. To solve this problem, the AF introduces lookahead eviction. Store
the occupancy information for each bucket in an array of bits called occupancy flags.
If the corresponding bucket is full, the entries in the array are set. The occupancy flag is
referenced when an insert operation results in an eviction from the storage bucket. When
selecting the FP to be evicted, we first list all the FPs in the bucket, then select one FP with
a free spare bucket to evict based on the occupancy of those FPs’ spare buckets. If none of
the FPs have a free spare bucket, then one FP is randomly selected and evicted.

According to the Cuckoo hash, we know that, in the AF, there are two buckets available
for each fingerprint of element x at the time of insertion. We refer to the bucket computed
by h1(x) as the primary bucket and the other bucket (i.e., the one computed by h2(x)) as the
secondary bucket. In both insertion and query, the algorithm looks for the primary bucket
first and only takes the secondary bucket if the primary bucket is full. Therefore, in order
to improve the throughput at query time, it is necessary to reduce the number of accesses
to the auxiliary bucket and random accesses. To achieve this, the AF chooses to encode the
eviction history of a bucket in terms of the order of the FPs stored in the bucket. Using a
bucket with four slots as an example, one can determine whether a bucket has performed
an eviction by comparing the FPs stored in the last two slots. If the FP stored in the fourth
slot is larger than the FP stored in the third slot, then the bucket has not performed an
eviction and the auxiliary bucket does not need to be queried.

Under continuous operation, the CF outperforms a host of other filters in terms of
efficiency. However, under high load, the CF suffers from low insertion throughput. The AF,
which is optimized on the basis of the CF, not only inherits the advantages of the CF, but also
outperforms the CF and most other filters under high load [73].

4.4. Position-Aware Cuckoo Filters

In the CF, for each FP, there are two candidate buckets. It is easy to think that the
false positive rate can be reduced if the bucket also stores information about the location of
the FP in the bucket—i.e., which bucket this is for this FP. Positon-Aware Cuckoo Filters
(PACFs) take advantage of this idea.

To achieve the above goal, it is easy to think of adding 1 bit to each FP to indicate the
bucket it belongs to. For example, if the last 1 bit of the FP is 0, this means that the FP is
located in the first bucket, i.e., bucket a1; if the last 1 bit of the FP is 1, it means that the FP

Electronics 2023, 12, 2809 12 of 23

is stored in bucket a2. This seems to be able to put the false alarm rate to half of the original
one. However, because the FP is increased by one bit, this again corresponds to increasing
the false positive rate by a factor of two.

Since increasing the number of bits of the FP is not feasible, we might as well think
differently; we can add a certain number of bits to the bucket to represent the location
information of the FP stored in the bucket. As shown in Figure 3, for a bucket with 4 slots,
the PACF adds two bits as the location information s and encodes the 4 slots as 0, 1, 2, and
3 from left to right. s = 2 in Figure 3, then for the FPs stored in Slots s to 4 (i.e., f p(w) and
f p(z)), this bucket is a1; for the FPs stored in Slots 0 to s− 1 (i.e., f p(x) and f p(y)), this
bucket is a2. Then, at query time, if this bucket is Bucket a1 for the queried element, then
only the FP of the queried element needs to be compared with f p(w) and f p(z). This also
reduces the false alarm rate to half of the original rate from a global view [69].

Figure 3. Marking of elements on a bucket in the position-aware Cuckoo filter.

4.5. Additive and Subtractive Cuckoo Filters

Huang et al. proposed a novel variant of the CF, the Additive and Subtractive Cuckoo
Filter (ASCF), to improve the space utilization of the CF. The biggest improvement of the
ASCF over the CF is the choice of replacing XOR operations with ADD/SUB operations
to compute the bucket indexes. By getting rid of the XOR operation, the ASCF does not
require the number of buckets to be a power of two, thus achieving higher space utilization
while maintaining the high lookup and update performance of the CF.

In the ASCF, the m buckets in the hash table are equally divided into two blocks,
and for an item x, its corresponding two candidate buckets are located within these two
blocks; the following is the insertion process. If item x is to be inserted, then the ASCF
first computes the fingerprint fx of x within each of the two blocks, the index h0(x) of the
bucket within Block 0, and the index h1(1) of the bucket within Block 1.

h0(x) : fx = G(x). (3)

The h0(x) in (3) is the index of the bucket of item x in Block 0 and the index of the
first candidate bucket of x in the range [0, . . . , m/2−1]. fx is the fingerprint of item x, ’:’ is
the concatenator, and G(x) is a hash corresponding to item x whose left part is the bucket
index h0(x) and whose right part is the fingerprint fx of x. Then, in Block 1, we use the
addition operation to compute the bucket index of the second candidate bucket.

h1(x) = (h0(x) + H(fx)mod m/2 + m/2). (4)

Equation (4) shows the calculation of the index h1(x) for the buckets in Block 1. H(fx)
ranges from [0, . . . , m/2−1], which is the number of buckets in each block. h1(x) ranges
from [m/2, . . . , m−1].

After the indexes of the two candidate buckets are computed, if either of the two
buckets is free, fx is inserted into that bucket. If both buckets are full, an eviction is
performed. The eviction process is to randomly insert fx into bucket h0(x) or bucket h1(x)
and then look for another candidate bucket of the evicted item. If the other candidate
bucket is also full, the eviction process is repeated until a bucket with a free slot is found
or the maximum number of evictions is reached. Equation (5) demonstrates the method to
calculate the candidate buckets for the evicted items.

Electronics 2023, 12, 2809 13 of 23

{
j = (i + H(g))mod m/2 + m/2 i f i ∈ block 0,

j = (i− H(g))mod m/2 i f i ∈ block 1.
(5)

The g in Equation (5) is the fingerprint of the evicted item, and j is the index of the
alternate bucket of the evicted item; we can see that the index of the alternate bucket is also
obtained by the addition/subtraction operation. Compared to the CF, the ASCF not only
maintains similar insertion and query throughput, but also reduces the space overhead by
a factor of 1.9 [74].

4.6. Vacuum Filters

Vacuum Filters (VFs) are a set of AMQ data structures for items that support near-
membership queries. Like most other AMQ data structures [5,11,75], vacuum filters may
report false positive results.

VFs have a smaller space overhead and higher insertion and query throughput than
other AMQ data structures. Thus, they are a more efficient and faster alternative to BFs
and CFs. VFs also store fingerprints in hash tables, just like CFs. However, VFs have
improved insertion and fingerprint eviction policies, thus enabling high load and data
locality without limiting table size [76].

4.7. Conditional Cuckoo Filters

Conditional CFs allow setting membership tests for a given predicate on a pre-
computed sketch. They are able to add equation predicates to queries. The filter also
introduces a new linking technique that allows CFs to handle the insertion of duplicate
keys [68]. This results in at least two significant benefits in joining processing. First, it
allows predicate-specific filters to be applied to both the build side and the probe side of
the connection. This increases the number of cases where the data structure created on the
build side fits into main memory. Second, it allows predicates to be pushed down from
one table to all other tables in the pass-through closure of the join graph. The number of
tuples that the connection must handle is significantly reduced. Instead of storing keys
and key pairs, conditional CFs store fingerprints or sketches of both and only the key
fingerprints. The use of attribute sketches greatly improves the functionality of filters at a
modest space cost.

Conditional CFs support two useful operations. Given an item x and a predicate P,
they test x whether the item belongs to Sp. In other words, if there are matching rows in the
input data, then it is Sp. As long as a predicate is given P, some variant of conditional CFs
will return the set Sp of Cuckoo filters. Like other approximate set membership sketches, it
maintains the property that false negative values cannot be returned.

Conditional CFs differ from Cuckoo hashes and filters in that the key may not be
unique in conditional CFs and require techniques for handling copies. The tuples can
share the same key, but have different properties. The use of linking techniques extends
the Cuckoo hash table to make it robust to duplicate keys and allows high load factors to
be achieved.

4.8. Marked Cuckoo Filter

One possible application area of CFs is for set representation in multi-set coordination
problems. However, if the CF is used for multi-set representation, it is necessary to establish
a correspondence between the elements stored in the buckets and the sets to which they
belong [77]. To solve this problem, the Marked CF (MCF) adds a few bits in each slot for
representing the affiliation information of the elements and calls these bits marker bits.

Similar to CFs, there are m buckets in MCFs and b slots in each bucket. However,
unlike CFs, each slot has marker bits of length n in addition to the fingerprint bits of length
f to indicate the adjunct information of the stored element, i.e., which set the element
belongs to. The length n of the marker bits is also the number of sets that the MCF needs to

Electronics 2023, 12, 2809 14 of 23

represent. If an element belongs to the set Si, then the i-th position of the marker bit of that
element is 1, thus establishing the correspondence between the element and the set.

The insertion process of the MCF is similar to the CF. For the element x to be inserted,
the MCF uses h1(x) = hash(x)%m and h2(x) = h1(x)

⊕
(hash(ηx)%m) computes the index

of its corresponding two candidate buckets, where ηx is the fingerprint of element x [38].
If either of the two buckets has a free slot, ηx is inserted; if both buckets are full, a fingerprint
is randomly evicted from either bucket to its spare bucket, and if the spare bucket is also
full, the eviction is performed again until a bucket with a free slot is found or the number
of evictions reaches a threshold.

5. Other Improved Structures

This section introduces two CF optimization schemes in terms of introducing the
compression structure and filter integration, respectively. Introducing a compression model
does not necessarily lead to a real space reduction, but it can effectively alleviate the bucket
overflow problem and reduce the false positive rate. Using filter integration, you can
effectively obtain the benefits of both the BF and CF while also having multiple filters to
easily handle data from multiple streams.

5.1. Compression Structure
5.1.1. Morton Filters

The MF is a typical example of a CF using a compressed structure. The MF, like the
CF, maintains a set of buckets with slots in each bucket for storing fingerprints, using two
hash functions H1() and H2() to select candidate buckets for elements.

The biggest difference between the MF and CF is the use of a compressed storage
format, the block. The size of the block is not fixed and is generally determined by the
storage medium (cache, SSD, etc.) on which the MF is located. The MCF stores its own
data in blocks, specifically a certain number of buckets and fingerprints in the buckets
are stored in each block, as well as metadata; the metadata are used to recover the logical
interpretation of the MF. Blocks are stored in a special storage structure, the block store.
In the MF, blocks have three main components—Fingerprint Storage Array (FSA), Fullness
Counter Array (FCA), and Overflow Tracking Array (OTA).

FSA: The FSA is an array that stores the fingerprints in the block. The slots in the block
that have fingerprints stored in them are stored in the FSA in close succession in bucket
order, while the free slots are all stored at the end of the buffer. Since only slots containing
fingerprints are stored in the FSA, the number of slots in the FSA will be much less than
the total number of slots in the block it is logically supposed to contain. This results in a
lightly loaded filter while keeping the FSA full and saving storage space.

FCA: The FCA uses a fullness counter to count the number of fingerprints stored in
each bucket in the block and uses this to encode all buckets in the block. With the help of
the FCA, the MCF can implement in situ reading and writing to the buckets stored with
sequence numbers in the FSA. For example, if we want to read the fingerprint information
stored in bucket FSA[3] , then we only need to calculate the sum of the fullness values
of the buckets FSA[0], FSA[1], and FSA[2] and use them as offsets to quickly locate the
position of the fingerprint in bucket FSA[3]. In addition, with the help of the FCA, the FSA
does not have to store any free slots, thus saving the time for comparison with empty slots
and improving the throughput of the filter [78].

OTA: The OTA can record the overflow of a block as a bit vector. When a fingerprint
overflow occurs in a block, the OTA keeps track of the overflow by setting a bit. When
querying a fingerprint in a block, the OTA can be used to determine whether the bucket
to which the fingerprint belongs has overflowed or not, and thus decide whether it is
necessary to query an alternate bucket. The OTA can help reduce the false alarm rate and
increase the throughput.

The MF has higher throughput and lower space cost compared to the CF. In addition, the
MF achieves a lower false alarm rate due to the reduced number of fingerprint comparisons.

Electronics 2023, 12, 2809 15 of 23

5.1.2. XOR+ Filters

The XOR filter was proposed by Dietzfelbinger and Pagh and was originally a variant
of the Bloomier filter. Compared to the Bloomier and Cuckoo filters, XOR filters have higher
lookup efficiency while requiring lower memory overhead. Graf and Lemire proposed the
XOR+ filter to further reduce the space overhead of XOR filters. XOR+ filters are more
compact than XOR filters while maintaining a higher speedup than Bloomier filters.

In the XOR filter, the slots used to store the fingerprints are logically organized in the
form of an array. The size of the array B, which is organized by all the slots, is determined
by the size of the set S of elements. For security purposes, the size of B is generally slightly
larger than the size of S. Specifically, if the capacity of the array B is represented by c,
then c ≈ 1.23× |S|. That is, there is about 19% of space in B that is empty. During the
transfer, the XOR+ filter will not transfer these empty slots in order to improve performance.
This is performed by first encoding a bit array based on the slot occupancy in Array B
before transmission, with a “1” meaning the slot is occupied and a “0” meaning the slot is
empty, and then sending the bit array. In this way, only those slots with fingerprints are
transmitted, thus increasing the query speed.

The compression operation can also be performed at runtime of the XOR+ filter, thus
saving runtime space. The XOR+ filter changes the original construction algorithm so
that each of the three hash functions has a corresponding queue, and each hash function
can map the elements into one third of the space of Table 1. The entries in the first two
queues are then processed first until they are empty before the third queue is processed.
This allows you to save space while maintaining good performance by moving most of the
empty entries to the last third of Table 1 and then constructing ranked data structures for
only that part.

5.2. Filter Integration
5.2.1. Cuckoo Filters with an Integrated Bloom Filter

Compared with the BF, the CF has a lower false alarm rate, and the CF supports
deletion operations, so the CF can be a good replacement for the BF in most cases. However,
the CF also has problems. The CF has more complex insertion operations than the BF.
The CF has poor performance when inserting at high occupancy. It is difficult for the
CF to support high speed and a large number of consecutive insertions. For this reason,
Reviriego et al. proposed the CFBF, which is a scheme to integrate the BF into the CF.

In the CFBF, in addition to four slots in each bucket, there is an additional Bloom filter
bit bf, as shown in Figure 4. In the following, we describe the insertion process in the CFBF.
For a new element x, x can be inserted either into the CF or into the BF, and the exact choice
is determined by the algorithm. The purpose of integrating the BF in the CF is to reduce the
time consumed by performing a large number of consecutive insertions in the CF at high
occupancy, so the CFBF sets a threshold for the number of insertions t. First, an insertion is
performed into the standard CF, and if the number of iterations of the insertion operation
reaches t, then the next BF insertion is performed [70]. The process of inserting x into the BF
is to first calculate h1(x) and h2(x) to obtain two buckets a1 and a2 and then set the bf bits
of both buckets a1 and a2 to 1 (in order to avoid conflicts), thus completing the insertion.

Figure 4. Structure of a bucket in the proposed CFBF.

From the above insertion process, we can deduce the lookup process of the CFBF.
For the element q with a query, the fingerprint FPq of q and the two buckets a1 and a2 are
calculated first. If the fingerprint f p matching FPq is found in a1 or a2, the lookup succeeds
and returns SUCCESS, which is the case of the element in the CF; if the bf bits of both
a1 and a2 are 1, SUCCESS is returned, which is the case of the element in BF. In addition,
to remove an element from the BF, simply set the bf bits of both buckets to 0.

Electronics 2023, 12, 2809 16 of 23

The evaluation showed that the CFBF can reduce the insertion time in the worst
case to one-tenth of the original one and improve the average insertion efficiency in the
high-occupancy case by more than 10-times the original one, compared with the standard
CF. The CFBF supports the operation of deleting the inserted elements.

5.2.2. Multiple Cuckoo Filter

In the era of big data, especially after the popularity of smartphones, the sources
of information that can provide data streams are becoming more and more abundant.
The information provided by a single data stream is often rather one-sided, and it is
difficult to meet the needs of relevant personnel. The information of multiple data streams
is often correlated, so the integration of multiple data streams can help us obtain more
comprehensive information, which requires filters that can be used for multi-dimensional
element membership queries.

To address the above problem, there are some studies that chose to improve on Bloom
filters, the core idea of which is to create a Bloom filter for each dimension, thus enabling
efficient membership queries. However, the existing schemes fail to address the problem
that it is impossible to determine whether an element exists in multiple data streams within
a certain time period. To solve this problem, Hu et al. proposed the Multiple Cuckoo Filter
(MCF) [40] based on existing schemes.

The MCF assigns a standard Cuckoo filter to each data stream, thus enabling the
decomposition of membership queries on a data stream-by-stream basis, with each Cuckoo
filter responsible for querying a single data stream. For different types of data streams,
the MCF also introduces a window mechanism, where the window size can be different
for each data stream. The window is used to split each data stream according to the time
period, and the fingerprints in the window are inserted into the corresponding CF of the
data stream. Since the head element of the window needs to be deleted and a new element
inserted at the end when the sliding window is dynamically changed, a queue is used as
the data structure of the sliding window. The motion direction of the sliding window is
shown in Figure 5.

Figure 5. MCF.

As shown in Figure 5, S1, S2, and Sn are different data streams, and the dashed boxes
indicate the sliding windows of each data stream with the sliding direction from top to
bottom. In Figure 5, S1 has a window size of 4, S2 has a window size of 6, and Sn has a
window size of 3. The elements in the window are inserted into the corresponding CF of
each data stream according to the standard CF insertion process. In Figure 5, it is necessary
to find element x in all data streams. For each data stream, the sliding window starts
from the starting position of the data stream to be processed and divides the data stream

Electronics 2023, 12, 2809 17 of 23

according to the window size and sliding interval. If the current Cuckoo filter is empty,
the fingerprint of all records in the window is inserted into its own Cuckoo filter; if it is
not empty, the Cuckoo filter is cleared, and then, the data in the window are inserted into
the Cuckoo filter. Check whether x exists in the current window. If so, the current window
stops sliding and returns true; otherwise, determine whether the current window has slid
to the end of the current data stream, and return false if so. Finally, determine whether
each data stream returns true. If all data streams return true, then x does exist in each data
stream. However, if any of the streams return false, this means that element x does not
exist in all streams for a certain period of time.

Since it is necessary to determine whether an element exists in more than one data
stream in a certain time period, the query for each element needs to retrieve all CFs.
Assuming that there are s data streams and filters in total and the false alarm rate of each
CF is εCF, then the false alarm rate of the MCF does not exceed 1− (1− εCF)s. The false
positive rate of the MCF considering the dynamic window is

εMCF = 1− (1− εCF)s·b(m−w+1)/kc+1 ≈ 2bs(m− w + 1)
k · 2 f . (6)

The s · b(m− w + 1)/k + 1c in (6) is the total number of comparisons performed; w is
the size of the sliding window; m is the number of records contained in each data stream; k
is the number of elements being moved each time. b represents the maximum number of
fingerprints that can be contained in each bucket of each CF, and f represents the length of
each fingerprint. It can be seen that, as with the CFs, the fingerprint length f has a relatively
large impact on the false alarm rate of the MCF.

6. Analysis and Exploration of Improvement Schemes
6.1. Scheme Analysis

The CF has had dozens of optimizations and variations since it was proposed in 2014,
and new schemes have been proposed in recent years. Table 2 provides a comparative
analysis of the 15 existing typical CF optimization schemes mentioned in this paper and
the standard CF in terms of four generality metrics: query, insertion performance, space
utilization, false alarm rate, and five aspects of usage scenarios, where

√
indicates that this

performance is optimized, × indicates that this performance is sacrificed, and − indicates
that this performance is unchanged or not comparable. Of these solutions, most are mainly
proposed for specific scenarios or as alternatives to the CF.

Table 2. Comparison of improvement schemes of the CF.

Filter Name
Performance Features

Application Scenarios
Inquiry Insertion Space Use False Positive Rate

Standard CF − − − − Proximate membership search
LACF − × −

√
IP address Lookup

ACF − − −
√

Proximate membership search
d-Ary CF × ×

√
− Very large collection

Consistent CF
√

−
√

− Flexible parameter adjustment
AF

√ √
− − Proximate membership search

PACF − − −
√

IP lookup and information retrieval
ASCF − −

√
− Proximate membership search

VF
√ √

− − Proximate membership search
Conditional CFs − − − − Join processing and other sets determined by predicates
Marked CF − − − − Multi-party collection
Multiple CF − − −

√
Membership queries for multiple data streams

CFBF −
√

−
√

Achieve continuous insertion of CFs
DCF

√ √ √
− Dynamic set

MF
√ √ √ √

Proximate membership search
XF

√
×

√
− Proximate membership search

Electronics 2023, 12, 2809 18 of 23

This paper first introduced two CF improvement schemes that optimize the hash
policy, essentially improving the CF operation logic. The improvement for hash functions
is a performance improvement for all application scenarios of CFs. Although CFs have
outstanding performance in query and delete operations, element insertion will require
an eviction operation due to hash collision, thus shifting the position of a large number of
irrelevant elements and resulting in wasted performance. The two schemes proposed in
this paper both use the hash function adaptively for different fingerprint entries, which can
effectively avoid the occurrence of hash collisions, which essentially solves the problem
of low CF insertion efficiency. Among them, the LACF also considers the use of differ-
ent insertion methods according to the prefix length prevalence of the routing entries,
and this scheme is suitable for data with an obvious division of the prefix length, such as
IP addresses.

The main CF optimization solutions for structural improvement are to increase the
functionality of CFs or to continue optimizing CFs to achieve full replacement. Among them,
conditional CFs handle collections of data determined by a set of predicates and intro-
duce new concatenation techniques that allow CFs to handle the insertion of duplicate
keys. Marked CFs target collections where there is some association between collection
elements. Marked CFs need to store the association between elements by jointly consid-
ering fingerprints and marker fields in slots. Marked CF naturally supports multi-party
set representation.

The CF improvement scheme of the compression structure was introduced mainly to
optimize its performance. The compression of filters using existing compression techniques
has theoretically demonstrated that such structural compression not only reduces space
usage, but also reduces the query misclassification rate of filters. Filter integration for
CFs, the inheritance of a BF, and the integration of a set of CFs are all designed to obtain
the advantages of the integrated part to compensate for the shortcomings of a single CF.
Among them, the BF can take advantage of its higher insertion efficiency than the CF to
improve the insertion efficiency and achieve continuous insertion of data. The query of
multiple data streams is divided into logical individual data streams, and a CF is provided
for each data stream to realize the processing of multiple data streams by the CF.

6.2. Future Development Prospects

After continuous improvement and optimization, the optimized solutions of CFs have
been greatly improved in terms of space utilization, false alarm rate, etc. However, in the
face of a wide range of usage scenarios, general-purpose CFs inevitably lack pertinence.
Therefore, it will be a hot issue for future research to further optimize existing schemes
to adapt them to a wide range of application scenarios. We see the potential of CFs for a
wide range of applications in machine learning and artificial intelligence to improve data
quality, improve model performance, and discover hidden patterns and features. Artificial
intelligence models are usually more sensitive to high-quality data, and CFs can help
remove noise, smooth data, and improve data quality [79]. This improves the training
effectiveness and performance of AI models [80]. CFs are able to identify and extract
important features and patterns in time series data. Combining them with AI can enhance
the model’s ability to learn these features and improve the accuracy and generalization
of the model [81]. However, the various current CF schemes have not yet been able to
implement these ideas well, so improvements in the structure and operational logic of CFs
are needed to further explore the potential of CFs.

The optimization of the hash strategy is a critical component of CFs; whether or not
the mapping is uniform is related to the efficiency of CFs’ space utilization, and collision in
finite space is a direct cause of CFs’ query misclassification rate. Although there must be
collisions of hash strategies in a finite space, its further exploration is an important direction
for the future.

Electronics 2023, 12, 2809 19 of 23

None of the current optimizations for CFs are considered from a privacy perspective.
It is also a worthwhile direction to consider whether the hash function can be replaced or
other more-secure and efficient encryption schemes can be incorporated.

With the increasing size of data and the gradual increase of interactions, it is difficult to
avoid the scenario of multi-collection data processing. There are still relatively few relevant
improvement solutions for multiple collection element queries.

In addition to improving the structure and operation logic of the CF itself, combining
it with new technologies is also an important improvement direction for CFs. For ex-
ample, we believe that CFs can be combined with neural networks so that CFs can gain
new advantages.

A Neural Network (NeN) is a computational model consisting of a large number of
artificial neurons (also called nodes or units), inspired by biological nervous systems [82,83].
It is widely used in the field of machine learning and artificial intelligence. Optimization of
Cuckoo filters using neural networks can provide the following benefits:

(1) Neural networks can learn more complex patterns and features, thus improving the
accuracy of CFs. By training the neural network, they can identify and filter more
accurate data and reduce the number of misclassifications and omissions.

(2) The neural network can automatically adjust the weights and model structure accord-
ing to the changes in input data to adapt to different data distributions and features.
This allows the CF to adapt and process better with better generalization ability when
facing new data.

(3) Neural networks are able to handle nonlinear relationships and complex features,
which can capture more semantic information and contextual associations. For text
data, neural networks can understand features at the lexical, syntactic, and semantic
levels to better distinguish between normal content and malicious attacks.

(4) The optimized CF can take advantage of the neural network to perform filtering
and judgment faster with the advantage of parallel computing. This is important for
data stream processing in real-time scenarios to improve response time and process-
ing efficiency.

(5) Neural networks are very scalable and can be extended to multi-layer, multi-type
network structures to accommodate more complex data analysis needs. This allows
CFs to handle a wider range of data types and tasks, with more powerful functions
and application potential.

In summary, the optimization of CFs using neural networks can improve accuracy,
be adaptable, handle complex features, be real-time, and have good scalability. This
will enhance CFs in terms of data processing and security protection, providing a better
experience and protection for users.

With the development of the big data era, CFs still have a wide scope of use due to
their compact space usage and efficient operation. They can also be optimized in all parts
and improved for specific application scenarios. Therefore, CFs will remain a major topic
in the future in the research area of high-performance queries.

7. Conclusions

With the increasing scale of data, more and more private information is transformed
into data. Many scenarios of collection element queries need to be carried out in massive
data with increasing requirements for performance, as well as privacy. With the emer-
gence of different CF improvement schemes, the insertion and lookup performance of
CFs is continuously improved, and space utilization is gradually improved while also
maintaining a low false alarm rate. This makes CFs the most-common tool for element
membership queries. In this paper, we introduced numerous CF improvement schemes
for different scenarios and CF alternatives, reviewed numerous CF improvement schemes
from four perspectives: the hashing strategy, the CF structure itself, the introduction of
the compression structure, and filter integration, and compared and analyzed the main

Electronics 2023, 12, 2809 20 of 23

performance metrics of CFs to provide a reference for possible future research directions
of CFs.

Author Contributions: Y.Z., W.D. and S.W. (Shiren Wang) were responsible for conceptual anal-
ysis, methodological analysis, and writing of the original draft. S.W. (Shenqing Wang) and L.X.
were responsible for the thesis revision and review. F.Z. was responsible for the review, supervi-
sion, and project administration. All authors have read and agreed to the published version of
the manuscript.

Funding: This work was supported by the National Key R&D Program of China (Grant No.
2021YFB3101104), and it was also supported by the National Natural Science Foundation of China
(Grant No. 62072249). This work was also supported by the National Key R&D Program of Guang-
dong Province (Grant No. 2020B0101090002) and the Natural Science Foundation of Jiangsu Province
(Grant No. BK20200418, BE2020106).

Data Availability Statement: No new data were created nor analyzed in this study. Data sharing is
not applicable to this article.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Liu, J.; Meng, X. Survey on privacy-preserving machine learning. J. Comput. Res. Dev. 2020, 57, 346–362.
2. Srivastava, J.; Maddheshiya, S. Retrieving the missing data from different incomplete soft sets. 3c Empres. Investig. Pensam. Crítico

2022, 11, 104–114. [CrossRef]
3. Ren, Y.; Huang, D.; Wang, W.; Yu, X. BSMD: A blockchain-based secure storage mechanism for big spatio-temporal data. Future

Gener. Comput. Syst. 2023, 138, 328–338. [CrossRef]
4. Paikrao, P.; Doye, D.; Bhalerao, M.; Vaidya, M. Verification of Role of Data Scanning Direction in Image Compression using Fuzzy

Composition Operations. 3c Tecnol. Glosas Innov. Apl. Pyme 2022, 11, 38–49. [CrossRef]
5. Yan, Y.; Ma, M.; Jiang, H. An efficient privacy preserving 4PC machine learning scheme based on secret sharing. J. Comput. Res.

Dev. 2022, 59, 2338–2347.
6. Fang, L.; Li, Y.; Yun, X.; Wen, Z.; Ji, S.; Meng, W.; Cao, Z.; Tanveer, M. THP: A novel authentication scheme to prevent multiple

attacks in SDN-based IoT network. IEEE Internet Things J. 2019, 7, 5745–5759. [CrossRef]
7. Yu, X.; Zhu, S.; Ren, Y. Continuous trajectory similarity search with result diversification. Future Gener. Comput. Syst. 2023,

143, 392–400. [CrossRef]
8. Ge, C.; Susilo, W.; Baek, J.; Liu, Z.; Xia, J.; Fang, L. A verifiable and fair attribute-based proxy re-encryption scheme for data

sharing in clouds. IEEE Trans. Dependable Secur. Comput. 2021, 19, 2907–2919. [CrossRef]
9. Wu, Q.; Xi, L.; Wang, S.; Ji, S.; Wang, S.; Ren, Y. Verifiable Delay Function and Its Blockchain-Related Application: A Survey.

Sensors 2022, 22, 7524. [CrossRef]
10. Ren, Y.; Leng, Y.; Cheng, Y.; Wang, J. Secure data storage based on blockchain and coding in edge computing. Math. Biosci. Eng.

2019, 16, 1874–1892. [CrossRef]
11. Bloom, B.H. Space/time trade-offs in hash coding with allowable errors. Commun. ACM 1970, 13, 422–426. [CrossRef]
12. Ge, C.; Susilo, W.; Liu, Z.; Xia, J.; Szalachowski, P.; Fang, L. Secure keyword search and data sharing mechanism for cloud

computing. IEEE Trans. Dependable Secur. Comput. 2020, 18, 2787–2800. [CrossRef]
13. Ren, Y.; Leng, Y.; Qi, J.; Sharma, P.K.; Wang, J.; Almakhadmeh, Z.; Tolba, A. Multiple cloud storage mechanism based on

blockchain in smart homes. Future Gener. Comput. Syst. 2021, 115, 304–313. [CrossRef]
14. Lu, J.; Zhu, L.; Gao, W. Remarks on bipolar cubic fuzzy graphs and its chemical applications. Int. J. Math. Comput. Eng. 2023, 1,

1–9.
15. Grissa, M.; Yavuz, A.A.; Hamdaoui, B. Cuckoo filter-based location-privacy preservation in database-driven cognitive radio

networks. In Proceedings of the 2015 World Symposium on Computer Networks and Information Security (WSCNIS), Hammamet,
Tunisia, 19–21 September 2015; IEEE: Piscataway, NJ, USA, 2015; pp. 1–7.

16. Gupta, V.; Breitinger, F. How Cuckoo filter can improve existing approximate matching techniques. In Proceedings of the Digital
Forensics and Cyber Crime: 7th International Conference, ICDF2C 2015, Seoul, Republic of Korea, 6–8 October 2015; Revised
Selected Papers 7; pp. 39–52.

17. Pagh, A.; Pagh, R.; Rao, S.S. An optimal bloom filter replacement. In Proceedings of the Sixteenth Annual ACM-SIAM Symposium
on Discrete Algorithms, Vancouver, BC, Canada, 23–25 January 2005; pp. 823–829.

18. Zhang, J.; Peng, S.; Gao, Y.; Zhang, Z.; Hong, Q. APMSA: Adversarial Perturbation Against Model Stealing Attacks. IEEE Trans.
Inf. Forensics Secur. 2023, 18, 1667–1679. [CrossRef]

19. Jiang, H.; Wang, M.; Zhao, P.; Xiao, Z.; Dustdar, S. A utility-aware general framework with quantifiable privacy preservation for
destination prediction in LBSs. IEEE/ACM Trans. Netw. 2021, 29, 2228–2241. [CrossRef]

http://doi.org/10.17993/3cemp.2022.110250.104-114
http://dx.doi.org/10.1016/j.future.2022.09.008
http://dx.doi.org/10.17993/3ctecno.2022.v11n2e42.38-49
http://dx.doi.org/10.1109/JIOT.2019.2944301
http://dx.doi.org/10.1016/j.future.2023.02.011
http://dx.doi.org/10.1109/TDSC.2021.3076580
http://dx.doi.org/10.3390/s22197524
http://dx.doi.org/10.3934/mbe.2019091
http://dx.doi.org/10.1145/362686.362692
http://dx.doi.org/10.1109/TDSC.2020.2963978
http://dx.doi.org/10.1016/j.future.2020.09.019
http://dx.doi.org/10.1109/TIFS.2023.3246766
http://dx.doi.org/10.1109/TNET.2021.3084251

Electronics 2023, 12, 2809 21 of 23

20. Li, B.; Zhou, X.; Ning, Z.; Guan, X.; Yiu, K.F.C. Dynamic event-triggered security control for networked control systems with
cyber-attacks: A model predictive control approach. Inf. Sci. 2022, 612, 384–398. [CrossRef]

21. Ma, J.; Hu, J. Safe consensus control of cooperative-competitive multi-agent systems via differential privacy. Kybernetika 2022,
58, 426–439. [CrossRef]

22. Broder, A.; Mitzenmacher, M. Network applications of bloom filters: A survey. Internet Math. 2004, 1, 485–509. [CrossRef]
23. Byers, J.; Considine, J.; Mitzenmacher, M.; Rost, S. Informed content delivery across adaptive overlay networks. ACM SIGCOMM

Comput. Commun. Rev. 2002, 32, 47–60. [CrossRef]
24. Li, Z.; Ross, K.A. Perf join: An alternative to two-way semijoin and bloomjoin. In Proceedings of the Fourth International

Conference on Information and Knowledge Management, Baltimore, MD, USA, 28 November–2 December 1995; pp. 137–144.
25. Mullin, J.K. Optimal semijoins for distributed database systems. IEEE Trans. Softw. Eng. 1990, 16, 558–560. [CrossRef]
26. Mullin, J.K. Estimating the size of a relational join. Inf. Syst. 1993, 18, 189–196. [CrossRef]
27. Mullin, J.K.; Margoliash, D.J. A tale of three spelling checkers. Softw. Pract. Exp. 1990, 20, 625–630. [CrossRef]
28. McIlroy, M. Development of a spelling list. IEEE Trans. Commun. 1982, 30, 91–99. [CrossRef]
29. Fu, A.; Zhang, X.; Xiong, N.; Gao, Y.; Wang, H.; Zhang, J. VFL: A verifiable federated learning with privacy-preserving for big

data in industrial IoT. IEEE Trans. Ind. Inform. 2020, 18, 3316–3326. [CrossRef]
30. Kumar, P.; Kumar, R.; Srivastava, G.; Gupta, G.P.; Tripathi, R.; Gadekallu, T.R.; Xiong, N.N. PPSF: A privacy-preserving and secure

framework using blockchain-based machine-learning for IoT-driven smart cities. IEEE Trans. Netw. Sci. Eng. 2021, 8, 2326–2341.
[CrossRef]

31. Chiu, W.Y.; Meng, W. EdgeTC-a PBFT blockchain-based ETC scheme for smart cities. Peer-to-Peer Netw. Appl. 2021, 14, 2874–2886.
[CrossRef]

32. Meng, F.; Xiao, X.; Wang, J. Rating the crisis of online public opinion using a multi-level index system. arXiv 2022, arXiv:2207.14740.
33. Yao, Y.; Xiong, N.; Park, J.H.; Ma, L.; Liu, J. Privacy-preserving max/min query in two-tiered wireless sensor networks. Comput.

Math. Appl. 2013, 65, 1318–1325. [CrossRef]
34. Wang, J.; Ju, C.; Gao, Y.; Sangaiah, A.K.; Kim, G.J. A PSO based energy efficient coverage control algorithm for wireless sensor

networks. Comput. Mater. Contin 2018, 56, 433–446.
35. Chen, Y.; Zhou, L.; Pei, S.; Yu, Z.; Chen, Y.; Liu, X.; Du, J.; Xiong, N. KNN-BLOCK DBSCAN: Fast clustering for large-scale data.

IEEE Trans. Syst. Man Cybern. Syst. 2019, 51, 3939–3953. [CrossRef]
36. Ge, C.; Susilo, W.; Baek, J.; Liu, Z.; Xia, J.; Fang, L. Revocable attribute-based encryption with data integrity in clouds. IEEE Trans.

Dependable Secur. Comput. 2021, 19, 2864–2872. [CrossRef]
37. Mitzenmacher, M.; Pontarelli, S.; Reviriego, P. Adaptive Cuckoo Filters. ACM J. Exp. Algorithmics 2020, 25, 1–20 [CrossRef]
38. Luo, L.; Guo, D.; Zhao, Y.; Rottenstreich, O.; Ma, R.T.; Luo, X. MCFsyn: A multi-party set reconciliation protocol with the marked

Cuckoo filter. IEEE Trans. Parallel Distrib. Syst. 2021, 32, 2705–2718. [CrossRef]
39. Graf, T.M.; Lemire, D. XOR filters: Faster and smaller than bloom and Cuckoo filters. J. Exp. Algorithmics (JEA) 2020, 25, 1–16.

[CrossRef]
40. Hu, Z.; Wu, M.; Fan, X.; Wang, Y.; Xu, C. MCF: Towards Window-Based Multiple Cuckoo Filter in Stream Computing. In

Proceedings of the Big Data—BigData 2020: 9th International Conference, Held as Part of the Services Conference Federation,
SCF 2020, Honolulu, HI, USA, 18–20 September 2020; pp. 101–115.

41. Mitzenmacher, M.; Vadhan, S.P. Why simple hash functions work: Exploiting the entropy in a data stream. In Proceedings of the
SODA; Citeseer: Philadelphia, PA, USA, 2008; Volume 8, pp. 746–755.

42. Pagh, R.; Rodler, F.F. Cuckoo hashing. J. Algorithms 2004, 51, 122–144. [CrossRef]
43. Eppstein, D. Cuckoo filter: Simplification and analysis. arXiv 2016, arXiv:1604.06067.
44. Fan, B.; Andersen, D.G.; Kaminsky, M. Memc3: Compact and concurrent memcache with dumber caching and smarter hashing.

In Proceedings of the 10th USENIX Symposium on Networked Systems Design and Implementation (NSDI 13), Lombard, IL,
USA, 2–5 April 2013; pp. 371–384.

45. Fan, L.; Cao, P.; Almeida, J.; Broder, A.Z. Summary cache: A scalable wide-area web cache sharing protocol. IEEE/ACM Trans.
Netw. 2000, 8, 281–293. [CrossRef]

46. Hua, W.; Gao, Y.; Lyu, M.; Xie, P. Research on Bloom filter: A survey. J. Comput. Appl. 2022, 42, 1729.
47. Fan, B.; Andersen, D.G.; Kaminsky, M.; Mitzenmacher, M.D. Cuckoo filter: Practically better than bloom. In Proceedings of the

10th ACM International on Conference on emerging Networking Experiments and Technologies, Sydney, Australia, 2–5 December
2014; pp. 75–88.

48. Kwon, M.; Reviriego, P.; Pontarelli, S. A length-aware Cuckoo filter for faster IP lookup. In Proceedings of the 2016 IEEE
Conference on Computer Communications Workshops (INFOCOM WKSHPS), San Francisco, CA, USA, 10–14 April 2016; IEEE:
Piscataway, NJ, USA, 2016; pp. 1071–1072.

49. Wang, J.; Gao, Y.; Liu, W.; Sangaiah, A.K.; Kim, H.J. An intelligent data gathering schema with data fusion supported for mobile
sink in wireless sensor networks. Int. J. Distrib. Sens. Netw. 2019, 15, 1550147719839581. [CrossRef]

50. Ren, Y.; Zhu, F.; Sharma, P.K.; Wang, T.; Wang, J.; Alfarraj, O.; Tolba, A. Data query mechanism based on hash computing power
of blockchain in internet of things. Sensors 2019, 20, 207. [CrossRef] [PubMed]

http://dx.doi.org/10.1016/j.ins.2022.08.093
http://dx.doi.org/10.14736/kyb-2022-3-0426
http://dx.doi.org/10.1080/15427951.2004.10129096
http://dx.doi.org/10.1145/964725.633031
http://dx.doi.org/10.1109/32.52778
http://dx.doi.org/10.1016/0306-4379(93)90037-2
http://dx.doi.org/10.1002/spe.4380200607
http://dx.doi.org/10.1109/TCOM.1982.1095395
http://dx.doi.org/10.1109/TII.2020.3036166
http://dx.doi.org/10.1109/TNSE.2021.3089435
http://dx.doi.org/10.1007/s12083-021-01119-0
http://dx.doi.org/10.1016/j.camwa.2012.02.003
http://dx.doi.org/10.1109/TSMC.2019.2956527
http://dx.doi.org/10.1109/TDSC.2021.3065999
http://dx.doi.org/10.1145/3339504
http://dx.doi.org/10.1109/TPDS.2021.3074440
http://dx.doi.org/10.1145/3376122
http://dx.doi.org/10.1016/j.jalgor.2003.12.002
http://dx.doi.org/10.1109/90.851975
http://dx.doi.org/10.1177/1550147719839581
http://dx.doi.org/10.3390/s20010207
http://www.ncbi.nlm.nih.gov/pubmed/31905910

Electronics 2023, 12, 2809 22 of 23

51. Shi, Y.; Li, H.; Fu, X.; Luan, R.; Wang, Y.; Wang, N.; Sun, Z.; Niu, Y.; Wang, C.; Zhang, C.; et al. Self-powered difunctional sensors
based on sliding contact-electrification and tribovoltaic effects for pneumatic monitoring and controlling. Nano Energy 2023,
110, 108339. [CrossRef]

52. Wang, J.; Gu, X.; Liu, W.; Sangaiah, A.K.; Kim, H.J. An empower hamilton loop based data collection algorithm with mobile
agent for WSNs. Hum.-Centric Comput. Inf. Sci. 2019, 9, 18. [CrossRef]

53. Sankar Chatterjee, P.; Roy, M. Lightweight cloned-node detection algorithm for efficiently handling SSDF attacks and facilitating
secure spectrum allocation in CWSNs. IET Wirel. Sens. Syst. 2018, 8, 121–128. [CrossRef]

54. Sajitha, M.; Kavitha, D.; Reddy, P.C. An Optimized Clone Node Detection in WSN Using Cuckoo Filter. SN Comput. Sci. 2023,
4, 167. [CrossRef]

55. Wang, Y.; Yang, Y.; Qiu, X.; Ke, Y.; Wang, Q. CCF-LRU: Hybrid storage cache replacement strategy based on counting Cuckoo
filter hot-probe method. Appl. Intell. 2022, 52, 5144–5158. [CrossRef]

56. Yuan, F.; Wang, K.; Hou, R.; Li, X.; Li, P.; Zhao, L.; Ying, J.; Awad, A.; Meng, D. PiPoMonitor: Mitigating cross-core cache attacks
using the auto-Cuckoo filter. In Proceedings of the 2021 Design, Automation & Test in Europe Conference & Exhibition (DATE),
Grenoble, France, 1–5 February 2021; IEEE: Piscataway, NJ, USA, 2021; pp. 1697–1702.

57. Mosharraf, S.I.M.; Adnan, M.A. Improving Query Execution Performance in Big Data using Cuckoo Filter. In Proceedings of the
2018 IEEE International Conference on Big Data (Big Data), Seattle, WA, USA, 10–13 December 2018; IEEE: Piscataway, NJ, USA,
2018; pp. 1079–1084.

58. Krishna, R.S.; Tekur, C.; Bhashyam, R.; Nannaka, V.; Mukkamala, R. Using Cuckoo Filters to Improve Performance in Object
Store-based Very Large Databases. In Proceedings of the 2023 IEEE 13th Annual Computing and Communication Workshop and
Conference (CCWC), Las Vegas, NV, USA, 8–11 March 2023; IEEE: Piscataway, NJ, USA, 2023; pp. 0795–0800.

59. Wang, J.; Gao, Y.; Liu, W.; Wu, W.; Lim, S.J. An asynchronous clustering and mobile data gathering schema based on timer
mechanism in wireless sensor networks. Comput. Mater. Contin 2019, 58, 711–725. [CrossRef]

60. Shafeeq, S.; Zeadally, S.; Alam, M.; Khan, A. Curbing address reuse in the iota distributed ledger: A Cuckoo-filter-based approach.
IEEE Trans. Eng. Manag. 2019, 67, 1244–1255. [CrossRef]

61. Mosharraf, S.I.M.; Adnan, M.A. Improving lookup and query execution performance in distributed Big Data systems using
Cuckoo Filter. J. Big Data 2022, 9, 12. [CrossRef]

62. Wang, J.; Gao, Y.; Yin, X.; Li, F.; Kim, H.J. An enhanced PEGASIS algorithm with mobile sink support for wireless sensor networks.
Wirel. Commun. Mob. Comput. 2018, 2018, 9472075. [CrossRef]

63. Shi, Y.; Li, L.; Yang, J.; Wang, Y.; Hao, S. Center-based Transfer Feature Learning With Classifier Adaptation for surface defect
recognition. Mech. Syst. Signal Process. 2023, 188, 110001. [CrossRef]

64. Ren, Y.; Zhu, F.; Wang, J.; Sharma, P.K.; Ghosh, U. Novel vote scheme for decision-making feedback based on blockchain in
internet of vehicles. IEEE Trans. Intell. Transp. Syst. 2021, 23, 1639–1648. [CrossRef]

65. Soleymani, S.A.; Goudarzi, S.; Anisi, M.H.; Kama, N.; Adli Ismail, S.; Azmi, A.; Zareei, M.; Hanan Abdullah, A. A trust model
using edge nodes and a Cuckoo filter for securing VANET under the NLoS condition. Symmetry 2020, 12, 609. [CrossRef]

66. Wang, Z.; Wang, H.; Wang, Y.; Yang, X. CLASRM: A lightweight and secure certificateless aggregate signature scheme with
revocation mechanism for 5G-enabled vehicular networks. Wirel. Commun. Mob. Comput. 2022, 2022, 3646960. [CrossRef]

67. Xie, Z.; Ding, W.; Wang, H.; Xiao, Y.; Liu, Z. d-Ary Cuckoo Filter: A space efficient data structure for set membership lookup. In
Proceedings of the 2017 IEEE 23rd International Conference on Parallel and Distributed Systems (ICPADS), Shenzhen, China,
15–17 December 2017; IEEE: Piscataway, NJ, USA, 2017; pp. 190–197.

68. Chen, H.; Liao, L.; Jin, H.; Wu, J. The dynamic Cuckoo filter. In Proceedings of the 2017 IEEE 25th International Conference on
Network Protocols (ICNP), Toronto, ON, Canada, 10–13 October 2017; IEEE: Piscataway, NJ, USA, 2017; pp. 1–10.

69. Kwon, M.; Shankar, V.; Reviriego, P. Position-aware Cuckoo filters. In Proceedings of the 2018 Symposium on Architectures for
Networking and Communications Systems, Ithaca, NY, USA, 23–24 July 2018; pp. 151–153.

70. Reviriego, P.; Martínez, J.; Pontarelli, S. Cfbf: Reducing the insertion time of Cuckoo filters with an integrated bloom filter. IEEE
Commun. Lett. 2019, 23, 1857–1861. [CrossRef]

71. Luo, L.; Guo, D.; Rottenstreich, O.; Ma, R.T.; Luo, X.; Ren, B. The consistent Cuckoo filter. In Proceedings of the IEEE INFOCOM
2019-IEEE Conference on Computer Communications, Paris, France, 29 April–2 May 2019; IEEE: Piscataway, NJ, USA, 2019;
pp. 712–720.

72. Ting, D.; Cole, R. Conditional Cuckoo filters. In Proceedings of the 2021 International Conference on Management of Data, Xi’an,
China, 20–25 June 2021; pp. 1838–1850.

73. Oh, H.; Cho, B.; Kim, C.; Park, H.; Seo, J. Anifilter: Parallel and failure-atomic Cuckoo filter for non-volatile memories. In
Proceedings of the Fifteenth European Conference on Computer Systems, Heraklion, Greece, 27–30 April 2020; pp. 1–15.

74. Huang, K.; Yang, T. Additive and subtractive Cuckoo filters. In Proceedings of the 2020 IEEE/ACM 28th International Symposium
on Quality of Service (IWQoS), Hang Zhou, China, 15–17 June 2020; IEEE: Piscataway, NJ, USA, 2020; pp. 1–10.

75. Bender, M.A.; Farach-Colton, M.; Johnson, R.; Kuszmaul, B.C.; Medjedovic, D.; Montes, P.; Shetty, P.; Spillane, R.P.; Zadok, E.
Don’t thrash: How to cache your hash on flash. In Proceedings of the 3rd Workshop on Hot Topics in Storage and File Systems
(HotStorage 11), Portland, OR, USA, 14 June 2011.

76. Wang, M.; Zhou, M. Vacuum filters: More space-efficient and faster replacement for bloom and Cuckoo filters. Proc. VLDB
Endow. 2019. [CrossRef]

http://dx.doi.org/10.1016/j.nanoen.2023.108339
http://dx.doi.org/10.1186/s13673-019-0179-4
http://dx.doi.org/10.1049/iet-wss.2016.0065
http://dx.doi.org/10.1007/s42979-022-01586-z
http://dx.doi.org/10.1007/s10489-021-02567-0
http://dx.doi.org/10.32604/cmc.2019.05450
http://dx.doi.org/10.1109/TEM.2019.2922710
http://dx.doi.org/10.1186/s40537-022-00563-w
http://dx.doi.org/10.1155/2018/9472075
http://dx.doi.org/10.1016/j.ymssp.2022.110001
http://dx.doi.org/10.1109/TITS.2021.3100103
http://dx.doi.org/10.3390/sym12040609
http://dx.doi.org/10.1155/2022/3646960
http://dx.doi.org/10.1109/LCOMM.2019.2930508
http://dx.doi.org/10.14778/3364324.3364333

Electronics 2023, 12, 2809 23 of 23

77. Bawankar, B.; Chinnaiah, K. Implementation of ensemble method on DNA data using various cross validation techniques. 3c
Tecnol. Glosas Innov. Apl. Pyme 2022, 11, 59–69. [CrossRef]

78. Breslow, A.D.; Jayasena, N.S. Morton filters: Faster, space-efficient Cuckoo filters via biasing, compression, and decoupled logical
sparsity. Proc. VLDB Endow. 2018, 11, 1041–1055. [CrossRef]

79. Qi, W.; Ovur, S.E.; Li, Z.; Marzullo, A.; Song, R. Multi-sensor guided hand gesture recognition for a teleoperated robot using a
recurrent neural network. IEEE Robot. Autom. Lett. 2021, 6, 6039–6045. [CrossRef]

80. Tian, C.; Xu, Z.; Wang, L.; Liu, Y. Arc fault detection using artificial intelligence: Challenges and benefits. Math. Biosci. Eng. 2023,
20, 12404–12432. [CrossRef]

81. Qi, W.; Aliverti, A. A multimodal wearable system for continuous and real-time breathing pattern monitoring during daily
activity. IEEE J. Biomed. Health Inform. 2019, 24, 2199–2207. [CrossRef] [PubMed]

82. Liu, Z.; Yang, D.; Wang, Y.; Lu, M.; Li, R. EGNN: Graph structure learning based on evolutionary computation helps more in
graph neural networks. Appl. Soft Comput. 2023, 135, 110040. [CrossRef]

83. Wang, Y.; Liu, Z.; Xu, J.; Yan, W. Heterogeneous Network Representation Learning Approach for Ethereum Identity Identification.
IEEE Trans. Comput. Soc. Syst. 2022. [CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

http://dx.doi.org/10.17993/3ctecno.2022.v11n2e42.59-69
http://dx.doi.org/10.14778/3213880.3213884
http://dx.doi.org/10.1109/LRA.2021.3089999
http://dx.doi.org/10.3934/mbe.2023552
http://dx.doi.org/10.1109/JBHI.2019.2963048
http://www.ncbi.nlm.nih.gov/pubmed/31902783
http://dx.doi.org/10.1016/j.asoc.2023.110040
http://dx.doi.org/10.1109/TCSS.2022.3164719

	Introduction
	Advantages and Main Uses of Cuckoo Filters
	Cuckoo Filters and Privacy Protection
	Recent Developments to Cuckoo Filters
	Motivation and Our Contributions

	Standard Cuckoo Filter
	Cuckoo Hash
	Standard Cuckoo Filter
	Basic Operation of the Cuckoo Filter
	Dimensions of the Drum

	Application Scenarios
	Some Related Studies on the Improvement of Cuckoo Filters

	Cuckoo Filter for Improving Cuckoo Strategy
	Length-Aware Cuckoo Filter
	Adaptive Cuckoo Filters

	Improved Structure of Cuckoo Filter
	d-Ary Cuckoo Filter
	Consistent Cuckoo Filter
	AniFilter
	Position-Aware Cuckoo Filters
	Additive and Subtractive Cuckoo Filters
	Vacuum Filters
	Conditional Cuckoo Filters
	Marked Cuckoo Filter

	Other Improved Structures
	Compression Structure
	Morton Filters
	XOR+ Filters

	Filter Integration
	Cuckoo Filters with an Integrated Bloom Filter
	Multiple Cuckoo Filter

	Analysis and Exploration of Improvement Schemes
	Scheme Analysis
	Future Development Prospects

	Conclusions
	References

