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Abstract: Vehicle Re-Identification (Re-ID) based on Unsupervised Domain Adaptation (UDA) has
shown promising performance. However, two main issues still exist: (1) existing methods that use
Generative Adversarial Networks (GANs) for domain gap alleviation combine supervised learning
with hard labels of the source domain, resulting in a mismatch between style transfer data and hard
labels; (2) pseudo label assignment in the fine-tuning stage is solely determined by similarity measures
of global features using clustering algorithms, leading to inevitable label noise in generated pseudo
labels. To tackle these issues, this paper proposes an unsupervised vehicle re-identification framework
based on cross-style semi-supervised pre-training and feature cross-division. The framework consists
of two parts: cross-style semi-supervised pre-training (CSP) and feature cross-division (FCD) for
model fine-tuning. The CSP module generates style transfer data containing source domain content
and target domain style using a style transfer network, and then pre-trains the model in a semi-
supervised manner using both source domain and style transfer data. A pseudo-label reassignment
strategy is designed to generate soft labels assigned to the style transfer data. The FCD module obtains
feature partitions through a novel interactive division to reduce the dependence of pseudo-labels on
global features, and the final similarity measurement combines the results of partition features and
global features. Experimental results on the VehicleID and VeRi-776 datasets show that the proposed
method outperforms existing unsupervised vehicle re-identification methods. Compared with the
last best method on each dataset, the method proposed in this paper improves the mAP by 0.63%
and the Rank-1 by 0.73% on the three sub-datasets of VehicleID on average, and it improves mAP by
0.9% and Rank-1 by 1% on VeRi-776 dataset.

Keywords: vehicle re-identification; cross-style semi-supervised pre-training; pseudo label reassign-
ment strategy; feature cross-division

1. Introduction

Currently, the development of unsupervised vehicle Re-Identification (Re-ID) algo-
rithms [1–4] for large-scale system monitoring systems [5,6] is predominantly reliant on
clustering of unlabeled target domain data and knowledge transfer from labeled source
domain data. However, the absence of labeled information to guide the clustering process
poses a significant challenge in enabling the model to learn discriminative features. To ad-
dress this limitation, unsupervised domain adaptation methods have been proposed. These
methods typically involve pre-training the model using source domain data and subse-
quently fine-tuning the pre-trained model on the target domain. Despite the advancements
brought about by unsupervised domain adaptation, the performance of vehicle Re-ID still
falls short of that achieved by supervised learning methods [7–9]. This performance gap
can be attributed to the existing domain gap [10] between the source and target domains,
as well as the reliance on global features for pseudo-label assignment during fine-tuning.
Therefore, there is a need for further refinement of unsupervised vehicle Re-ID algorithms
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to bridge the performance gap and enhance the accuracy of vehicle Re-ID in large-scale
system monitoring scenarios.

Many existing re-identification methods aim to reduce the domain gap between
different datasets by utilizing generative adversarial networks. During the fine-tuning
stage, some methods [11–13] incorporate intermediate-domain data or style transfer data
to minimize the difference in data distribution between the pre-training dataset and the
fine-tuning dataset. However, the introduction of source domain data during the fine-
tuning stage can interfere with the model’s ability to learn target domain information.
To overcome this challenge, some methods [14] attempt to introduce style transfer data
during the pre-training stage to obtain a well-initialized pre-trained model. However, these
methods often assign hard labels from the source domain data directly to the style transfer
data, resulting in a mismatch between the style transfer data and the hard labels. In this
paper, we propose the cross-style semi-supervised pre-training (CSP) module, which adopts
a semi-supervised approach that leverages both labeled source domain data and unlabeled
style fusion data to alleviate the domain gap and enhance the model’s generalization
ability. During the semi-supervised learning process, the CSP module generates soft labels
for the style transfer data, allowing for better learning of the distribution of the style
transfer data and effective mining of the target domain information embedded in the style
transfer images.

In current vehicle Re-ID methods, pseudo labels are assigned based solely on the
clustering results of global features [15,16]. However, this approach often introduces label
noise due to the limitations of clustering algorithms and the tendency of vehicle images
with similar IDs to be assigned to the same category, as shown in Figure 1. If not addressed,
label noise can amplify during the training process and negatively impact the model’s
performance. To mitigate this issue, some methods have proposed regional partitioning
approaches [17,18]. For instance, Wang et al. [19] proposed a method that extracts local
features from different parts of the object and assigns class labels to these local features
before performing classification. Similarly, Cho [20] proposed a model that leverages the
complementary relationship between global features and local features obtained after re-
gion segmentation to reduce label noise. However, these methods are more applicable to
person Re-ID than to vehicle Re-ID, as person have a natural structural advantage allowing
for segmentation based on head, upper body, and lower body regions, each containing
sufficient discriminative features. In contrast, vehicles lack such structural advantages and
have fewer discriminative features compared to person, resulting in some local regions
containing limited discriminative information. To address this challenge, we propose a
feature cross-division (FCD) method for model fine-tuning to obtain feature partitions. The
FCD method ensures that each feature partition contains sufficient discriminative informa-
tion while preserving the correlation between feature partitions. Specifically, in this paper,
we perform cross-partitioning on the extracted whole feature during the fine-tuning stage,
obtaining multiple edge-overlapping feature partitions. We then measure the similarity of
these partitioned features separately, and ultimately, the similarity measurement results
will be referenced by all partitioned features as well as the global features.

In summary, this paper makes the following contributions:

(1) Addressing the problem of mismatch between the style transfer data and the hard
labels of the source domain in the pre-training stage of existing methods for solving
domain gap. CSP proposes a semi-supervised training approach where the source
domain and the style transfer data with the target domain style are jointly used,
improving the generalization ability of the pre-trained model. During training, soft
labels are generated for the style transfer data, with a portion of the weight assigned
to the clustering categories of the target domain. This allows the pre-trained model
to fully learn the information of the target domain and obtain a better initialized
pre-trained model.
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(2) Addressing the problem of severe noise in pseudo-labels caused by excessive reliance
on global features in existing vehicle Re-ID methods. FCD obtains feature partitions
by cross-division of the overall features, retaining some edge-overlapping features.
The significance of setting feature partitions in this paper is that different feature
partitions will yield different similarity measurement results, and measuring different
results can enhance the confidence of pseudo-labels. This approach helps to mitigate
label noise and improve the accuracy of pseudo-labels in vehicle re-identification.
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Figure 1. Pseudo label noise in fine-tuning process. Pseudo label noise refers to the problem of
clustering errors in the process of pseudo-label assignment.

2. Related Works
2.1. Semi-Supervised Vehicle Re-ID

Semi-supervision aims to train models using both labeled and unlabeled data to
alleviate the shortage of labeled data. The existing methods using semi-supervised learning
have achieved good results. Wu et al. [21] developed a semi-supervised learning framework
which relies on the Convolutional Neural Network (CNN) and re-ranking algorithm in
the field of vehicle Re-ID. This network trains the Re-ID model in a semi-supervised
way. Liu et al. [22] raised a novel semi-supervised Bayesian attribute learning (SBAL)
algorithm for person re-ID, which enhances the feature-grabbing ability and improves the
accuracy of label prediction. Qi et al. [23] provided an original progressive cross-camera
soft-label learning framework, which aims to deal with the shortage of cross-camera label
annotation information. Considering that semi-supervised learning can utilize both labeled
and unlabeled data, this paper uses semi-supervised learning in the pre-training stage to
mitigate domain gap and provide a better initialization model for the fine-tuning stage.

2.2. Unsupervised Vehicle Re-ID

The unsupervised vehicle Re-ID aims to minimize the shortage of labeled data and
fully use the unlabeled data. For example, Bashir et al. [24] proposed a two-step cascaded
framework based on unsupervised learning, which applies color information to obtain the
reliable selection of clusters. Yu et al. [25] established a self-supervised metric learning
(SSML) method condition on the feature dictionary. SSML designed a dictionary-based
positive mining (DPML) to search the positive label of input images by calculating the
feature’s pairwise similarity, relative-rank consistency, and adjacent feature distribution
similarity. Bashir et al. [26] construct a self-paced progressive unsupervised learning
architecture which utilizes the clustering and filtering to group and filter the deep features
extracted using the CNN to achieve a reliable selection of the input. Marin-Reyes et al. [27]
proposed a metric learning model supervised on local constraints. They leveraged pairwise
and triplet constraints for training a triplet network in a weakly-supervised fashion, where
samples that share the same identity are close together, whilst different identities are
maintained as distant. Nevertheless, obtaining more distinguishing features from unknown
data and enhancing the discrimination ability of the model is still an urgent problem to be
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solved. Therefore, UDA is used in this paper to achieve unsupervised vehicle Re-ID and
make full use of labeled data.

2.3. Unsupervised Domain Adaptation

Unsupervised domain adaptation is a method to solve the domain gap of source
domaint and target domain, which has achieved good performance in vehicle Re-ID. Wu
et al. [28] introduced an original method for joint learning of 3D shapes and 2D images
with a domain adaptation algorithm which establishes a connection among the feature
spaces of 2D images and 3D shapes. Guo et al. [29] proposed a stable median center
clustering (SMCC) for mining positive samples and reducing the impact of label noise. Xiao
et al. [30] proposed a novel dynamic weighted learning method (DWL) for unsupervised
domain adaptation. The weight of alignment learning and discriminability learning is
dynamically adjusted to resolve excessive alignment or excessive pursuit of discriminability.
Wang et al. [31] enhanced the accuracy of pseudo-labels during the unsupervised domain
adaptation process through structured prediction and progressive selection. Wang et al. [32]
designed a novel generative model norm-AE to generate synthetic features. The generated
samples were applied to obtain a better classifier. Currently, UDA is widely used in both
person and vehicle Re-ID. However, it is still necessary to optimize the training data
and find ways to obtain higher confidence pseudo-labels for further improvement of the
performance of UDA.

3. Materials and Methods

The definition of the UDA tasks for Re-ID: Generally, UDA tasks for Re-ID need
two datasets: a source domain dataset S = {(x1, y1), . . . ,(xNS , yNS )}, where NS is the
number of samples in the source domain, xNS is the NS-th sample data, and yNS is its
corresponding label, and a target domain dataset T = {t1, . . . ,tNT ), where NT is the number
of samples in the target domain, and there is no label information for the target domain
data. The traditional UDA task pre-trains the model through the dataset S, and then uses
the obtained pre-trained model to extract the features of the target domain T. Finally,
pseudo-labels are generated for the unlabeled data T through clustering, and the target
domain data T carrying the pseudo labels are used to continue training the Re-ID model
until convergence.

Description of the overall framework of this paper: The overall framework of this
paper is shown in Figure 2. The implementation of the model includes the following
three parts: (1) Firstly, the style transfer network is used to generate cross-domain style
data, which are then used as unlabeled data for subsequent semi-supervised pre-training.
(2) In the semi-supervised pre-training process, an initial network model is trained using the
source domain data, and label prediction is performed on the generated cross-style data. At
the same time, a pseudo-label reassignment strategy is designed, which replaces traditional
hard labels with soft labels weighted by the target domain. (3) In the formal training
process, the image similarity measurement is carried out by combining local features and
partition features to more accurately predict the pseudo-labels of target samples.

3.1. Review of Generative Methods

Currently, the image transfer [33] is a popular method used for achieving unsupervised
domain adaptation that can automatically perform image-to-image translation without
paired samples.

In the process of image style transfer, it is expected that the image transfer network can
achieve the following operations on datasets X and Y. Firstly, training a generator G that
can convert the image style from the X domain to the Y domain, i.e., G(x) = y′, x ∈ X, is
achieved. Meanwhile, the image transfer network trains another generator F that can learn
the opposite mapping process, so that images from dataset X can learn the style of dataset
Y, i.e., G(y) = x′, y ∈ Y. Secondly, two discriminators are used to identify the quality of
generated images. If the image y′ generated by generator G from x is different from the
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image y, then the discriminator DY will give a low score; otherwise, the opposite occurs.
Finally, to ensure that the image x still retains its own content and only learns the style of Y
domain, the image transfer network designs a cycle-consistency loss. In other words, the
generated image y′ will be input into generator F and compared with image x to ensure
that the two images are as similar as possible.

Using the aforementioned features of the image transfer network, this paper performs
a style transfer between the labeled source domain and unlabeled target domain to obtain
datasets G(x) carrying the target domain style and F(y) carrying the source domain style.
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Figure 2. The overall framework of the method proposed in this paper. During the pre-training stage,
style transfer network is used to generate data that carries the target domain style while preserving
the source data content. The generated data and source domain data are then used together to train
the pre-trained model, and soft labels are assigned to the generated data during this process. In the
fine-tuning stage, the pre-trained model is used to extract features from the target domain, and the
features are cross-partitioned. The results of the similarity measurement will ultimately combine the
similarity measurement of global features and partitioned features.

3.2. Cross-Style Semi-Supervised Pre-Training

To address the domain gap problem in unsupervised domain adaptation, this section
proposes a semi-supervised pre-training method based on cross-style learning.

There are various reasons for a domain gap between different datasets, such as dif-
ferences in camera equipment and sample selection gap, which seriously affect the perfor-
mance of model generalization. The key step in UDA is to transfer the pre-trained model on
the source domain data to the unlabeled target domain, but, due to the existence of domain
gap, the model’s performance will be greatly reduced. To alleviate this problem, this
paper attempts to introduce data with target domain style generated by the image transfer
network, denoted as G(x), during the pre-training stage. It is hoped that multi-style data
pre-training can reduce the model’s sensitivity to the target domain data and alleviate the
impact of domain gap.

It should be noted that, in this paper, dataset G(x) is generated from dataset X as
unlabeled data. First, a model is trained on the existing labeled data X to obtain an initial
model, which is then used to predict labels LG(x) for G(x). Second, the labeled X data
and the unlabeled data G(x) with assigned pseudo-labels LG(x) are combined as a new
training set to train the Re-ID model, and then the labels of dataset G(x) are predicted
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again. Meanwhile, more accurate pseudo labels can be obtained during this training
process. Finally, the second process is reiterated until the model converges. Significantly,
instead of using traditional hard labels as pseudo-labels for G(x), this paper designs a
soft label assignment method for the features of G(x) data, namely, the dual-domain style
fusion pseudo-label reassignment strategy, which will be introduced in Section 3.3.

The cross-entropy loss function is used for training the pre-training model, as shown
in Equation (1).

LEC = −
NL

∑
I=1

yilogy′i (1)

where NL represents the number of training samples, yi represents the observed label, and
y′i represents the predicted label, in the process of predicting soft labels for unlabeled data.

3.3. Pseudo-Label Reassignment Strategy Based on Dual-Domain Style Fusion

To fully utilize the label information of labeled samples and preliminarily understand
the geometric feature distribution of the target data, this section proposes a pseudo-label
reassignment strategy that combines target style learning. The weight distribution strategy
is shown in Figure 3.
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This method abandons traditional hard labels and instead assigns a certain weight
to each target domain sample class, allowing the labels to exist in the form of soft labels.
The new samples generated by the style transfer network, G(x), participate in pre-training
as an unlabeled dataset and obtain the soft labels assigned by the system. Inspired by
the previous approach [4], this section encourages the network to assign a small portion
of weight to each target domain class and treat each target image as a separate class for
weight assignment. In other words, this section guides the model to initially learn the
unlabeled samples in the target domain by assigning weights to each target domain class.
In this process, the computational complexity will increase but the increase is valuable
because the soft label reassignment can solve the problem that images generated by style
transfer network do not match with the hard label. For each generated image, the soft label
generation strategy is shown as Formula (2).

q(δ.i, t) =


0, i ∈ S and t 6= yc

s
δ, t = yc

s
1−δ

l , t ∈ T
(2)

In this formula, i represents the i-th unknown sample, t represents the class for which
the weight is being calculated, S represents the source domain, and yc

s represents the
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original label. For any generated image G(x), the corresponding loss function LPLR for the
pseudo-label reassignment process is shown as Formula (3):

LPLR = −1
l

l

∑
1

log(p(t)) (3)

In the initialization phase, l represents the number of images in the target domain and,
as the iteration proceeds, l represents the number of clusters in the target domain. p(t) is
the predicted possibility of the training sample belonging to label t.

Based on the above analysis, the overall loss function during the pre-training stage is
shown as Formula (4):

LPre = LEC + LPLR (4)

where LEC represents cross-entropy loss function, LPLR is the loss function for the pseudo-
label reassignment process mentioned in Equation (3), and LPre represents the loss function
of the pre-training stage.

3.4. Fine-Tuning Based on Feature Cross-Devision

Because of the unknown total number of target classes and the lack of feature informa-
tion mining, existing target domain fine-tuning methods based on complete features cannot
effectively reduce pseudo-label noise. The main reason for the generation of pseudo-label
noise during unsupervised fine-tuning is that the measurement of similarity between im-
ages is not accurate enough, leading to more errors in assigning pseudo-labels. To address
this issue, this section proposes a fine-tuning method based on feature cross-division, which
uses a more comprehensive similarity measure of the overall feature and partition features.
When the similarity measurement of the overall features is incorrect and attempts to bring
samples that do not belong to the same class closer together, the partitioned features may
correct error. The partitioned features are more likely to discover more discriminative
detailed features in the deep convolutional neural network due to the extracted partial
features, thereby reducing the similarity scores between images of different categories and
making images of different classes distinct from each other. The proposed method is shown
in Figure 4.
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First, the features FT =
{

F1
T , F2

T , · · · Fl
T

}
extracted by the convolutional neural network

model from the target dataset are divided into N regions (i.e., f 1
i , f 2

i · · · f N
i ) for each image

i. Compared with traditional feature partitioning methods, this method does not divide the
feature map into independent partitions, but rather cross-partitions the feature map into N
parts, meaning that there are overlapping regions between adjacent partitions. Through
this approach, this section hopes to preserve the relationships between features to a greater
extent and explore more similarities between features.
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The similarity vectors corresponding to each partition are shown in Equation (5):
S1

i =
(
s
(

f 1
i , f 1

1
)
· · · s

(
f 1
i , f 1

i−1
)
, s
(

f 1
i , f 1

i+1
)
· · · s

(
f 1
i , f 1

l
))

;
S2

i =
(
s
(

f 2
i , f 2

1
)
· · · s

(
f 2
i , f 2

i−1
)
, s
(

f 2
i , f 2

i+1
)
· · · s

(
f 2
i , f 2

l
))

;
· · ·

SN
i =

(
s
(

f N
i , f N

1
)
· · · s

(
f N
i , f N

i−1
)
, s
(

f N
i , f N

i+1
)
· · · s

(
f N
i , f N

l
)) (5)

where s
(

f d
i , f d

j

)
(d = 1, 2· · ·N) (j = 1, 2,· · · l) represents the similarity vector between the

feature partition of the i-th image and that of other samples. SN
i represents the similarity

measurement result between the N-th feature partition of i-th image and the same partition
of all other images.

The results of each partition are added together to obtain the final direct distance
measurement. To ensure the accuracy of the pseudo labels, this paper also includes the
similarity calculated from the global features in the final direct distance measurement. The
paper uses the total similarity vector as shown in Equation (6) to measure similarity:

Stotal = Sori + S1 + S2 + · · ·+ SN (6)

Sori represents the similarity measure results based on global features and Si represents
the similarity measure results based on the i-th feature partition.

During the optimization stage, this paper uses the commonly used cross-entropy loss
function to optimize the network. Therefore, the total loss function of the framework is
shown in Equation (7). Driven by the total loss function, the model in this paper performs
outstandingly in addressing the domain gap and reducing the noise carried by images in
different datasets.

L = LTrain + LPre (7)

where LTrain represents the loss function of the fine-tuning.

4. Results
4.1. Experimental Dataset and Evaluation Metrics

The effectiveness of the proposed method was validated using datasets from real-
world large-scale surveillance scenes, namely VeRi-776 [34] and VehicleID [35]. A summary
of VeRi-776 and VehicleID is shown in Table 1.

Table 1. Statistics of publicly available datasets. (Color refers to the number of appearances of colors
of the vehicle and camera refers to the number of shooting cameras included in this dataset).

Datasets Year ID Image Color Images per
Vehicle Camera

VeRi-776 2016 776 49,357 10 64.43 20
VehicleID 2017 26,328 221,567 6 8.44 2

VeRi-776 is a large-scale dataset for vehicle re-identification, consisting of 49,357 images
from 776 different vehicle IDs. Among them, 37,778 images (from 576 vehicles) are used
for the training stage, and 13,257 images (from 200 vehicles) are used for the testing stage,
including 11,579 images belonging to the gallery set and 1679 images belonging to the query
set. VehicleID is a vehicle Re-ID dataset consisting of images captured by two cameras,
with approximately 110,178 images from around 13,134 different vehicle IDs in the training
set and 111,585 images of 13,113 vehicles in the test set. The test set consists of three subsets
with different scales which contain 800, 1600, and 2400 vehicles in this paper, respectively.

Given a target vehicle or non-vehicle image, the Re-ID model extracts the feature of
this image and then matches some of the nearest features to perform metric ranking; the
top features are identified as the same ID as the target image.
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To accurately evaluate the performance of the model, this paper uses Rank-k and
mean Average Precision (mAP) as evaluation metric for performance. Rank-k refers to the
accuracy of the top k images sorted by similarity results that belong to the same ID as the
query image. mAP refers to the average value of AP for each image category. AP refers to
the ratio of the sum of accuracies in the target class in the test set to the number of images
belonging to the target class, as shown in Formula (8).

AP =
n

∑
k=1

p(k)× f (k)
ntotal

(8)

where n represents the number of vehicles involved in the calculation, k represents the
order of vehicles retrieved, p(k) represents the accuracy of the result at the k-th position,
and f (k) represents its value of 1 if the result at the k-th position is correct, otherwise 0.

The AP results are then averaged to obtain the mAP, as shown in Formula (9).

mAP =
T

∑
t=1

AP(t)
T

(9)

where T denotes the number of query samples.

4.2. Experimental Settings

This paper has experimented with using the proposed model on a LINUX operating
system and Pytorch 1.4.0 deep learning experimental environment. The hardware resources
used in this experiment were Xeon(R) E5-2650 v4 processor at 2.20 GHz and NVIDIA-Tesla-
P40 GPU.

ResNet-50 [36] was used as the baseline model in this paper, which was pre-trained on
ImageNet [37]. All input images were uniformly processed into a size of 256 × 256. This
paper used the stochastic gradient descent and set the initial learning rate and decay rate as
0.05 and 5× 10−4; the batch size was set to 16 and the epoch was set to 10. Since CycleGAN
has already shown good performance and applicability in existing works, CycleGAN
was used as the style transfer network to provide unlabeled data with the target domain
style. For the training of CycleGAN, this paper is set according to its original experimental
details [33].

4.3. Comparison with Existing Theoretical Methods

To confirm the performance of proposed model for vehicle Re-ID, this paper compares
it with some recent research theories and shows the result in Tables 2 and 3. G(X) represents
source domain data with a target domain style; X and Y represent the source and target
domains, respectively. Source_G(X) represents pre-training the model using only G(X);
Target_G(X) represents pre-training the model using source domain images and then using
G(X) as the training set during fine-tuning. ST_G(X) represents using G(X) not only to
train the pre-trained model but also for fine-tuning. The specific information is shown
in Table 4. In all three processes, the FCD module proposed in this article is introduced
during the fine-tuning stage. Part-based pseudo label refinement (PPLR) [20] proposes a
model that leverages the complementary relationship between global features and locally
extracted features derived from region segmentation, with the objective of mitigating label
noise. Cluster Contrast for Unsupervised Person Re-Identification (CCUP) [15] proposes
a new method called Cluster Contrast, which involves the storage of feature vectors and
computation of contrastive loss at the cluster level. Additionally, this method introduces
momentum update to strengthen the consistency of cluster-level features in the sequential
space. Self-Paced Contrastive Learning framework (SPCL) [38] proposes a simple and
effective Self-Paced Contrastive Learning framework, whose core idea is to use multiple
forms of category prototypes to provide mixed supervision, in order to achieve sufficient
mining of all training data.
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Table 2. Comparison with the state-of-the-art methods (VeRi-776 is the source dataset and VehicleID
is the target dataset; * stands for purely unsupervised method).

Methods
VeRi-776 to VehicleID (%)

Test Size = 800 Test Size = 1600 Test Size = 2400

mAP Rank-1 Rank-5 mAP Rank-1 Rank-5 mAP Rank-1 Rank-5

Direct transfer [36] 26.6 35.6 49.5 20.1 28.6 44.1 17.1 22.1 35.4
ST_G(X) [33] 36.1 43.7 58.4 28.8 36.0 52.5 25.9 30.3 42.2

Target_G(X) [33] 34.5 39.9 56.0 26.7 33.3 50.3 23.9 27.8 40.4
Source_G(X) [33] 37.3 47.8 61.0 31.5 39.2 54.3 27.2 31.6 43.8

PPLR * [20] 49.6 54.1 66.7 45.1 51.5 65.4 42.0 44.9 58.8
CCUP * [15] 49.1 53.7 65.8 44.6 51.1 64.3 41.4 44.3 58.0
SPCL [38] 51.2 53.7 67.0 45.8 51.9 65.1 42.2 45.2 60.0

Ours 51.9 54.4 67.4 46.5 52.7 65.6 42.7 45.9 60.3

Table 3. Comparison with the state-of-the-art methods (VehicleID is the source dataset and VeRi-776
is the target dataset; * stands for purely unsupervised method).

Methods
VehicleID to VeRi-776 (%)

mAP Rank-1 Rank-5

Direct transfer [36] 22.3 58.9 66.9
ST_G(X) [33] 32.8 58.7 68.1

Target_G(X) [33] 31.3 59.0 71.0
Source_G(X) [33] 34.1 58.7 64.4

PPLR * [20] 44.7 73.3 83.1
CCUP * [15] 43.8 72.1 81.3
SPCL [38] 44.1 73.3 82.2

Ours 45.6 74.3 83.7

Table 4. Specific information related to the comparison method.

Methods Source Dataset Target Dataset CSP FCD

ST_G(X) G(X) G(X) ×
√

Target_G(X) X G(X) ×
√

Source_G(X) G(X) Y ×
√

It can be observed from Tables 2 and 3 that on the VeRi-776 to VehicleID task, our
method improves an average of 0.63% in mAP, 0.73% in Rank-1, and 0.4% in Rank-5
compared with the best overall performing SPCL method. On the VehicleID to VeRi-
776(%) task, our method respectively improves mAP, Rank-1, and Rank-5 by 0.9%, 1%, and
0.6% compared with PPLR. Compared with the remaining comparison experiments, the
superiority of our method is more obvious.

4.4. Ablation Studies
4.4.1. Discussion on the Parameters of Pseudo-Label Reassignment Strategy

The pseudo label reassignment strategy updates the parameters in the pseudo-label
generation strategy q(δ, i, t) adaptively. The steps are as follows: (1) Initializing the param-
eters in the soft label generation strategy, i.e., δ = 1

Dn
, where Dn represents the number

of datasets involved in style transfer. (2) When training the model, the current soft label
generation strategy is used to generate soft labels on the training data. Then the gener-
ated soft labels are used as the labels of the data generated by style transfer for model
pre-training. (3) At the end of each epoch, the value l in the pseudo generation strategy is
adjusted according to the number of clusters.
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4.4.2. Discussion on the Number of Feature Partitions N

In the fine-tuning stage of the proposed framework, to improve the algorithm’s
performance, this paper divided the features extracted from each image into several cross
partitions and used N to represent the number of partitions. The value of N plays a crucial
role in the calculation of the final sample similarity. Therefore, this section shows the impact
of N on the overall theoretical framework in Tables 5 and 6. From these two tables, it can
be observed that when N = 3, the Re-ID model achieved the best performance on both
datasets. In other words, it can be concluded that this paper improves the accuracy of
unsupervised data classification by using the method of combining global features and
partition features to replace the sole use of global features for image similarity measurement.
This is because when two images are highly similar, measuring their similarities through
global features may assign them high similarity scores, leading to pseudo-labeling noise;
however, when partition features are introduced, they can focus on more detailed features
and obtain different similarity scores from global features, allowing the model to assign
pseudo-labels based on different measurement criteria, thereby increasing the confidence of
pseudo-labels. In the subsequent experimental process, the model will uniformly set N = 3
to obtain better performance. It is worth noting that the reason for choosing cross-division
and retaining the common areas between partitions in this paper is to preserve the similarity
between partitions and obtain more convincing results.

Table 5. Effects of different N on model performance (VeRi-776 is the source dataset and VehicleID is
the target dataset).

Parameter N

VeRi-776 to VehicleID (%)

Test Size = 800 Test Size = 1600 Test Size = 2400

mAP Rank-1 Rank-5 mAP Rank-1 Rank-5 mAP Rank-1 Rank-5

N = 1 49.8 53.6 66.1 44.8 51.4 63.7 41.1 44.8 58.4
N = 2 50.9 54.3 66.8 45.1 51.9 64.6 41.3 45.3 59.1
N = 3 51.9 54.4 67.4 46.5 52.7 65.6 42.7 45.9 60.3

Table 6. Effects of different N on proposed model performance (VehicleID is the source dataset and
VeRi-776).

Parameter N
VehicleID to VeRi-776 (%)

mAP Rank-1 Rank-5

N = 1 43.9 73.4 80.1
N = 2 44.5 73.8 81.7
N = 3 45.6 74.3 83.7

The specific description of feature partitioning in this paper is shown in Table 7. Before
feature partitioning, the dimension of all features was 1 × 2048, and the features were only
partitioned based on the length of the feature dimension.

Table 7. Specific division of feature dimensions.

Parameter N
Feature Partition

Partition1 Partition2 Partition3

N = 1 1:2048 × ×
N = 2 1:1366 683:2048 ×
N = 3 1:1024 512:1536 1024:2048
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4.4.3. Effects of CSP and FCD on the Re-ID Model

To verify the effectiveness of cross-style semi-supervised pre-training (CSP) and feature
cross-division (FCD) for fine-tuning, this paper conducted related experiments, and the
experimental results are shown in Tables 8 and 9.

Table 8. The impact of CSP and FCD in the proposed framework on the trained model (VeRi-776 is
the source dataset and VehicleID is the target dataset).

Methods

VeRi-776 to VehicleID (%)

Test Size = 800 Test Size = 1600 Test Size = 2400

mAP Rank-1 Rank-5 mAP Rank-1 Rank-5 mAP Rank-1 Rank-5

Direct transfer 26.6 35.6 49.5 20.1 28.6 44.1 17.1 22.1 35.4
Ours w/o CSP 49.9 53.0 65.7 44.0 50.4 63.3 40.9 44.9 58.9
Ours w/o FCD 49.8 53.6 66.1 44.8 51.4 63.7 41.1 44.8 58.4

Ours 51.9 54.4 67.4 46.5 52.7 65.6 42.7 45.9 60.3

Table 9. The impact of CSP and FCD in the proposed framework on the trained model (VehicleID is
the source dataset and VeRi-776 is the target dataset).

Methods
VehicleID to VeRi-776 (%)

mAP Rank-1 Rank-5

Direct transfer 22.3 58.9 66.9
Ours w/o CSP 44.5 73.5 82.9
Ours w/o FCD 43,9 73.4 80.1

Ours 45.6 74.3 83.7

This section mainly analyzes the following situations. In the first case, the direct
transfer [36] means the pre-trained model based on the source domain is directly used for
classification of the target dataset. In the second case, the labeled source data are still used
for pre-training the model, but FCD is used to calculate the similarity of images during
fine-tuning. In the third case, pre-training is carried out according to the CSP proposed
in this paper, and in the fine-tuning stage, the similarity of images is directly measured
using global features. In the fourth case, the model proposed in this paper is used to realize
the Re-ID task. The conclusion that can be drawn is that the application of each module
proposed in this section improves the performance of the model compared to direct transfer.
Moreover, the overall framework, including CSP and FCD, performs better than the single
use of each module.

To demonstrate the role of each module in more detail, this article shows the accuracy
changes in the last few iterations of the specific experimental iteration process in Figure 5. It
can be observed that during each iteration, the model using CSP+FCD has higher accuracy
than the model using the two modules alone. At the same time, this paper also visualized
the rank list during the last training process to support the role of the FCD module, as
shown in Figure 6.
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5. Conclusions

To address the issues of the mismatch of data and label in the pre-training stage
and the pseudo-labels being overly reliant on global features in the fine-tuning stage of
unsupervised vehicle domain adaptation based on GANs, this paper proposes two modules:
cross-style semi-supervised pre-training and feature cross-division. CSP conducts semi-
supervised training on the pre-training model using both style transfer data and source
domain data to improve the model’s generalization ability. In this process, CSP generates
soft labels that correspond to the data distribution for style transfer data during the pre-
training stage and mines more target information. Additionally, the FCD module obtains
partition features during fine-tuning to improve the confidence of pseudo-labels and
reduce the model’s reliance on global features. The superiority of the proposed method
is fully verified through experiments on two large public datasets. However, there is still
a drawback to our work: the proposed method of this paper requires a long time for
training; thus, it is not possible to have a model immediately put into testing in a short
time. In the future, we will further study the work of light weight to reduce the training
time of the model. In addition to this, we will focus on vehicle Re-ID algorithms for other
types of noise such as random noise of input data or parametric noise of the model in
the future.
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