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Abstract: The rapid development of mobile devices and wireless network technologies have made
them indispensable. This has created a demand for faster networks and longer battery life. The
assurance of a stable network service and the enhancement of network experiences for mobile
devices is equally crucial to meeting these demands. To address these challenges, mobile devices
employ various techniques to decrease power consumption when they connect to wireless networks.
Moreover, enhancing the endurance of mobile devices to maintain stable network services is critical
when using wireless networks. In this paper, we propose a dual-radio opportunistic network for
energy efficiency (DRONEE)–exponential weight with priority-based on rate control (WPRC) method
which can extend and enhance the DRONEE hybrid network. By leveraging fuzzy logic control (FLC)
and quality of service (QoS), our proposed method effectively solves the weighting problem in the
DRONEE–weight (DRONEE–W) method. Through efficient allocation of network resources within
each cluster, we minimize resource wastage and maximize resource utilization. Simulation results
demonstrate the superior performance of our DRONEE–WPRC method in terms of throughput,
buffer size, delay time, and power consumption compared to other methods. Therefore, our proposed
method achieves optimal network resource allocation and energy efficiency.

Keywords: long-term evolution; cluster topology; fuzzy logic control; quality of service; energy
efficiency

1. Introduction

The rapid development and advancement of mobile devices and wireless network
technology have made them indispensable in daily life. Essentially, all social activities
can be performed and coordinated through smartphones. These activities include social
networking, browsing information, instant messaging, gaming, sending and receiving
emails, and viewing the stock market. As a result, there has been a growing requirement
for faster mobile networks and longer battery life [1,2]. This trend has led the way for
the emergence of green communications and networks that can be satisfied by employ-
ing various approaches, such as utilizing energy harvesting technology [3–6], artificial
intelligence employed for resource management [7], leveraging renewable energy [8], and
reducing energy wastage [9]. Specifically, energy harvesting technology collects energy
from energy sources such as wind, solar, kinetic, and radio frequency signals. Harvesting
energy from radio frequency signals has sparked interest in these signals that can be used
for energy harvesting and data transmission. By leveraging radio frequency energy har-
vesting technology, wireless sensors can be operated more efficiently [3,4]. Radio frequency
energy harvesting technology is integrated with cognitive radio networks [5,6]. This has
effectively solved spectrum shortage and insufficient energy through energy transmission
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and data transmission. Radio frequency energy harvesting technology is an important
issue in wireless sensor networks. The overarching goal of green communications and
networks is to reduce power consumption, minimize environmental damage, and promote
a more sustainable information and communication technology ecosystem.

The performance of previous cellular networks was mostly focused on the distribution
of traffic [10,11] and traffic pattern learning [12]. These technologies are mainly to increase
the period when the mobile device can turn off the wireless network, such as when the
smartphone is on standby or when there is no network signal. There is also literature sug-
gesting a method of delaying data transmission when there is no wireless network signal,
and then performing the transmission after the wireless network is connected. However,
these methods have disadvantages, such as causing additional system delays, leading to
real-time confusion, inflexible services, and the utilization of complex traffic estimation
or aggregation of traffic statistics from different applications. The existing literature has
not considered the simultaneous use of one or more wireless interfaces to improve energy
consumption [13,14]. Although some documents use multiple wireless modules to improve
performance, these methods primarily focus on coordinating the balance of multiple paral-
lel connections, such as multipoint transmission, multiplayer games, and device to device
communications [15]. This paper uses the concept of the wireless sensor network [16,17].
It employs clusters and cluster heads to transfer data. It combines long-term evolution
(LTE) cellular networks and wireless fidelity (Wi-Fi) networks to propose a hybrid network
that can fully utilize the resources of two network interfaces. Additionally, it incorporates
a fuzzy logic control (FLC) algorithm to automatically determine the optimal timing for
utilizing the hybrid network. This innovative approach enhances network speed and
network quality so that it significantly reduces the power consumption of mobile devices.

The dual-radio opportunistic network for energy efficiency (DRONEE) hybrid network
was proposed in [18]. In the DRONEE method, users are grouped into clusters, and a
cluster head is selected to establish communication with the base station. The DRONEE
method has various schemes. The DRONEE–weight (DRONEE–W) method is utilized for
allocating network resources in LTE networks. These clusters are interconnected through a
Wi-Fi network, and each cluster is responsible for transmitting data to the evolved node B
(eNB) via the cluster head [19]. In the DRONEE–W method, the system selects the node
within each cluster with the best communication quality as the cluster head and uses the
weighted round-robin (WRR) scheduling method to allocate resources for ensuring traffic
that it is appropriately allocated to each node in the cluster. However, there is a limitation
of the DRONEE–W method, which is its exclusive reliance on cluster size for resource
allocation. This disregards the network demands of individual users. Consequently,
the DRONEE–W method may lead to uneven resource allocation across users, and this
potentially affects overall network performance. To address this, this paper proposes
the DRONEE–exponential weight with priority-based rate control (WPRC) method. It
enhances the performances of the DRONEE–W method and extends its application. The
DRONEE–WPRC method utilizes the FLC algorithm and quality of service (QoS) [20,21]
mechanism to efficiently allocate network resources within each cluster. Our objective is
to improve the DRONEE–W method by adjusting network speed and resource allocation
through weight and priority-based approaches. This optimizes the utilization of network
resources. The primary objective of this paper can enhance the user’s wireless network
experience, promote energy efficiency, and extend the battery life of their devices.

This paper includes several sections. Section 2 provides a discussion of the relevant
literature. In Section 3, we present the dual-radio opportunistic networking for energy
efficiency-exponential weight with priority-based rate control (DRONEE–WPRC) method
in detail. Section 4 focuses on the presentation of the simulation. Finally, in Section 5, we
conclude the paper by summarizing the proposed method and its contributions.
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2. Related Work
2.1. Dual-Radio Opportunistic Networking for Energy Efficiency (DRONEE)

The DRONEE [18] method utilizes a cluster-based approach to group users together
with each cluster appointing a cluster head that improves energy efficiency and optimizes
the utilization of LTE cellular networks. The cluster head is responsible for communicating
with the evolved eNB. The eNB is an LTE terminology referring to the LTE cellular net-
work infrastructure that is commonly known as a base station. This cluster head ensures
efficient data transmission and network access for all members within the cluster. Users
are connected through an energy efficient secondary wireless interface, such as Wi-Fi net-
works. The cluster head is responsible for high power consumption LTE communication
with the base station [22,23]. DRONEE method’s cluster-based formation enables lower
power consumption and contributes to an overall improvement in energy efficiency. This is
because the DRONEE method’s cluster head selection process is determined on a per-frame
basis. Therefore, its scheduling strategy is channel-opportunistic. This paper focuses on
improving the DRONEE–W method, which utilizes the WRR scheduling method. The
architecture of the DRONEE method is illustrated in Figure 1.
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In the cluster, the user with the best channel communication quality is selected to
serve as the cluster head and is responsible for communicating with the base station.
The DRONEE–W method emphasizes simplicity in its mechanisms. The complexity of
throughput-fair opportunistic operations presents significant challenges for practical im-
plementation in real systems [24]. Undoubtedly, pure opportunistic schedulers can be
straightforward to implement and execute without requiring user cooperation. However,
they often result in unfair behavior [25].

The results of [18] indicate that the DRONEE–W method can achieve high energy
efficiency without sacrificing throughput fairness. Even when it employs a simple op-
portunistic mechanism. The DRONEE–W method simplifies scheduling complexity by
allowing the base station to communicate only with the cluster head, since the base station
only communicates with the cluster head and treats the cluster as a unit. The cluster
members are scheduled based on their total traffic demand. From the perspective of model
deployment, a cluster can be seen as a user within the cluster with the best base station
connectivity. Under the DRONEE–W method, the base station plans multiple clusters
for scheduling instead of counting individual users. This process indicates that the base
station only provides the service to cluster, and the transmission is managed by the current
cluster head.
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2.2. Fuzzy Logical Control (FLC)

Since 1965, the FLC algorithm proposed by Zadeh, L. [26] has been widely employed
in various fields of technology, especially in wireless sensor networks [27–31]. The FLC
algorithm consists of four main components: fuzzification, fuzzy rules, fuzzy inference, and
defuzzification. Fuzzification involves converting input parameter values into fuzzy logic
and mapping them to their corresponding membership functions to determine the output
membership degree. Fuzzy rules store all the potential rules of the input terminal, which
are established based on experts’ experience or training from samples. Fuzzy inference
occurs when the input parameter values satisfy one or more applicable rules. This process
results in an appropriate output. Defuzzification is the process of converting the fuzzy
inference result into an actual value that addresses the problem. For example, we consider
an input terminal that is fuzzified to derive an output membership degree, which is then
used to determine the output selection based on the fuzzy rules and fuzzy inference. Finally,
defuzzification converts the fuzzy inference result into an exact value using methods such
as the mean of maximum or center of gravity. The flowchart of the FLC algorithm is
depicted in Figure 2.
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3. Dual-Radio Opportunistic Networking for Energy Efficiency—Exponential Weight
with Priority-Based Rate Control (DRONEE–WPRC)

After establishing a cluster, the DRONEE–W method assigns network resources to each
cluster based on the weight of the cluster using the WRR scheduling method. To address
the challenges associated with scheduling network resources for individual members of
varying demand within the cluster, this paper proposes the DRONEE–WPRC method. Our
proposed method incorporates a QoS mechanism [20,21] through FLC. We solve the WRR
network resource scheduling problem described in Section 3.1.

In this section, we introduce the algorithm for improving the scheduling of network
resources and propose the DRONEE–WPRC method. Our approach combines the FLC
algorithm and weights to regulate the optimal transfer rate of the sink node. Addition-
ally, our proposed method incorporates the priority-based rate control algorithm [32] to
determine the transmission rate of the aggregation node. By considering factors that the
WRR scheduling method cannot address, our proposed method improves the efficiency of
network resource scheduling. Consequently, all cluster members referred to as child nodes
can fully utilize the network resources and lead to a reduction in delay time.

In each round of the DRONEE–WPRC method, a cluster head is selected, and the
selected cluster head counts packet types for users within the cluster to allocate network
resources accordingly. The packets are categorized into four types: video stream, audio,
image, and text. The packets are prioritized in the same order as their categories. When
there are multiple categories of packets to be transmitted, the category with the highest
priority is processed first.

Initially, the cluster head acquires traffic based on the assigned weight and subse-
quently categorizes it according to the priority of the cluster members. The processed
traffic is then transmitted back to the base station as information. At the base station, the
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total demand traffic and idle traffic for the round are consolidated, and the new weight for
each cluster is calculated. This allows for the estimation of the optimal network resource
allocation for the cluster in the next round. The overall workflow of the DRONEE–WPRC
method is illustrated in Figure 3.
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3.1. Addressing Scheduling Problems and Proposing Improvements

In this section, we introduce the utilization of the QoS mechanism in the DRONEE–
WPRC method to address the network resource scheduling problem in the DRONEE–W
method. This problem is attributed to the limitations of the WRR scheduling method.

In the DRONEE method, the weight wn corresponds to each cluster Cn. It can be
assigned using various methods. In the case of the DRONEE–W method, weights are as-
signed based on the size of the cluster. The calculation of resource weights wn is determined
as follows:

wn =
Nn

N
(1)

where Nn represents the number of members in cluster Cn and N represents the number of
all users under the network.

When the WRR scheduling method allocates all the upload resources, Stot, within the
frame, the average aggregate throughput and the average throughput of each user can be
calculated using the equations described below.

In the DRONEE–W method, the average throughput received by cluster Cn, E[TCn ] is
given as follows:

E[TCn ] = wnStot

M

∑
k=1

π
(Cn)
k bk , n ∈ {1, . . . , NC} (2)

In the DRONEE–W method, the average throughput received by user i ∈ Cn, E[Ti] is
given as follows:

E[Ti] =
Stot

N

M

∑
k=1

π
(Cn)
k bk , i ∈ Cn , n ∈ {1, . . . , NC} (3)

In Equations (2) and (3), it can be observed that the cluster weight wn, which deter-
mines the average throughput received by the cluster is fixed and lacks flexibility. This
limitation can lead to a problem where clusters with fewer members requiring more net-
work resources are unable to acquire sufficient allocation. On the other hand, clusters with
a larger number of members may have leftover network resources and lead to inefficient
resource utilization and a suboptimal user experience. To address this issue, our proposed
DRONEE–WPRC method introduces the QoS mechanism to optimize network resource
allocation. When a cluster consistently utilizes network resources up to the allocated limit,
the system examines the network resource usage of other clusters. If a cluster is found to
have a lower usage rate and is unable to reach full utilization, the system adjusts the cluster
weight wn accordingly, to ensure the effective utilization of network resources.

For example, let us consider cluster C1 with three users and cluster C2 with five users.
According to the WRR scheduling method used in the DRONEE–W method, cluster C1.
can allocate 37.5% of the total network resources TC1 , while cluster C2 can allocate 62.5% of
the total network resources TC2 . However, despite cluster C2 having a larger number of
members and being allocated more network resources, the five members within C2 only
utilize less than 20% of the allocated resources. Meanwhile, cluster C1 which has fewer
network resources, experiences congestion due to its resources being fully utilized. This
scenario demonstrates that cluster C1 consistently operates with a high load capacity, and
the approximately 42.5% of the network resource is not effectively allocated by cluster
C2. Therefore, the WRR scheduling method is used in the DRONEE–W method so that
it may cause uneven network resource allocation in certain cases. This issue can lead
to idle network resources and wastage. To address this issue, our proposed DRONEE–
WPRC method leverages the QoS mechanism to dynamically adjust the cluster weights.
Specifically, in this scenario, we increase the weight w1 of cluster C1 to increase the network
resources TC1 that C1 can allocate. This adjustment ensures that the resources of the entire
network are effectively scheduled and utilized. We can optimize network performance



Electronics 2023, 12, 2863 7 of 21

and user experience. Figure 4 shows the DRONEE–W method problem scenario and our
proposed solution.
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3.2. Traffic Model Definition

We have defined four transmission types: the instant traffic transmission type and
three types of non-instant traffic transmission. These transmission types are prioritized in
the following order:

1. Real-time (RT): this is the highest priority transmission type for instant, delay-sensitive
traffic such as streaming video and telephony;

2. High-priority nonreal time (HNRT): this is the secondary priority and typically used
for transmitting non-instant traffic like audio;
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3. Medium-priority nonreal time (MNRT): This is the third priority and typically used
for transmitting non-instant traffic like images;

4. Low-priority nonreal time (LNRT): This is the lowest priority and is usually trans-
mitting non-important and delay-tolerant traffic, such as text messages, e-mail, and
application updates.

Transmission types 2 to 4 are categorized as non-instant traffic transmission types.
The transmission rate of a child node is adjusted by the data type and the priority of its
geographical location. The variable rsink

in represents the sum of the transmission rates of all
child nodes transmitted to the aggregation node. As depicted in Figure 5, the proposed
algorithm utilizes the FLC algorithm to estimate the output transmission amount rsink

out
according to the input transmission amount rsink

in received by the aggregation node. The
output transmission amount rsink

out refers to the data transmitted from the aggregation node
to the base station.
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The definitions of the maximum throughput Tx and minimum delay Dx achieved by
the highest achievable transmission rate for each of the four transmission types are defined
as follows:

TRT ≥ THNRT ≥ TMNRT ≥ TLNRT
DLNRT ≤ DMNRT ≤ DHNRT ≤ DRT

(4)

where Tx is the maximum throughput for the x transmission type and Dx is the allowable
delay time for the x transmission type.

Figure 5 depicts the child node utilizing a packet queue model. Each packet class is
associated with a specific queue. When a packet enters the packet classifier, it undergoes
analysis by the packet feature analyzer to determine its file type. According to its type, the
packet data is assigned a priority weight. The transport traffic scheduler then handles the
data based on its weight and prioritizing packet accordingly.

3.3. Weight Based on Priority-Based Rate Control

The weights discussed in [33] are based on the priority-based rate control algorithm.
Additionally, the adjusting transmission rate method is proposed in [34], which combines
the FLC algorithm and QoS mechanism as previously mentioned and is referred to as the
exponential weight with priority-based on rate control (WPRC) algorithm. The WPRC
algorithm employs a weight parameter to adjust the transmission rate of the aggregation
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node. By assigning traffic type and geographic location priorities to the child nodes, it
enables a balance between network transmission and topology transmission rates. This
balancing of the network transmission and topology transmission rates helps achieve
control over network congestion.

3.4. FLC Model of the DRONEE–WPRC Method

Figure 6 illustrates the block diagram of the DRONEE–WPRC rate controller, which
incorporates the FLC and WPRC algorithm. In the introduced FLC model, there are
two input values and one output value. The input values, error (e) and error variation
(∆e), represent the difference between the input transmission rate rsink

in and the output
transmission rate rsink

out . The output value λ serves as the weight parameter.
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Figure 6. Block diagram of the DRONEE–WPRC rate controller.

The FLC algorithm consists of four parts: fuzzification, fuzzy inference, fuzzy rule, and
defuzzification. Fuzzification involves converting input parameter values into fuzzy logic
and mapping them to their corresponding membership functions to determine the output
membership degree. Fuzzy rules store all potential rules of the input. Fuzzy inference
occurs when the input parameter value satisfies one or more applicable rules and results in
an appropriate output. Defuzzification is the process of converting the result of the fuzzy
inference into an exact value that addresses the problem.

In our introduced FLC model, the input variable value consists of seven membership
functions: large positive (LP), medium positive (MP), small positive (SP), zero (Z), small
negative (SN), medium negative (MN), and large negative (LN). The output value part
includes seven membership functions: extremely low (EL), very low (VL), low (L), medium
(M), high (H), very high (VH), and extremely high (EH). Figure 7 illustrates the membership
functions for both input and output values. Table 1 presents the fuzzy rule set, which
defines the actions of the entire FLC system.

Table 1. Fuzzy rules for the DRONEE–WPRC method.

e ∆e LN MN SN Z SP MP LP

LN EL EL VL L L M M
MN EL VL L L M M H
SN VL L L M M H VH
Z L L M M H VH VH

SP L M M H VH VH EH
MP M M H VH VH EH EH
LP M H VH VH EH EH EH
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In the defuzzification part, the fuzzy inference result can be transformed into an exact
value by defuzzification using the centroid method, which is depicted as follows:

λ =

n
∑

i=1
uiUi

n
∑

i=1
ui

(5)

where n is the collection group of the fuzzy inference result, Ui is the i union in the entire
set, and ui is a membership function of Ui.

Section 3.3 and Figure 6 describe the utilization of the WPRC algorithm [34] and
the FLC model in the DRONEE–WPRC method to regulate the correlation of the output
transmission rate at the aggregation node. However, in the WPRC algorithm, the weight
parameter is fixed. This can lead to suboptimal network performance if there is a significant
change in the transmitted data and results in a large error value between rsink

in and rsink
out .

To address this issue, the DRONEE–WPRC method incorporates the FLC algorithm to
dynamically adjust the weight parameter λ of the WPRC algorithm with the variations
in transmitted data. This enables the sink node to achieve an optimal rsink

out . Additionally,
the DRONEE–WPRC method leverages the priority that it can assign to each child node to
adjust the transmission rate.

Figure 8 illustrates the congestion control unit of the DRONEE–WPRC method. After
the input rate rsink

in is calculated by the congestion detection unit to determine e and ∆e, the
rate controller and rate management unit then adjust the output transmission rate based
on these values. The process of adjusting the output transmission rate results in a new rate
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adjustment rate. The base station is responsible for aggregate nodes, while the sink node
handles all child nodes.
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In the DRONEE–WPRC method, each node i is assigned a traffic priority pi. The traffic
priority of node i is represented by the resource priority SPi

j . The priority levels of resource
priority can also be manually configured to satisfy the personalized service. A higher
value of SPi

j indicates a higher traffic level. When transmitting data, the default subnode
is assigned a traffic class if it contains a specific packet type, as mentioned in Section 3.2.
Flow priority pi

TRC can be derived from Equation (4), and it is expressed as follows:

pi
TRC = max

(
1, SPi

j

)
(6)

where j is the traffic category which belongs to {RT, HNRT, MNRT, LNRT}.
The transmission rate calculation method can be divided into three steps as follows:

1. Calculating and balancing the rate at the FLC output from the sink node between
clusters;

2. Calculating the transmission output by the new child node;
3. Calculating the transmission output by the new aggregation node.

3.4.1. Calculating and Balancing the Rate at the FLC Output from the Sink Node
between Clusters

We employ the FLC adjustment parameter λ to incorporate the error e and error
variation ∆e as input parameters. The error e(n) represents the difference between rsink

in (n)
and rsink

out (n) at time n, and it is expressed as:

e(n) = rsink
in (n)− rsink

out (n) (7)

The term ∆e(n) represents the consecutive difference in error e at time n. It is given by:

∆e(n) = e(n)− e(n− 1) (8)

According to Equation (8), when the error value e of a cluster is positive, it indicates
that the cluster is fully utilizing the resources. The network resource usage within the
cluster is high load when it results in network congestion and limits network speeds. On
the other hand, when the error value e of a cluster is negative, the resource usage of the
cluster has not reached full capacity and the resources are underutilized.
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To determine the idle resource flow and demand flow of all current clusters, we first
calculate the error value e collected by the current base station from the cluster endpoints.
According to the positive or negative values of the error value e, we can determine the
respective idle resource flow Rable(n) and demand flow Rreq(n) by the following equations:

Rable(n) = ∑
i∈Ci

|ei(n)| , i ∈ {ei(n) < 0} (9)

Rreq(n) = ∑
j∈Cj

∣∣ej(n)
∣∣ , j ∈

{
ej(n) ≥ 0

}
(10)

where ei(n) represents the error value of the cluster, Rable(n) denotes the total sum of idle
resource flows available for the nth round, Ci represents the ith cluster among all clusters,
where i ∈ {1, . . . , k}, and k is the number of all clusters under the base station, as expressed
in Equation (9). Rreq(n) represents the sum of resource flows required for the nth round
demand, Cj represents the jth cluster among all clusters, where j ∈ {1, . . . , k}, and k is the
number of clusters under the base station.

The set C(i) represents the collection of child nodes belonging to node i. The global
priority GPi for each node i can be calculated using Equation (11). If no other child nodes
exist in the node, the global priority is equal to pi.

GPi = ∑
k∈C(i)

GPk + pi (11)

where GPsink represents the aggregate of global priorities assigned to the sink nodes,
C(sink) denotes the set comprising all the subcollections and their respective sink nodes,
and GPsink represents the sum of their priorities, which can be calculated by the follow-
ing equation:

GPsink = ∑
k∈C(sink)

GPk (12)

When we determine the sum of available idle resource traffic Rable(n) and required
resource flow Rreq(n) through Equations (9) and (10), respectively, we can readjust the
allocation of resource flow from the base station to the cluster head. If Rable(n) is greater
than Rreq(n), the currently idle network traffic is sufficient for the clusters that require
network traffic. However, if Rable(n) is less than Rreq(n), it indicates that the current
network traffic cannot allocate enough resources to the clusters requiring traffic adequately.
In such cases, adjustments must be made to allocate network traffic appropriately in terms
of need for the clusters.

Through Equation (12), we can calculate the sum of priority GPsink for each cluster
after applying the DRONEE–WPRC method. When the available idle network resources
cannot be fully allocated to all clusters requiring resources, the cluster traffic priority is
used to determine the allocation ratio that also achieves a more equitable allocation of
network resources. Clusters requiring resources receive the appropriate traffic allocation.
The new weight distribution equation for cluster WCi

change(n) that requires network resource
traffic is expressed as follows:

WCi
change (n) =



1
M

(
MCi +

(
Rable(n)·M

Stot
× λCi (n)

))
, ei(n) ≥ 0, Rable(n) ≥ Rreq(n)

GPsink
j

∑
j∈Cj

GPsink
j
× 1

M

(
MCi +

(
Rable(n)·M

Stot
× λCi (n)

))
, ei(n) ≥ 0, Rable(n) < Rreq(n)

1
M

(
MCi −

(
Rable(n)·M

Stot
× λCi (n)

))
, ei(n) < 0

(13)

where WCi
change(n) is the adjusted weight of cluster Ci in the nth round, with i ∈ {1, . . . , m}

and m is the total number of clusters under the base station, the term M represents all the
users in the network, MCi denotes the number of members within cluster Ci, λCi (n) is
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expressed as the weight parameter of cluster Ci for the nth round, which is calculated from
the aforementioned FLC model, the term GPsink

j represents the priority value of resource
cluster Cj. Cj represents the jth cluster among all the required resource clusters, with
j ∈ {1, . . . , k} and k is the total number of resource clusters under the base station, the
term Rable(n) represents the sum of the idle resource flows available for the nth round, the
term Rreq(n) represents the sum of the resource flows required for the nth round, and Stot
represents the total network resources.

In the DRONEE–WPRC method, the error value e is generated according to each
cluster collected by the base station. Equation (8) is used to determine whether the current
network resources of the cluster efficiently handle the usage rate or if additional network
traffic is required. Using Equations (9) and (10), we can calculate the total available network
traffic and the total amount of demand traffic for all current clusters. Then, we can adjust
the weight allocation from the base station to the cluster head using Equation (13). A cluster
with a negative error value e indicates that the cluster requires low network traffic. Thus,
an adjusted weight that reduces the cluster’s allocation should be provided. A cluster
with a positive error value indicates that the traffic allocated for the cluster is insufficient
and that additional traffic allocation must be allocated. Using Equations (9) and (10), we
determine the sum of the available idle traffic Rable and the required traffic Rreq. We can
determine whether the available network traffic is adequately allocated to the required
clusters under the entire network topology and whether the available network traffic
is sufficient for the clusters to be allocated according to demand. The error value e is
calculated by Equation (7) that it is allocated according to the demand clusters based on
their respective traffic requirements. According to the demand flow, the weight of the
demand cluster is increased. If the available network traffic is insufficient to be allocated to
the demand cluster, then the priority GPsink is calculated by Equation (12) which is used
to allocate traffic among the demand clusters. Weights are scaled according to the sum of
priority values GPsink for all demand clusters. These scaled weights are then distributed to
the demand clusters. This process enables the clusters that require network resources to
obtain an appropriate amount of traffic. The process flowchart is illustrated in Figure 9.
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The flow equation estimated by each cluster Ck is expressed as follows:

rsinkk
out (n + 1) = WCk

changeStot (14)

where rsinkk
out (n + 1) represents the cluster head output rate for cluster Ck in the (n + 1)th

round, WCk
change denotes the new adjusted weight calculated according to Equation (13),

k ∈ {1, . . . , m}, where m denotes the total number of clusters under the base station, and
Stot represents all available network resources.
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3.4.2. Calculating the Transmission Output by the New Child Node

To calculate the optimal transmission rate ri
out of node i, the transmission rate of the

base station is determined. Transmission from the aggregation node to node i is according
to the global priority GPi of the child node and the proportion of the global priority GPsink

of the sink node. This relationship can be represented by the following equation:

ri
out = rsink

out ·
GPi

GPsink (15)

3.4.3. Calculating the Transmission Output by the New Aggregation Node

We define ri
in as the input transmission rate of node i, which can be calculated by

summing the output rates rk
out of all the child nodes. The equation for calculating ri

in is
as follows:

ri
in = ∑

k∈C(i)
rk

out (16)

where C(i) is the set of child nodes of node i and rk
out represents the output rate of the kth

child of node i.
The transmission rate difference ∆ri of node i is calculated as follows:

∆ri = µ · ri
out − ri

in (17)

where µ is a constant between 0 and 1.
The new output transmission rate rk

out for each child node k generated by i is calculated
as follows:

rk
out = rk

out + ∆ri · GPk

GPi (18)

In summary, our proposed DRONEE–WPRC method obtains traffic allocation based
on the weight adjustment of the cluster head. Then, it evaluates whether sufficient traffic is
available. If there is insufficient traffic, our proposed method allocates the traffic according
to the traffic priorities to achieve optimal resource allocation.

4. Simulation Results

The simulation compared three methods: the proportional fair (PF) allocation [35]
method, the DRONEE–W [18] method, and our proposed DRONEE–WPRC method. The
PF allocation method is an algorithm that considers both throughput and fairness. It
calculates the maximum rate that a user is allowed to use instantly. It is calculated by the
ratio of instantaneous throughput to average throughput.

4.1. Network Performances

We compared the performance of these methods in terms of throughput, buffer size,
and delay time in each round. The throughput was defined as the cumulative amount of
data transmitted by all users to the base station per round. The buffer size refers to the total
amount of data that each user cannot transmit to the base station per round. The delay time
was defined as either the inability to transfer a certain amount of data to the base station
within each round or it took a long time to complete the transfer to the base station [36,37].
Figure 10 provides a diagram illustrating the definition of buffer size and delay time.
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Table 2. Parameters for the DRONEE–WPRC method simulation. 
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The simulation parameters are set as in Table 2. The simulation was performed using
MATLAB 9.14 and PHP 7.4.33. The data and figures represent the average results obtained
from 500 simulations. The simulation was defined as having 100 rounds. The number of
users was fixed at 30 people and users were randomly distributed in the field.

Table 2. Parameters for the DRONEE–WPRC method simulation.

Parameter Set Value

Simulation field size (200× 200) m2

Base station location (100 m, 100 m)
Number of initial smartphone users 30

Size of the data packet transmitted per round 3 Mbits
Device sensing range 30 m

Mobile device network transmission rate limit 30 Mbps

The simulation operators of the experiment divided users into groups according to
their network usage rate. The users were divided into three groups: high-flow users,
general traffic users, and low-traffic users. In the simulation, the definition of high-flow
users was based on the RT and HNRT traffic transmission types. The file capacity of the
transmission was 100 to 150% of the random simulation of the transmission packet. The
definition of general traffic users was based on the MNRT traffic transmission type. The file
capacity of the transmission was 75 to 100% of the random simulation of the transmission
packet. The definition of low-traffic users was based on the LNRT traffic transmission
type, and the file capacity of the transmission was 50 to 75% of the random simulation of
the transmission packet. The network usage of each user was random according to the
aforementioned traffic level. The simulated environment was a scenario in which the three
groups of users were evenly distributed. The Wi-Fi transmission rate was set to 30 Mbps,
which is a reasonable rate according to the 802.11 a/g standard specification [38,39].

Figure 11 illustrates an example of the cluster formation diagram. In our simulation,
we sequentially generated 30 users at random positions within the field. During the cluster
formation process, we iterated through all the users and examined their nearby users so that
it can establish a stable Wi-Fi connection based on their proximity to each other. These users
are then grouped together in the same cluster. Finally, we iterate through each cluster and
identify the user with the strongest LTE connection within the cluster, which corresponds
to the user closest to the base station. Through this process, we have completed the cluster
formation for the 30 users.
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Figure 12 illustrates the total throughput results for the scenario where the three groups
of users were evenly distributed. Simulation results indicate that the overall average of
total throughput for the DRONEE–WPRC, DRONEE–W, and PF methods are 98.17 Mbps,
85.46 Mbps, and 72.77 Mbps, respectively. The clustering architecture employed by the
DRONEE–WPRC and DRONEE–W methods improves the total throughput compared
to the PF method. Furthermore, our proposed DRONEE–WPRC method demonstrates
high efficiency in resource allocation through the implementation of QoS-based resource
scheduling. As a result, the total throughput of our proposed method surpasses that of the
DRONEE–W method and PF method.
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Figure 12. Comparison of three methods for total throughput (Mbps).

Figure 13 illustrates the buffer size results for the scenario where the three groups of
users were evenly distributed. The simulation result indicates that the overall average of
the buffer size for the DRONEE–WPRC, DRONEE–W, and PF methods are 27.36 Mbits,
14.48 Mbits, and 39.20 Mbits, respectively. The adoption of the FLC algorithm and QoS
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mechanism for resource allocation and scheduling in our proposed DRONEE–WPRC
method improves resource utilization compared to the DRONEE–W method and PF
method. As a result, the overall buffer size of our proposed DRONEE–WPRC method is
significantly reduced.
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Figure 14 illustrates the delay time results for the scenario where the three groups of
users were evenly distributed. Simulation results indicate that the overall average of delay
time for DRONEE–WPRC, DRONEE–W, and PF methods were 2.07 s, 5.84 s, and 19.88 s,
respectively. The clustering architecture employed by the DRONEE–WPRC and DRONEE–
W methods improves the total throughput compared to the PF method. Furthermore, the
adoption of the FLC algorithm and QoS scheduling methods in our proposed DRONEE–
WPRC method allows for better utilization of the network resources. This leads to a reduced
buffer size and a corresponding reduction in delay time for users. As a result, the delay
time of our proposed method surpasses that of the DRONEE–W method and PF method.
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4.2. Network Power Consumption

We collected the average remaining battery for all users over various rounds in the
simulation field at the end of each round for the scenario where three groups of users were
evenly distributed. The simulation parameters were set according to Table 3. The number
of users was 30 and the initial battery capacity of users was 100 mAh with an operating
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voltage of 3.7 V. In each round, users are required to transmit a packet of size 1024 KB.
According to [22,23], the power consumption per Mbps of LTE uplink is 438.39 mW, Wi-Fi
transmission is 283.17 mW, and Wi-Fi reception is 137.01 mW.

Table 3. Parameters for the power consumption simulation.

Parameter Set Value

Simulation field size (200× 200) m2

Base station location (100 m, 100 m)
Number of initial smartphone users 30

Initial battery capacity 100 mAh
Size of required transmit packet per round 1024 KB

Device sensing range 30 m
Power consumption per Mbps of LTE uplink 438.39 mW

Power consumption per Mbps of Wi-Fi transmission 283.17 mW
Power consumption per Mbps of Wi-Fi reception 137.01 mW

Figure 15 illustrates the average remaining battery results in a scenario where three
groups of users were evenly distributed. The simulation result indicates that the num-
ber of rounds until the battery depleted for the DRONEE–WPRC, DRONEE–W, and PF
methods were 310, 309, and 193, respectively. The clustering architecture employed by the
DRONEE–WPRC and DRONEE–W methods leverages the lower power consumption of
the Wi-Fi network. As a result, users can utilize less power while efficiently meeting their
network requirements.

Electronics 2023, 12, x FOR PEER REVIEW 20 of 22 
 

 

 

Figure 15. Comparison of three methods for average remaining battery. 

In summary, we have conducted simulations in the scenario where three groups of 

users were evenly distributed to evaluate our proposed DRONEE–WPRC method. Simu-

lation results show that the total throughput of our proposed DRONEE–WPRC method is 

14.87% and 34.9% higher than DRONEE–W and PF methods, respectively. The buffer size 

of our proposed DRONEE–WPRC method is 47.07% and is 63.06% lower than the 

DRONEE–W and PF methods, respectively. The delay time of our proposed DRONEE–

WPRC method is 64.55% and is 89.58% lower than the DRONEE–W and PF methods, re-

spectively. The power consumption of our proposed DRONEE–WPRC method is 60.62% 

lower than the PF method. The power consumption of our proposed DRONEE–WPRC 

and DRONEE–W methods were close. Our proposed DRONEE–WPRC method combines 

clustering architecture with the incorporation of the FLC algorithm and QoS mechanism. 

As a result, our proposed DRONEE–WPRC method demonstrates several advantages in 

terms of total throughput, buffer size, delay time, and power consumption. 

5. Conclusions 

In this paper, the DRONEE–WPRC method is proposed as an enhancement to the 

existing DRONEE–W method. By incorporating weights and priorities into the DRONEE–

W method, our proposed method dynamically adjusts the network allocation using the 

base station. It considers the cluster and network packet type of the smartphone user to 

set traffic priorities and determine the weight for network resource allocation. Thereby, it 

addresses the weighting problem in the original DRONEE–W method and mitigates po-

tential issues with the weighted round-robin scheduling method. Simulation results indi-

cated that the total throughput of our proposed DRONEE–WPRC method is 14.87% and 

is 34.9% higher than the DRONEE–W and PF methods, respectively. The buffer size of our 

proposed DRONEE–WPRC method is 47.07% and is 63.06% lower than the DRONEE–W 

and PF methods, respectively. The delay time of our proposed DRONEE–WPRC method 

is 64.55% and is 89.58% lower than DRONEE–W and PF methods, respectively. The power 

consumption of our proposed DRONEE–WPRC method is 60.62% lower than PF method 

and close to the DRONEE–W method. The clustering feature utilized in both the 

DRONEE–W and DRONEE–WPRC methods significantly reduced network congestion 

and power consumption. In the proposed DRONEE–WPRC method, the incorporation of 

the FLC algorithm and QoS mechanism enabled the optimal utilization of network re-

sources. Furthermore, it can reduce buffer size and delay time for users in the field. Our 

proposed DRONEE–WPRC method also improves energy efficiency. 

Figure 15. Comparison of three methods for average remaining battery.

In summary, we have conducted simulations in the scenario where three groups of
users were evenly distributed to evaluate our proposed DRONEE–WPRC method. Simu-
lation results show that the total throughput of our proposed DRONEE–WPRC method
is 14.87% and 34.9% higher than DRONEE–W and PF methods, respectively. The buffer
size of our proposed DRONEE–WPRC method is 47.07% and is 63.06% lower than the
DRONEE–W and PF methods, respectively. The delay time of our proposed DRONEE–
WPRC method is 64.55% and is 89.58% lower than the DRONEE–W and PF methods,
respectively. The power consumption of our proposed DRONEE–WPRC method is 60.62%
lower than the PF method. The power consumption of our proposed DRONEE–WPRC
and DRONEE–W methods were close. Our proposed DRONEE–WPRC method combines
clustering architecture with the incorporation of the FLC algorithm and QoS mechanism.
As a result, our proposed DRONEE–WPRC method demonstrates several advantages in
terms of total throughput, buffer size, delay time, and power consumption.
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5. Conclusions

In this paper, the DRONEE–WPRC method is proposed as an enhancement to the
existing DRONEE–W method. By incorporating weights and priorities into the DRONEE–
W method, our proposed method dynamically adjusts the network allocation using the
base station. It considers the cluster and network packet type of the smartphone user to
set traffic priorities and determine the weight for network resource allocation. Thereby,
it addresses the weighting problem in the original DRONEE–W method and mitigates
potential issues with the weighted round-robin scheduling method. Simulation results
indicated that the total throughput of our proposed DRONEE–WPRC method is 14.87% and
is 34.9% higher than the DRONEE–W and PF methods, respectively. The buffer size of our
proposed DRONEE–WPRC method is 47.07% and is 63.06% lower than the DRONEE–W
and PF methods, respectively. The delay time of our proposed DRONEE–WPRC method
is 64.55% and is 89.58% lower than DRONEE–W and PF methods, respectively. The
power consumption of our proposed DRONEE–WPRC method is 60.62% lower than PF
method and close to the DRONEE–W method. The clustering feature utilized in both the
DRONEE–W and DRONEE–WPRC methods significantly reduced network congestion and
power consumption. In the proposed DRONEE–WPRC method, the incorporation of the
FLC algorithm and QoS mechanism enabled the optimal utilization of network resources.
Furthermore, it can reduce buffer size and delay time for users in the field. Our proposed
DRONEE–WPRC method also improves energy efficiency.
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