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Abstract: Few-shot relation extraction aims to identify and extract semantic relations between entity
pairs using only a small number of annotated instances. Many recently proposed prototype-based
methods have shown excellent performance. However, existing prototype-based methods ignore
the hidden inter-instance interaction information between the support and query sets, leading to
unreliable prototypes. In addition, the current optimization of the prototypical network only relies on
cross-entropy loss. It is only concerned with the accuracy of the predicted probability for the correct
label, ignoring the differences of other non-correct labels, which cannot account for relation discretiza-
tion in semantic space. This paper proposes an attentional network of interaction information to
obtain a more reliable relation prototype. Firstly, an inter-instance interaction information attention
module is designed to mitigate prototype unreliability through interaction information between the
support set and query set instances, utilizing category information hidden in the query set. Sec-
ondly, the similarity scalar, which is defined by the mixed features of the prototype and the relation
and is added to the focal loss to improve the attention of hard examples. We conducted extensive
experiments on two standard datasets and demonstrated the validity of our proposed model.

Keywords: few-shot relation extraction; prototypical network; relation prototype

1. Introduction

Relation extraction (RE) is an essential information extraction component in natural
language processing [1]. Its purpose is to extract semantic relations among entities from
natural language texts. The structured data captured by RE can support downstream
tasks such as knowledge graph construction [2], machine reading comprehension [3], and
question-answering systems [4]. With the development of deep learning, neural models
have been widely applied to relation extraction and have achieved significant results.
However, the performance of these models relies heavily on a large amount of high-quality
annotated data, whose obtainment is often time-consuming and human intensive. To
alleviate this issue, inspired by the ability of humans to acquire new knowledge from a few
instances through prior knowledge, few-shot learning was proposed and quickly became a
viable approach for accomplishing various tasks [5–7].

The main objective of the few-shot relation extraction task is to utilize a small number
of support instances for learning the features of relation classes and use these features to
determine the relations of query instances [8]. The details are shown in Table 1. At present,
the prototypical network is the most popular algorithm for few-shot relation extraction [9].
Its main idea is that each relation class has a prototype representation in an embedding
space. Specifically, it is designed to extract the mean of the samples in each class as the
prototype in the embedding space by nonlinearly mapping the input into the embedding
space. All query instances are classified using the nearest distant rule to find the class
prototype closest to the prototype.
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Table 1. The 3-way-2-shot task is used for few-shot relation extraction. In this task, the head and tail
entities are represented in red and blue, respectively. The relationship categories in the training and
testing phases are non-overlapping.

Data Relation Instances

Support set

R1: country of
citizenship

Instance l: Charles Gniette was a Belgian field hockey player
who competed in the 1920 Summer Olympics.
Instance 2: Catherine Loyola (born 1986) is a fashion model
and beauty queen from the Philippines.

R2: mother

Instance l: Ariston had three other children by Perictione:
Glaucon, Adeimantus, and Potone.
Instance 2: Dylan and Caitlin brought up their three
children, Aeronwy, Llewellyn, and Colm.

R3: developer

Instance l: In the mid-1980s Microsoft developed a
multitasking version of DOS.
Instance 2: The expansion uses Valve Corporation’s Steam
to download and install updates.

Query set R1, R2, or R3 Rugby League Live2 followed in 2012, again developed by
Big Ant Studios.

In order to improve the performance of prototype-based few-shot relation extraction
tasks based on the prototypical network, existing works mainly focus on the following
three aspects. The first category is introducing external information to compensate for
the lack of information. REGRAB [10] proposes a Bayesian meta-learning approach that
effectively learns the posterior distribution of class prototypes by constructing a global
relation graph from Wikidata. ConceptFERE [11] suggests a novel approach for enhancing
few-shot relation extraction. This method leverages the inherent concepts of entities to
provide information for relation prediction, thereby improving the performance of relation
classification. In [12], TD-proto provides auxiliary supporting evidence for relation classifi-
cation by utilizing textual descriptions of relations and entities to enhance the prototype
network. The second category is to improve model structure or optimize training strategy
so that the model can learn better prototypes, i.e., intra-class similarity and inter-class
dissimilarity. EGNN-Proto [13] develops a neural graph network into the framework of the
prototypical network, allowing the meta-learned feature embeddings to adapt to new tasks
quickly. A new Interactive Attention Network [14] (IAN) is introduced that leverages the
interaction information of inter-instance and intra-instance to classify relations. Consider-
ing both inter-class and intra-class distances simultaneously, PROTOTYPICAL-RELATION
NETS [15] proposes a novel prototype relation network. The third category involves
improving models through contrastive learning or pretraining, aiming to make similar
instances closer and dissimilar instances farther apart. CP [16] introduces a contrastive
pretraining framework for relation extraction to enhance the capability of capturing entity
types and extracting relevant facts from the context. For mitigating the inductive bias of
source classes and forcing the network to learn more distinctive information, InfoPatch [17]
introduces an advanced contrastive training scheme to mitigate the inductive bias of source
classes, forcing the network to learn more distinctive information. PCL [18] proposes a
prototypical contrastive learning approach that addresses the fundamental limitations of
instance-wise contrastive learning.

However, there are two limitations in existing works based on prototypical network.
Firstly, prototypical network-based methods often rely on averaging the representations
of support instances within each class to construct class prototypes while neglecting the
interaction information between support and query instances. Therefore, the obtained
prototypes are unreliable [19]. Secondly, the current optimization of the prototypical
network only relies on the cross-entropy loss, focusing merely on the accuracy of predicted
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probability for the correct labels, while ignoring the differences among other non-correct
labels. For this reason, the learned features are scattered [20].

To tackle the mentioned issues, we develop an FSRE model called QAFPR, which
integrates interaction information attention and adaptive focal loss. Specifically, our model
leverages the rich interaction information between support and query instances and ob-
tains more accurate relation prototype representations through an interaction information
attention module. Furthermore, we introduce adaptive focal loss with dynamic task-level
weights, enabling the model to learn how to focus on hard examples adaptively [18], while
allowing the model to concentrate better on intra-class semantic relations. By adopting
this approach, our model achieves more reliable prototype representations without us-
ing excessive parameters. The contributions of this paper are primarily reflected in the
following aspects:

1. In prototypical networks, interaction information extracts support set prototypes
through instance-level attention, mitigates biases arising from fewer instances, and
generates more reliable prototypes.

2. We employ an adaptive focal loss as the loss function, assigning varying weights to
each task to prioritize hard examples.

3. We conducted experiments on two benchmark datasets, FewRel1.0 [21] and
FewRel2.0 [22]. The experimental results show that our model achieves competi-
tive performance compared to existing baselines.

The rest of this article is as follows: In Section 2, we described the related work,
including methods and techniques in relation extraction, few-shot relation extraction, and
prototype-based few-shot relation extraction. In Section 3, we describe our proposed model
framework in detail, including the application of the interaction information attention
module and adaptive focal loss. In Section 4, our experimental setup and the results of the
experiment are given. In Section 5, we analyze the experimental results and demonstrate
the performance and advantages of our model. Finally, we conclude with a summary of
our work and give an outlook for the future.

2. Related Work

In this section, we briefly review relation extraction, few-shot relation extraction, and
prototype-based few-shot relation extraction methods.

2.1. Relation Extraction

Relation extraction is an essential task in natural language processing, which identifies
predefined relations between two target entities in each utterance and provides the basis for
constructing structured knowledge (e.g., knowledge graphs) [23]. The current mainstream
deep learning models used for this task heavily rely on a large amount of supervised data,
leading to the model’s generalizability being dependent on the quantity and quality of
the labelled data [24–26]. Although regularization techniques are widely used to mitigate
overfitting in deep learning models, they do not provide additional supervised information
for the model. Therefore, when the amount of labelled data is insufficient, simply applying
regularization may not effectively solve the generalization problem [27]. To address the
issue of limited training data and reduce the manual annotation cost, Mintz et al. [28]
first proposed using distant supervision for automatic data annotation. This approach
assumes that “if two entities have a known relation label in a knowledge base, then
sentences containing these two entities should express a similar relation to some extent”.
Heuristically, the assumption aligns the target entities in the sentences with entities in the
knowledge base for labeling the relations automatically. However, this assumption also
raises some issues: (1) It is true that using the distant-supervised method can generate
noisy data because the same entity pair may imply different semantic relations in different
sentences [29]. (2) The knowledge base of many domains still needs to be completed (e.g.,
food safety domain). In addition, most relations exist in a long-tailed distribution. The data
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available for training via assumption is insufficient [30]. In order to solve the problems
mentioned above, few-shot learning was applied and born [31].

2.2. Few-Shot Relation Extraction

Few-shot learning enables models to learn with only a few training samples and
exhibits good generalization capability. Although existing few-shot learning methods are
predominantly developed in computer vision [32–34], their success has inspired researchers
to explore the application of few-shot learning in natural language processing. Few-shot
relation extraction is designed to predict new relations from several tagged instances.
Han et al. [21] introduced few-shot learning for the first time into relation extraction and
created the FewRel1.0 dataset. They also experimented with several typical few-shot
learning methods, laying the foundation for further exploration by subsequent researchers.

Research on FSRE predominantly focuses on two standard algorithms: optimization-
based [35] and metric-based approaches [9]. Finn et al. [36] tested MetaNet, a meta-learning
approach that learns meta-level knowledge across tasks and enables rapid parameteriza-
tion for generalization to new tasks. Munkhdalai et al. [37] proposed a model-agnostic
meta-learning method for training initialization parameters, making the model achieve
optimal performance after a few gradient steps. Inspired by the MAML approach, Dong
et al. [38] established a connection between instance-based information and semantic-based
information to attain more effective initialization and faster adaptation.

The metric-based approach finds the neighbouring category to determine the classifi-
cation result of a sample to be classified by calculating the distance between the sample and
a known classified sample. Gao et al. [39] used hybrid attention to increase the diversity
of few-shot tasks and enhance robustness in noisy samples. Considering local-level and
instance-level matching information, Ye et al. [40] encoded the interaction between query
instances and each support set interactively. Xie et al. [41] reduced the interference of
noisy samples on the model by employing a heterogeneous graph network combined
with adversarial training. Han et al. [42] proposed a two-stage approach for supervised
contrastive learning and an instance-level prototypical network, such that semantically
related relational representations are close to each other, and other representations are far
away. Gao et al. [43] introduced a novel guiding method that learns the similarity between
instances from existing relations and their labelled data by utilizing a Siamese network.

2.3. Prototypical Networks for Few-Shot Relation Extraction

Parameter-based optimization methods have shown relatively poor performance com-
pared to metric-based methods. Therefore, most researchers have focused their research
on metric-based learning methods, such as Siamese networks [44], matching networks [1],
graph neural networks [23], prototypical networks [9], and so on. Among them, the proto-
typical network has become the dominant method for FSRE tasks due to its high efficiency.

To enhance the expressive power of the semantic space, Sun et al. [45] propose a
hierarchical attention network for few-shot text classification. Fan et al. [46] employed a
large-margin prototype network with fine-grained features which are supposed to gener-
alize to long-tail relations effectively. Wen et al. [47] integrated the transformer into the
prototypical network to achieve better relational level feature extraction. Hui et al. [48]
applied a context attention-based prototypical network that designs context attention to
highlight critical instances within the support set, aiming to generate promising prototypes.
Wang et al. [49] used two mechanisms to decouple easily-confused relations. Wang and
Zheng et al. [50] proposed a Discriminative Rule-based Knowledge method that alleviates
word overlap confusion through rule-based incorporation of ontological knowledge graphs
(KG). Yu et al. [51] proposed a novel multi-prototype embedding network model to jointly
extract the composition of relational triples. Utilizing this method re-initializes the memory
network by using prototypes of all observed relations in the current learning phase, Cui
et al. [52] proposed a continual relation extraction model based on relation prototypes
which can alleviate the problem of catastrophic forgetting. Xiao et al. [53] explored a novel
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method that was based on label words and joint representation learning. This approach
effectively leverages the information from relation labels to learn improved representa-
tions. Zhang and Lu [54] proposed a novel method called Label Prompt Dropout, which
randomly drops label descriptions during learning. Li et al. [55] employed a joint training
approach to learning prototype encoders from relation definitions.

However, the studies mentioned above tend to construct class prototypes by aver-
aging the representations of support instances for each class and ignoring the interaction
between support and query instances. Thus, the studies fail to obtain reliable relation pro-
totypes [16]. Additionally, the optimization methods of the prototypical network ignore the
intra-class compactness and inter-class separability in the semantic space of relations [14].
Therefore, we propose a new prototypical-network-based model (QAFPR) for few-shot
relation extraction tasks. First, inspired by the hidden category information in unlabeled
query instances [56], we design an interaction information attention module that incorpo-
rates query information and support set information to match the support features and
effectively reduces the deviation between the obtained and expected relation prototypes.
Secondly, we use mixed features of rectification prototypes and relation information to
calculate a similarity matrix. Then, we obtain similarity scalars from the matrix and add
them into the focal loss, allowing the model to pay more attention to hard examples. Our
method effectively captures consistent features between query and support information,
enabling the matching of support features to obtain more reliable relation prototypes.

3. Methodology

The prototypical network is designed to learn a representation space for classification
by computing the distance to each class prototype. However, the obtained relation proto-
types may have biases. We propose a new prototypical network-based model for few-shot
relation extraction to obtain more reliable relation prototypes. With the help of unlabeled
instances in the query set, each relation prototype is obtained through the interaction
information attention between query information and support information, fused with
the original prototype rather than the centroid of the support instances for that relation.
Additionally, we employ an adaptive focal loss to encourage the prototype network to learn
reliable instances among different relations, leading to close intra-class relations.

In this section, we will provide a detailed description of the details of the method we
propose. As shown in Figure 1, we introduce our proposed model framework consisting
of the following modules: (1) A sentence encoding layer, using the pre-training model
BERT to encode each instance as a support set, a query set, and relational information
as low-dimensional embedding. (2) The relational representation layer takes the token
embedding of a given relational representation. It fuses the relational representations of the
two views by adding them directly to obtain an embedding of the same dimension as the
entity embedding. (3) An interaction information module that takes the word embeddings
of a given support instance and query instance and fuses them into an attention weight
by measuring the semantic correlation vectors of the support and query instances and
uses that attention weight to better correct the prototype. (4) A prototype fusion layer that
will fuse the rectification prototype embedding and the final embedding of the relational
representation, given the embedding of the rectification prototype and the final embedding
of the relational representation for each class, into a final prototype. (5) The adaptive focal
loss improves attention to complex tasks through a mixture of prototypes and relational
features for different tasks.
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Figure 1. The framework of our proposed QAFPR model. The input instances, sentence encoder,
interaction information attention module, prototype fusion module, and adaptive focal loss module
are shown from left to right. ⊕ indicates direct addition. Blue denotes relational information, red
denotes support set instances, and green denotes query set instances.

3.1. Task Definition

Given a relation set, R, and a support set, S, the purpose of the FSRE model is to
classify the entity pair (h, t) mentioned in the query instance q into the most likely relation
r(r ∈ R). S is defined as:

S =
{(

x1
1, h1

1, t1
1, r1

)
, · · · ,

(
xn1

1 , hn1
1 , tn1

1 , r1
)
, · · · ,

(
x1

m, h1
m, t1

m, rm

)
, · · · , (xnm

m , hnm
m , tnm

m , rm)
}

, (r1, r2, · · · , rm) ∈ R (1)

where
(

xj
i , hj

i , tj
i , ri

)
means that the entity pair

(
hj

i , tj
i

)
mentioned in the instance xj

i expresses

the semantics of the relation ri. xj
i contains all the entities of the sum, and each instance

is composed of a word sequence {w1, w2, · · ·}. In a few-shot learning scenario, a relation
extraction model must learn features from a support set, S, and predict the relation r, for a
given query instance, q. In this task, only a tiny number of relation instances are typically
available. The N-way-K-shot approach is a commonly used few-shot learning method. N
represents the number of related categories, and K represents the number of instances used
for learning per category.

3.2. Sentence Encoder

This module extracts feature representations of the support set, S, and the query set,
Q. We use a BERT [57] as the encoder, which allows us to capture the semantic information
of the support set and the query set. For instance, in the support and query sets, the
middle state is obtained by connecting the hidden states corresponding to the start token
mentioned by the two entities. i.e.,

hI =
[
hentity1; hentity2

]
, hentity1, hentity2 ∈ Rd (2)

where hI denotes the representation of the relation between instance, I, and the two given
entities hentity1, hentity2, and d is the hidden size.

For details, only a few words in the context are relevant for relation extraction, and
most words introduce a significant amount of noise. To eliminate the influence of context
on entities, we decided to separate the CLS token and the entities from the sentence and
only use the entities for feature extraction. We use BERT-base for entity feature extraction,
as shown in Figure 2. Given a sentence S = {w1, w2, · · · , wn} and entity pair, entity1 and
entity2, where wi represents the i-th word in the sentence, we use the sentence as input
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to the encoder to obtain sentence features with positional information that captures the
contextual interaction around the entity:

output = [w1, w2, · · · , entity1, · · · , entity2, · · · , wn] (3)
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and blue represents the tail entity. CLS and SEP tokens indicate the beginning and end of the input
sentence, which consists of lx words.

Then, we extract the entity based on its position information in the sentence.
We concatenate the name and description for each relation, then input the sequence

into BERT. We extract the embeddings of the [cls] token, i.e.,
{
Rview1

i ∈ Rd, i = 1, 2, · · · n
}

,
which represents the entire sequence, and the average of all token embeddings, i.e.,{
Rview2

i ∈ Rd, i = 1, 2, · · · n
}

, to represent the relation from two different views.

3.3. Relation Representation

As described in Section 4.1, the relation is represented as Rview1
i ,Rview2

i ∈ Rd. We
combineRview1

i andRview2
i using the concatenation operation

⊕
, which enables the relation

representation to have the same dimensional features as the relation prototype. This ensures
that the relation representation has the same dimensional features as the relation prototype,
as shown in the following equation:

R f inal = Rview1
⊕
Rview1 (4)

whereR f inal represents the final information representation andR f inal ∈ R2d.

3.4. Interaction Information Attention Module

To generate relation representations, we will send all instances in the support set into
an instance encoder to obtain the relation representation for each instance, as described
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in Section 3.2. The average value of the relation represented belonging to the relation i is
defined as the relation prototype:

pi =
1
k

K

∑
k=1

si
k (5)

where pi represents the relational prototype of relation i, K represents the number of
instances for the relation i, and si

k denotes the embedding of the k-th supporting instance of
relation i.

However, due to the limited number of instances in the support set, there is a deviation
between the obtained and expected relation prototypes. Additionally, the weighted average
of the class prototype overlooks the category information hidden in the query set and the
interaction between instances in the support set and the query set. As a result, the obtained
prototype is unreliable, as shown in Figure 3a. Therefore, to utilize more instance infor-
mation and generate reliable relation prototypes, we propose an interaction information
attention module to rectify the prototype and fully exploit the sample resources of few-shot
learning. As shown in Figure 3b, this module aims to leverage the semantic correlation
between support instances and query instances to aid in calculating more reliable prototype
representations. Specifically, the rectified prototype can be represented as follows:

Pi =
K

∑
k=1

αi
ksi

k (6)

where Pi is the prototype of relation i based on interaction information attention. si
k

represents the embedding of the k-th support instance for relation i. αi
k is the weight that

represents the semantic relevance between the K support instances and the query instance
for relation i. The weights are determined by:

αi
k = so f tmax

(
− 1
|Q|

|q|

∑
j=1

d
(

si
k, q
))

(7)

where si
k represents the embedding of the k-th support instance for relation i. qj is the

embedding of the j-th query instance in the query set. |Q| is the total number of instances
in Q and d(·) represents the Euclidean distance.
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Figure 3. The diagram illustrates the prototype rectification mechanism proposed. Let us as-
sume there exists a query instance belonging to the class. (a) The initial prototype closest to the
query sample q. (b) Considers the interaction between the query information and the support set.
(c) Obtains the final prototype through a fusion mechanism. (d) The prototype closest to the query is
obtained with the updated positional distribution, resulting in the correct classification.
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3.5. Prototype Fusion

Inspired by the fusion method proposed by Liu [19] for integrating relational informa-
tion and instance prototypes, we adopt a direct addition fusion mechanism, as shown in
Figure 3c. We obtain the final prototype by directly adding the relational information and
the rectified prototype:

P = pi +R f inal (8)

where P represents the final prototype representation and P ∈ R2d.
The model calculates the distance between each relation prototype, P, and the query

instance, Q, using the vector dot product and selects the shortest distance relation class as
the final prediction.

3.6. Adaptive Focal Loss

Typically, the training objective of metric-based few-shot relation extraction models is
to minimize the cross-entropy loss, which is the negative log-likelihood of the true labels:

Lce = − log(pt) (9)

pt = P(T = t|Q, S) (10)

where T represents the class label, and t represents the true label. Cross-entropy loss only
focuses on the accuracy of predicting the probability for the correct label while ignoring
the differences among other non-correct labels. As a result, it cannot ensure intra-class
compactness and inter-class separability. Lin et al. [58] proposed focal loss to mitigate the
imbalance of hard examples and easy examples:

LF = −(1− pt)
γ log(pt) (11)

where γ ≥ 0 adjusts the rate of weights under easy instances. For an easy instance, pt is
almost 1 and the factor becomes 0.

Adaptive focal loss is an improved version of focal loss, as shown in Figure 4. It
introduces dynamic task-level weights to pay more attention to hard examples. Specifically,
we estimate the weights from different classes for an N-way-K-shot task by calculating
the similarity between categories. We concatenate the mixed features of prototypes and
relations to represent each class ci =

[
ri

h; pi
h
]
, and then we define a task similarity matrix

Sτ ∈ RM×M , for i, j ∈ {1, · · · , M},

Sτ
ij =

ci.cj

‖ci‖ × ‖cj‖
(12)

where ‖·‖ represents the Euclidean norm. The scalar task similarity is obtained from the
following equation:

Sτ = so f tmax(‖Sτ‖F) (13)

where ‖·‖F represent the Frobenius norm, and τ corresponds to the number of tasks in the
mini-batch. Task-level scalars are added to the focal loss, which emphasizes the importance
of each instance-level task and assigns different weights to each task. Formally, the adaptive
focal loss is defined as follows,

LTF = −Sτ(1− pt)
γ log(pt) (14)
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4. Experiment

In this section, we describe the experimental setup, first presenting the dataset and
parameter settings and the model implementation results.

4.1. Datasets

For each task, we evaluate our model on two benchmark datasets, and the details are
shown in Table 2.

Table 2. Dataset details.

Dataset Source Apply Relation
Number

Instance
Number

FewRel1.0 Wiki

Train 64 44,800

Val 16 11,200

Test 20 14,000

FewRel2.0 Wiki
PubMed

Train 64 44,800

Val 10 7000

Test 15 10,500

FewRel1.0 [21] The dataset comprises 100 relations, with each relation containing
700 instances. Our experimental setup adheres to the official benchmark split, which
involves allocating 64 classes for training, 16 classes for validation, and 20 new classes for
testing. Note that the training/validation/test set relations do not overlap. Due to the
unknown labels of the FewRel1.0 test set, we submit our model’s prediction results from
CodaLab to obtain the accuracy of the test set.

FewRel2.0 [22] Since all FewRel1.0 data are from Wikipedia, i.e., contained in the
same domain, we evaluate our model on FewRel2.0, which considers cross-domain issues.
The training set of FewRel2.0, like FewRel1.0, is sourced from Wikipedia and consists of
64 relations. We use the PubMed subset of FewRel2.0 for validation and testing, including
10 and 15 relations sourced from biomedical literature databases. As a result, the training,
validation, and testing sets are in different domains.

4.2. Implementation Details

We used BERT-base-uncased and CP [16] as the sentence encoder. The BERT-base
model consists of a 12-layer transformer module with the CP having the same structure but
further post-trained by comparative learning. In the training process, we set the training
iterations to 30,000 and the validation iterations to 1000. The batch size was set to 4. The
AdamW optimizer was used to reduce losses. We manually adjusted the hyperparameters
according to the performance of the validation data, as shown in Table 3. We utilized the
same set of hyperparameter values for both datasets, except for the learning rate (LR). For
Fewrel1.0, we concatenated the name and description of each relation as input, and the
LR was 1 × 10−5. For Fewrel2.0, we entered only the name of the relation, with the LR
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adjusted to 3 × 10−6. Adhering to the official evaluation settings, we used N-way-K-shot
to measure the model’s performance on the validation and test sets. We performed five
different random experiments for all datasets to reduce randomness and reported the
average performance as the final experimental result. All our experiments were conducted
on a computer with an Intel Core i9 13900K/F CPU@5.8 GHz and a GeForce RTX 3090 GPU
card with 24 GB of VRAM.

Table 3. Hyperparameter settings.

Component Parameter Value

BERT/CP
Type Base-uncased

Hidden size 768
Max length 128

Training
Learning rate 1 × 10−5/3 × 10−6

Batch size 4
Max iterations 30,000

Loss γ 1

4.3. Compared Methods

To assess the validity of QAFPR, we compared it with the following baseline methods.
Proto-HATT [39]: a prototypical network to obtain more accurate relational prototypes

using attentional mechanisms.
MLMAN [40]: a prototypical network to obtain more accurate relational prototypes

using matching methods.
BERT-PAIR [22]: uses BERT as the instance encoder and classifies each query instance

based on the distance to the relation prototype.
Prototype-BERT [21]: a primary prototypical network, instance embedding using the

BERT model.
REGRAB [10]: a Bayesian meta-learning acquisition method with external global

relation graphs to study the relations between entity pairs.
TD-Proto [12]: an importance distribution of generic content words learned through

memory networks.
CTEG [49]: a model which is equipped with two mechanisms to learn to decouple

these confusing relations.
ConceptFERE [11]: proposes a novel approach for enhancing few-shot relation extrac-

tion by incorporating inherent entity concepts.
HCRP [59]: a contrastive learning method which is proposed to learn better represen-

tations using relation-labelled information.
SimpleFSRE [19]: embedding relational descriptions directly into the prototype rep-

resentation.
MTB [26]: a post-training task called matching the blank which was designed using

contrast learning.
CP [16]: a post-training comparison framework for entity masking which is proposed

using external information from knowledge graphs for contrastive learning.
To provide a fair comparison with existing BERT-based and different baselines for

post-training tasks, we provide BERT-based and CP-based results for our proposed model,
respectively.

4.4. Overall Results

To assess the validity of our model, we compared performance with a strong baseline
model on FewRel1.0 and FewRel2.0 in the 5-way and 10-way settings. The results of the
implementation of the FewRel1.0 are shown in Table 4, and the results of the FewRel2.0 are
shown in Figure 5. Based on the experimental results on both datasets, the performance
improvement of our model is more significant when there are fewer support instances.
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Specifically, we divided the results of FewRel1.0 into two parts based on the encoder type:
CNN-based and BERT-based methods. The BERT-based approach is divided into two parts:
the first is to use the original BERT, and Proto-BERT represents the original baseline of our
model. The second approach uses an additional contrast learning CP on BERT to obtain a
better contextual representation. Our model has used BERT and CP as encoders for our
model for apparent comparisons.

Table 4. Experimental results on the FewRel1.0 validation/test set, where N-w-K-s is an abbreviation
for N-way-K-shot. Please note that the results of comparison models are taken from the paper, or the
results reported by CodaLab. Bold is the highest result, underlined is the second highest. * Indicates
the initial baseline.

Encoder Model 5-w-1-s 5-w-5-s 10-w-1-s 10-w-5-s

CNN
Proto_HATT 72.65/74.52 86.15/88.40 60.13/62.38 76.20/80.45

MLMAN 75.01/_ _ 87.09/90.12 62.48/_ _ 77.50/83.05

BERT

BERT_PAIR 85.66/88.32 89.48/93.22 76.84/80.63 81.76/87.02
Proto_BERT * 84.77/89.33 89.54/94.13 76.85/83.41 83.42/90.25

REGRAB 87.95/90.30 92.54/94.25 80.26/84.09 86.72/89.93
TD-Proto _ _/84.76 _ _/92.38 _ _/74.32 _ _/85.92

CTEG 84.72/88.11 92.52/95.25 76.01/81.29 84.89/91.33
ConceptFERE _ _/89.21 _ _/90.34 _ _ 75.72 _ _/81.82

HCRP 90.90/93.76 93.22/95.66 84.11/89.95 87.79/92.10
SimpleFSRE 91.29/94.42 94.05/96.37 86.09/90.73 89.68/93.47

QAFPR 92.26/94.95 94.56/96.98 87.45/91.58 89.02/93.72

MTB _ _/91.10 _ _/95.40 _ _/84.30 _ _/91.80
CP _ _/95.10 _ _/97.10 _ _/91.20 _ _/94.70

HCPR(CP) 94.10/96.42 96.05/97.96 89.13/93.97 93.10/96.46
SimpleFSRE(CP) 96.21/96.63 97.07/97.93 93.38/94.94 95.11/96.39
QAFPR(CP) 96.01/97.30 97.72/98.24 93.01/95.13 95.57/96.51

∆ +5.62 +2.76 +8.17 +3.47
∆(CP) +2.20 +1.14 +3.93 +1.81
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Figure 5. Experimental results on the FewRel2.0 domain adaptation test set, where N-w-K-s is an
abbreviation for N-way-K-shot. The results of the comparison model are taken from the paper or
from the results reported by CodaLab.

From Table 4, we can obtain three conclusions:
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1. Our method QAFPR (BERT) outperforms the state-of-the-art when using BERT as the
backend model, as shown in the first part of the BERT-based model in Table 4.

2. When QAFPR (CP) adopts CP as the backend model, our method shows improve-
ments compared to the state-of-the-art SimpleFSRE (CP) method, indirectly reflecting
that our method is more suitable for few-shot scenarios. Additionally, compared to
the base model CP, our model achieves improvements of 2.20%, 1.14%, 3.93%, and
1.81% in the four N-way-K-shot settings, respectively.

3. Compared with the baseline model Proto-BERT, our model shows improvements of
5.62%, 2.76%, 8.17%, and 3.47% in the four N-way-K-shot settings, as shown in the
last two rows of Table 4. These observation results validate the effectiveness of our
proposed method.

Our method also performs better on FewRel2.0, as illustrated in Figure 5, demonstrat-
ing our model’s stability and validity. Performance gains come from three main aspects:
(1) Utilizing the interaction information of the instances to mine the valuable information
in the instances for obtaining a more accurate prototype of the relation. (2) The prototype
fusion module uses relational information to further obtain reliable prototypes. (3) A task
adaptive focal loss module that learns different weights for different tasks, noting the
different hard tasks.

5. Analysis

In this section, we analyze the experimental results in the following areas: (1) Ablation
experiments for interaction information and adaptive focal loss, aiming to evaluate the
accuracy of the obtained prototype. (2) Compared to the current CP-based HCRP and
SimpleFSRE, our evaluation shows that our model performs better under the same encoder.
(3) The visualization case study aims at visually evaluating the effectiveness of our model.

5.1. Ablation Study

We perform an ablation study on BERT-based 5-way-1-shot, 5-way-5-shot, 10-way-
1-shot, and 10-way-5-shot with the test set to validate the effectiveness of the proposed
interaction information attention module, adaptive focal loss, and prototype fusion module
(abbreviated as QPR, FPR, and RPR, respectively). We consider three ablation experiments,
including QPR, FPR, and RPR, as shown in Table 5.

Table 5. Results of Ablation study on FewRel1.0 test set (%).

Model 5-1 5-5 10-1 10-5

QAFPR 94.95 96.98 91.58 93.72
QPR 94.81 96.81 91.35 93.60
FPR 94.16 96.63 89.48 92.98
RPR 89.57 95.66 84.08 92.30

From Table 5, we can observe the following conclusions. Firstly, in this variant of
QPR, we replace the adaptive focal loss with cross-entropy loss to validate the effectiveness
of the interaction information attention module. Experimental results show performance
degradation in all four settings. Next, in the variant of FPR, we remove the interaction
information module to validate the effectiveness of the adaptive focal loss. We found that
the performance suffers a loss of 0.79% to 2.10%, particularly in the 10-way-1-shot scenario
where the performance loss is 2.10%. Thirdly, in the variant of RPR, we remove the interac-
tion information module and replace the adaptive focal loss with cross-entropy loss. The
performance drops sharply under the 5-way-1-shot and 10-way-1-shot settings, indicating
that the prototype fusion module performs poorly under low-resource conditions.
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5.2. Comparision with HCRP and SimpleFSRE

We compare our method with CP, HCRP, and SimpleFSRE on the test set, as shown
in Figure 6. From the graph, it can be observed that our method based on the CP encoder
shows improvement in all four N-way-K-shot settings, with more significant improvement
under 5-way-1-shot and 5-way-5-shot settings. These results validate that our model can
also achieve good performance across different encoders.
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5.3. Case Study

We conducted a case study on the 5-way-1-shot task, where the validation set contains
instances of five types of relations, namely “constellation,” “main subject,” “mother,”
“child,” and “spouse,” to demonstrate the performance of our model. We randomly selected
500 instances that are from the validation set of FewRel1.0 for each relation. This case study
compares the representation spaces of SimpleFSRE and QAFPR mappings with the same
inputs, and the results are analyzed in two ways:

1. We visualized the representation space of the embedding using T-SNE to intuitively
describe the relational representation of the validation instances as shown in Figure 7.
Figure 7a shows the mapping result when no interaction information is added, and
Figure 7b shows the mapping result when interaction information is added. It is clear
from the graphs that the relations “mother” and “child” are of better quality than
those generated by SimpleFSRE, with less overlap among classes and more distinct
boundaries. The relation representation of “member of” of QAFPR’s aggregates in
one space compared to SimpleFSRE’s.

2. We visualize the effect of the hard examples in SimpleFSRE and QAFPR as shown in
Figure 8. Figure 8a shows the effect of SimpleFSRE, and Figure 8b shows the effect of
QAFPR, with darker colors indicating higher classification accuracy. Our model is
significantly more accurate than SimpleFSRE in classifying the classes “P25: mother”
and “P40: child”, verifying the effectiveness of adaptive focal loss.
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Figure 7. T-SNE plots of instance embeddings with and without (w/o) interaction information. A
total of 5 relations were sampled out of 500 samples (P59: constellation, P921: main subject, P25:
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6. Conclusions and Outlook

This study focuses on few-shot relation extraction, which involves identifying se-
mantic relation between entity pairs using only a small number of annotated instances.
Existing prototype-based methods have limitations in generating prototypes and handling
challenging tasks. To address these issues, we propose an attention network called QAFPR,
which consists of an interaction information attention module and an adaptive focal loss.
To obtain more reliable relation prototypes, we utilize category information hidden in the
query set and correct the prototypes through interaction among instances. To make the
model more attentive to hard tasks, we introduce dynamic task-level weights using an
adaptive focal loss that treats the corrected prototypes and similarity information of relation
as hyperparameters, enabling the model to learn how to focus on hard tasks adaptively.

In the future, we will continue to explore tasks related to new-shot relation extraction.
On the one hand, we plan to explore further cross-domain few-shot scenarios; on the other
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hand, we would like to introduce few-shot scenarios into realistic scenarios where training
and validation samples are scarce.
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