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Abstract: Keyphrase generation is a long-standing task in scientific literature retrieval. The Transformer-
based model outperforms other baseline models in this challenge dramatically. In cross-domain
keyphrase generation research, topic information plays a guiding role during generation, while in
keyphrase generation of individual text, titles can replace topic roles and convey more semantic infor-
mation. As a result, we proposed an enhanced model architecture named TAtrans. In this research, we
investigate the advantages of title attention and sequence code representing phrase order in keyphrase
sequence in improving Transformer-based keyphrase generation. We conduct experiments on five
widely-used English datasets specifically designed for keyphrase generation. Our method achieves an F1
score in the top five, surpassing the Transformer-based model by 3.2% in KP20k. The results demonstrate
that the proposed method outperforms all the previous models on prediction present keyphrases. To
evaluate the performance of the proposed model in the Chinese dataset, we construct a new Chinese
abstract dataset called CNKIL, which contains a total of 54,546 records. The F1 score of the top five
for predicting present keyphrases on the CNKIL dataset exceeds 2.2% compared to the Transformer-
based model. However, there is no significant improvement in the model’s performance in predicting
absent keyphrases.

Keywords: keyphrase generation; transformer; title attention; keyphrase order

1. Introduction

Keyphrase generation is a task to automatically produce a set of phrases or words
which capture and represent the main idea of the given text. The main difference in
keyphrase generation is that the term usually consists of several words as a semantic unit
with richer semantic information. Keyphrase generation is an essential task in natural
language understanding, such as text summarization [1–3], information retrieval [4], and
digital library [5–7], especially in the scientific literature field. The primary advantage of
keyphrase generation is its ability to facilitate a quick grasp of primary knowledge and the
topic of long text or document.

The typical paradigm of keyphrase generation is called the ONE2ONE paradigm,
which treats the target keyphrase as a discrete set rather than an ordered sequence. Each
phrase sequence corresponding to the original text is divided into single phrases and
paired with the text one by one. The decoder generates prediction target phrases using a
greedy algorithm or beam search. However, these methods must generate keyphrases in
an over-generated manner and cannot control the exact number of the phrase, as different
texts may have different number of keyphrases. Yuan et al. [8] proposed the ONE2SEQ
paradigm to generate keyphrases using an RNN-based model. They take the source text
and its entire keyphrase sequence as a data pair in the ONE2SEQ paradigm. This training
paradigm retains the inherent characteristic of the order information and accommodates
the variable number of keyphrases in different texts or documents.
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However, the methods mentioned above ignore the global effect of the title on the text
information, and only treat the title as another part of the text. In the keyphrase generation
task within an individual text, the title plays a crucial role in providing topic and summary
information. Previous research has demonstrated that the title can offer more topic-related
and comprehensive information about the text [9].

Furthermore, the utilization of a more efficient encoder-decoder architecture, such as
Transformer layers, has been proven to enhance the generation performance [9–13]. Some
researchers have explored the ONE2SEQ method using a Transformer-based model [14] and
have suggested that Transformers outperform the RNN-based model. The primary reason
behind this improvement is the utilization of self-attention and cross-attention mechanisms
in Transformers, which enable more effective use of context information and long-distance
dependency. Despite these developments, the challenge of keyphrase generation in the
sequence-to-sequence paradigm remains insurmountable. The over-generate decoder tends
to generate duplicated phrases when encountering the delimiter. Since the model’s training
mechanism involves predicting the next token, these models tend to predict the same token
repeatedly when encountering identical delimiters.

Considering the problems mentioned above, this paper proposes an improved
keyphrase generation model based on a Transformer encoder and decoder trained in
the ONE2SEQ paradigm called TAtrans. Firstly, a title attention mechanism is used to
guide the encoding of the text, and then a phrase order code is used to distinguish each
keyphrase and follow the delimiter to avoid generating duplicated phrases. Additionally,
an additional copy mechanism is incorporated to enhance keyphrase accuracy [15].

Our model is evaluated on five benchmark English datasets and one Chinese abstract-
keyphrase dataset we collected. As common evaluation metrics in keyphrase generation
research, we use the precision, recall, and F1 score to assess the performance of our method
and other recently advanced models. The results indicate that our method outperforms the
baseline models across all datasets.

In summary, this work makes the following contributions and innovations:

• The proposed model integrates title messengers in a cross-attention manner, which
aligns with the structure of the Transformer model itself;

• The order embedding of the keyphrases in the sequence enables the model to cap-
ture order information between phrases, thereby enhancing the diversity of gener-
ated keyphrases;

• We have constructed a new Chinese abstract keyphrase dataset CNKIL, which contains
a total of 54,546 abstracts and their corresponding keyphrase data.

In the remainder of this paper, we will first review the relevant research work in
Section 2. Then Section 3 will elaborate on the proposed method and present the details of
this paper’s work. After that, Section 4 states the implementation details of the experiments.
In Section 5, we report the results of the keyphrase prediction and ablation study and
discuss the effectiveness of the proposed method through concrete examples. Finally,
Section 6 concludes the paper and discusses this research’s contributions, limitations, and
future work.

2. Related Work

Keyphrase prediction for given text or document has two strategies. One is extraction’s
way, and another is the generation’s way. The first one aims to directly extract present
keyphrases that continuously appear in the input text. Early research based on statistical
algorithms and machine learning methods is focused on keyphrase extraction. As deep
learning prosperity in natural language processing, many dominant models try to achieve
keyphrase generation, which can generate both present and absent keyphrases that do not
match any contiguous subsequence of the input text [16].
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2.1. Keyphrase Extraction

Keyphrase extraction is roughly classified as supervised and unsupervised methods,
with the main difference being whether the training data is used to guide the model or
algorithm in fitting the data.

In the early stage, the ideas of keyphrase extraction rely heavily on feature engineering
and statistical algorithms, such as taking advantage of part-of Speech [17] or n-gram [18] to
represent potential keyphrases, or a valid statistical model to rank the phrases appearing
in the text. For example, TF-IDF [18–20] is a classical statistically effective method in
keyphrase extraction. Another well-known strategy is graph-based algorithms, such as Tex-
tRank [21], PageRank [11], TopicRank [22], etc. [23,24]. These unsupervised methods may
quickly start and apply in cross-domain without training costs like supervised methods,
but their performance in practice cannot exceed supervised methods. Early supervised
methods are mainly based on the Naïve Bayes algorithm [25] and Support Vector Machine
(SVM) ranking [26]. They produce a ranking model for extracting keyphrases by fitting
training data. Lately, some unsupervised methods have even outperformed traditional
machine learning methods, such as Yake [27], integrated features ranking method into their
developed system, and exceeded the supervised model KEA [18] on the benchmark. The
pre-trained word-embedding methods used to represent the word or sentence semantic
also further improved the accuracy of keyphrase extraction because of its rich semantic
information within the embedding [28,29].

A fundamental drawback of traditional unsupervised methods is only counting several
features unable to capture the deep semantic information. In recent years, thanks to the
development of deep learning, the neural network model for keyphrase extraction shows a
stronger ability to identify the core information of a text. Constructing a multi-layer neural
network can obtain more deep semantic information, such as the keyphrase extraction RNN-
based model [30]. DivGraphPointer [31] uses Graph Convolutional Networks GCN [32]
to construct a word graph ranking all phrases in the input text. This method exceeds
the traditional TextRank [21] by 18% on the Inspec dataset. TANN [33] enhances the
adversarial neural network with a topic feature, outperforming all keyphrase extraction
baseline models. Apart from feature fusion, the attention mechanism has been proven as an
effective way to further improve the neural model’s performance on keyphrase prediction.
Yingyi Zhang and Chengzhi Zhang [34] consolidated the attention layer with the RNN
model to get a better result than a single RNN.

In addition, Haoran Ding and Xiao Luo et al. [35] exploit the combination of attention
and pre-trained BERT model achieved a state-of-art competitive outcome among all un-
supervised methods. The first two rows of Table 1 list the main keyphrase methods for
keyphrase extraction.

2.2. Keyphrase Generation

Unlike keyphrase extraction, keyphrase generation can yield phrases that do not
appear in the source text. The keyphrase generation model has benefited the encoder-
decoder architecture and can produce new tokens that do not appear in the text. Thus, the
majority of keyphrase generation models currently in use are based on this architecture.
Meng et al. first proposed a generative sequence-to-sequence (seq2seq) model for keyphrase
prediction named CopyRNN [36].

This model separates the text corresponding to keyphrases from multiple one-to-one
(one text corresponds to one phrase, ONE2ONE) data pairs [36]. They feed the ONE2ONE
data into the model and generate target phrases by the decoder with a beam search.

The obvious drawback of this model is that it can neither control the number of phrases
nor reflect the semantic order between phrases. It can only generate as many phrases as
possible through an exhaustive search. Therefore, they improved the ONE2ONE paradigm
by directly using the text and the corresponding ground truth keyphrase sequence as
training samples to become the ONE2SEQ diagram [8]. A Self-termination strategy is
implemented by adding the phrase delimiter “<peos>” and ending token “<eos>”.
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After the transformer’s success in NLP, Jiang et al. explored the keyphrase generation
task of the transformer model to further improve the generation results [37]. However, the
RNN or transformer architecture models both encoded the title the same as the text.

Based on Meng et al.’s research [36], Wang Y et al. [38] used a neural network model to
guide the keyphrase generation process in a media dataset. Yue Wang et al. indicated that
integrating topic information helps recognize keyphrases more accurately [38]. However,
for a single abstract text, the topic is hard to identify, so Chen W et al. [39] proposed a
title-guided method to instruct the keyphrase generation of a single text. Their methods
both improved the CopyRNN by more than 3%.

As mentioned above, the title indicates the topic content of the text and has more se-
mantic relevance with the keyphrase. For single text, the title implies the topic information
and other more abundant information about the text body. Our paper aims to take advan-
tage of title information to guide the keyphrase generation model based on transformer
architecture. The third row in Table 1 lists the main methods and model architecture for
generating keyphrases.

Table 1. Comparison of main methods for keyphrase prediction. The first line is the keyphrase
extraction method based on statistical and machine learning models. The second row lists the
keyphrase extraction methods by neural models, and the third row lists the main methods for
keyphrase generation.

Prediction Type Main Algorithm or
Back-Bone Models Name Advantage & Disadvantage

Keyphrase extraction

Using word part of speech feature engineering [17] Unsupervised, simply but low accurate
TF-IDF TF-IDF [18–20] Unsupervised, simply but low accurate

graph-based algorithm TextRank [21] unsupervised, considered global
information, not need extra feature

graph-based algorithm PageRank [11] unsupervised, considered global
information, not need extra feature

graph-based algorithm TopicRank [22] unsupervised, considered global
information, not need extra feature

Naïve Bayes algorithm [25] unsupervised, considered global
information, not need extra feature

features ranking Yake [27] Integrated system, accessibility

TF-IDF + Naïve Bayes KEA [18] supervised, improved than
unsupervised methods

Keyphrase extraction

sentence embedding Sentence Embeddings [29] including more semantic information
Pre-trained embedding Embedrank [29] including more semantic information

RNN RNN-base model [30] including context information
Graph Convolutional

Networks GCN DivGraphPointer [31] combination with graph-based method
and convolutional network

GRU + human attention human attention GRU [34] including context information and
focusing on key information

BERT + attention AttentionRank [35] Using pre-trained language model, not
need to train a model from scratch

Keyphrase generation

RNN + copy mechanisim CopyRNN [36] neglecting phrase sequence order
RNN + one-to-sequrence

training pardiam CatSeq [8] generating one phrase once

GRU + Neural Topic Model Topic-Aware Keyphrase
generation model [38] given more topic information

transformer One2Set [37] generating unordered keyphrases

GRU CatSeqTG [39] given more title information but neglect
long distance dependency

The existing research on the keyphrase generative model has not targeted the improve-
ment of the transformer architecture model, nor has it conducted in-depth research on the
method of using one-to-sequence training data to train the model. This paper proposes
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an enhanced method based on the Transformer-based model for ONE2SEQ keyphrase
generation to address these two problems.

3. Proposed Approach
3.1. Problem Definition

The goal of this task is to predict the target phrase sequence given a source text, which
consists of a title and a text body. We use X = {x1, x2, . . . , xN} to denote source text, xi is
the i-th word of the text, N is the total number of words for X. Ti = {t1, t2, . . . , tM} denotes
the title, ti is the i-th word of the title sequence, M is the total words number of Ti. Text
corresponding ground truth keyphrase sequence is denoted by Y =

{
y1; y2; . . . ; yZ}, yj is

the j-th keyphrase of X, Z denotes the number of keyphrases for X. For the j-th keyphrase
yj =

{
yj

1, . . . , yj
k

}
, yj

k is the k-th word of the phrase yj, k is the number of words in the

phrase yj [39].
Different from the ONE2ONE training paradigm, we divide the phrase sequence into

M individual phrases paired with text. We composed the training data pairs by (X, Y)
based on the training paradigm of ONE2SEQ. This is conducive to preserving original
information in terms of the order and length of the phrase sequence. The main purpose of
this model is to generate a keyphrase sequence in a certain order.

3.2. The Framework of TAtrans

We first preprocess the original corpus to eliminate non-standard characters and
uniform text formatting. If the text needs to be segmented, for example, when the text is
Chinese, we use Jieba to segment the text. Our training data includes a segment of text
and corresponding keyphrase sequences. This is a typical ONE2SEQ (one-to-sequence)
training data construction method. Then the text is sent to the Transformer encoder to get
the Initialization vector, and then through the title vector and attention guidance, the final
embedding with title attention is obtained. This is embedded into the transformer decoder,
and the model ultimately produces a predicted keyphrase sequence. The overall process of
this work is shown in Figure 1.
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3.3. Model Architecture

The model proposed in this paper, named TAtrans, builds on a Transformer-based
encoder and decoder as the framework. In the encoder part, we randomly initialize word
vectors and use a stack of transformers to learn the contextual embedding. Then, we added a
title attention layer after the Transformers encoder layers to guide the contextual embedding
of text. The decoder will generate the keyphrase sequence according to the generated token.
Before feeding the generated token into the decoder, the position embedding and a fixed
set of learned phrase order code embedding are taken as additional input of the decoder,
which is used to alleviate generating duplicate words. The order code distinguishes the
keyphrase and its following delimiter position in the target phrase sequence. An extra copy
mechanism layer was added to the decoder. The overall architecture of our model is shown
in Figure 2.
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3.4. Title Enhanced Encoder
3.4.1. Transformer Encoder Layer

At first, the text and its title are fed into a stack of N = 6 Transformer layers, and we
get their original hidden from them. The hidden states of text and title are represented
as follows:

H = Trans f ormer(x1, x2 . . . , xN) = {h1, h2 . . . , hN} (1)

T = Trans f ormer(t1, t2 . . . , tM) =
{

ht
1, ht

2, . . . , ht
M
}

(2)

where hi denotes the hidden state of input token xi of text. ht
i denotes the hidden state of

input token ti of the title. The hidden state matrices are represented by H and T.

3.4.2. Title Attention

A general method of computing similarity is the inner product between two vectors,
whose results reflect how relevant each word of text is to the title. We use ht

i · hj to represent
the similarity between the i-th token’s embedding of the title and the j-th token’s embedding
of the text body. The same as the cross-attention calculation [10], we regard T as K in
cross-attention, H as Q in cross-attention, and V to calculate the similarity matrix of text
and title:

score = ht
i · hj (3)
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αi,j =
exp

(
ht

i · hj
)

∑N
1

(
exp

(
ht

i · hj′
)) (4)

where score is the product of the i-th token’s embedding of the title and the j-th token’s
embedding of the text body output by the transformers layer. i∈(0, M − 1), j∈(0, N − 1).
αi,j is the attention weight of the i-th token of the title and the j-th token of the text. The j-th
token of text similarity degree is

A = {α1, α1, . . . , αM} (5)

where αi =
{

αi,j′
}

j′=1...N
. Finally, the title similarity matrix is formulated as A·T.

Consequently, the hidden state of the text is added to the title similarity matrix above.
We use the transformer optimizing method [10], followed by a residual connection and
normalization layer, to avoid the embedding form rapidly growing. The encoder’s output
is as follows:

Outputencoder = LayerNorm(AT + H) (6)

The LayerNorm layer is used to transform the embedding distribution between 0 and 1.
The computation process of title attention is shown in Figure 3.
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3.5. Keyphrase Sequence Code Embedding

In the decoder, we refer to Jiang Ye et al.’s [37] idea, which used a sequence code
embedding to indicate the difference between generated phrases to avoid generating
duplicate phrases. We add a set of phrase sequence code embedding as a part of the input.
Each embedding represents the order of each phrase in a keyphrase sequence. The input of
the decoder is as follows:

dn
t d = eω

yn
t−1

+ ep
t + cn (7)

where eω
yn

t−1
denotes the embedding of word yn

t−1, ep
t is the t-th sinusoid positional embed-

ding, as in the Attention paper [10], and cn is the n-th learned sequence code embedding.
The decoder outputs the predictive distribution pn

t , which is used to get the next word yn
t .

We set k as the max number k of the keyphrase sequence code. Intuitively, k is greater than
the number of truth phrases.

Inspired by previous multiple relation extraction [40], there is an imbalance dis-
tribution of embeddings due to the delimiters in the sequence appearance repeatedly.
We introduce a special token as the delimiter and set a threshold of 0, where those
above the threshold are classified as phrases and those below the threshold are classi-
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fied as delimiters. The decoder will predict the distribution of the next keyphrase token
based on the joint input until encountering the terminal character “<eos>”. We also em-
ploy a copy mechanism [41], which is generally adopted for many previous works of
keyphrase generation.

3.6. Training
3.6.1. Sequence Code Training Loss

We use the Hungarian algorithm [42] to optimize the max matching between ground
truth yn

t at time step t and the prediction of the x-th phrase. Given the correspondence
sequence code and the target phrase, we train the model under maximum likelihood loss,
which is formulated as follows:

L(θ) = −∑N
n=1 ∑|yn |

t=1 logpπ̂(n)
t (yn

t ) (8)

where pπ̂(n)
t (yn

t ) denotes the probability of word yn
t , n denotes the index of x, π̂(n) is the

parameter to make the correspondence between yn
t and pn calculated by the Hungarian

algorithm lowest.

3.6.2. Joint Training Loss

In order to make the model have different capabilities over predicting present and
absent keyphrases, a joint loss [8] was set to represent the present keyphrase and the absent
keyphrase prediction, respectively,

L(θ) = −

γ

N
2

∑
n=1

|yn |

∑
t=1

logpπ̂pre(n)
t (yn

t ) + (1− γ)
N

∑
n= N

2 +1

|yn |

∑
t=1

logpπ̂abs(n)
t (yn

t )

 (9)

γ is a hyperparameter that denotes the weight to limit the proportion of different
phrase types.

4. Experiment Settings
4.1. Datasets

We conduct our experiments on five keyphrase benchmark datasets, which include
KP20K, Inspec, Krapivin, NUS, and SemaEval-2010. In order to verify the cross-language
ability of the model, 50K pieces of data of abstracts and corresponding keyphrases retrieved
from CNKI were collected. The details of the datasets are as follows:

1. KP20k [36], which is a large-scale academic abstract dataset from ACM Digital Library,
ScienceDirect, Wiley, Web of Science, etc., contains 528K records for training, 20K
records for validation, and 20K records for testing;

2. Inspec [25], which contains 2000 abstracts with corresponding titles and keyphrases
of journal papers from 1998 to 2002;

3. Krapivin [43] consists of 2304 scientific papers from the computer science domain
published by the association for computing machinery (ACM). It has subsequently
been verified by the reviewers;

4. NUS [44] also contains a scientific dataset consisting of 211 full papers with their
keyphrases annotated by student volunteers;

5. SemEval-2010 [45] is an automatic keyphrase extraction task dataset collected from the
ACM Digital Library, which contains 244 full papers with corresponding keyphrases;

6. CNKIL is a dataset collected by ourselves through retrieval of CNKI, involving
information science and library science. We integrate a 20Krecord of library science
abstracts from Xiatian’s dataset [46] into ours to form the CNKIL dataset, which
contains a total of 54,546 abstracts and corresponding keyphrase data.

In our experiment, we use KP20K raw data to train English models, including
512,462 samples for training, 20K for validation, and 20K for testing. Then we use CNKIBL



Electronics 2023, 12, 2968 9 of 17

as the Chinse model training dataset, which includes 44,546 training data, 5000 verification
data, and 5000 test data.

4.2. Baseline

We compare our method with the most advanced keyphrase generation models as
baselines, as follows:

• CopyRNN [36] uses the ONEONE training mode RNN sequence-to-sequence model
with copy mechanism [15];

• CatSeq [8] is an RNN-based model with a copy mechanism the same as CopRNN, but
trained by ONE2SEQ paradigm;

• CatSeqTG [39], an extension of CatSeq [8] with additional title encoding and
cross-attention;

• Transformer-based [37], a Transformer-based model with copy mechanism trained
under ONE2SEQ paradigm;

• TAtrans (our method) is based on the Transformer-based encoder and decoder. The
title attention and sequence code embedding methods are used to enhance
the performance.

4.3. Implementation Details

Similar to the ONE2SEQ training paradigm proposed by Xingdi Yuan et al. [37] and
Jiacheng Ye et al. [8], the data sample paired text and its keyphrase sequence. We use “<eos>”
to split the title and abstract context and detach the embedding matrix after Transformer
encoding layers, which is conducive to speeding up model training and sharing parameters.
The original order of keyphrase sequences is sorted by authors. Our model encoder and
decoder each include six-layer Transformers, the number of multi-head attention heads
is eight, the learning rate is 0.0001, and the batch size is 12. During the decoding process,
we use beam search decoding. We set λ to 0.5, word and sequence code embeddings
to 512 dimensions, the maximum number of phrases to 20, and the batch size to 12.
Dropout rate = 0.1. We set the maximum depth of beam search as six and the beam size
as 200. The experiments were implemented on a Tesla V100 GPU. The English and Chinese
models were tested three times, and the average value was reported.

4.4. Evaluation Metrics

Based on previous studies to evaluate the keyphrase generation quality [8,36], we use
precision, recall, and F1 score to evaluate the prediction accuracy of the proposed method.
We calculate these indicators based on the top k generated results, which are defined
as follows:

P@k =

⌈
Ŷ:k ∩Y

⌉∣∣Ŷ:k
∣∣ (10)

R@k =

⌈
Ŷ:k ∩Y

⌉
|Yk|

(11)

F1@k =
2 ∗ P@k ∗ R@k

P@k + R@k
(12)

where k is a pre-defined constant (usually five or 10), P is precision defined as the ratio of
correct keyphrase prediction and all keyphrase prediction, Ŷ:k is the ground truth of the
keyphrase set, and Y is the set of keyphrases predicted by the model. P@k is the precision
of top k. R@k is the recall of top k, which is defined as the ratio of correct keyphrases
prediction and keyphrase ground truth. F1 is the F1 score, which indicates the harmonic
mean of the precision rate and recall rate, and is often smaller than one.

Based on the above definition, we choose five, 10, and M for constant k as the cutoffs
of the keyphrase number, where M is the number of the keyphrase prediction. They are the
standard selections for most of the existing keyphrase generation studies. In the experiment
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section, we report the F1@5, F1@10, and F1@ M to compare the performance of our model
with other representative previous models.

To explore the order of the keyphrase generated by the model, we adapt the MAP
(mean average precision) metric for evaluation. MAP refers to the mean average precision
(AP) of all texts in a dataset. It considers the order of keyphrase sequence prediction. Before
calculating MAP, it is necessary to calculate AP first, which refers to the average precision
of the k-th keyphrase prediction of a text. The AP’s equation is as follows:

AP =
∑n

k P@k× rel@k
n

(13)

where n is the number of keyphrases ground truth of text I, P@k is the same as the above
text. rel@k is an indicator function that equals 1 if the predicting phrase belongs to ground
truth and equals 0 otherwise. Then, the MAP quation of a dataset is as follows:

MAP =
1
N

N

∑
i=1

APi (14)

where APi refers to the AP of the i-th text, and N is the number of texts in the dataset. We
take MAP@M as the result of the evaluation order.

5. Results and Analysis
5.1. Present Keyphrase Prediction

We report the prediction results of our models compared to existing keyphrase gen-
eration methods on various datasets, including the five benchmark datasets described in
Section 4.1. We use F1@5 and F1@ M scores to assess the models’ performance of present
keyphrase prediction. Table 2 shows details of these results.

Table 2. The F1 scores, including F1@5 and F1@M rediction results for present keyphrases of proposed
model and compared models mentioned in 4.2 over five abstract-keyphrase datasets. The best results
of each dataset are bold.

Model
Inspec Krapivin NUS SemEval KP20k

F1@5 F1@M F1@5 F1@M F1@5 F1@ M F1@5 F1@M F1@5 F1@M

CopyRNN [36] 29.2 25.4 30.2 27.6 34.2 30.9 29.1 24.8 32.8 26.1
CatSeq [8] 22.5 25.7 26.9 34.6 32.3 37.9 24.2 27.6 29.1 35.7

CatSeqTG [39] 22.9 27.0 28.2 35.7 32.5 38.2 24.4 28.6 29.1 35.9
Transformer-based [37] 23.7 28.3 27.4 36.6 38.2 39.6 28.7 29.0 32.2 37.6

TAtrans (ours) 28.8 31.7 28.4 37.8 35.1 45.0 33.8 30.1 35.4 39.2

An obvious conclusion is that the Transformer-based model has a significant improve-
ment over all RNN-based models (CopyRNN [36], CatSeq [8], CatSeqTG [39]), which
confirms the Transformer architecture’s generative model is more effective than other base-
line models on keyphrase generation tasks. After adding the title attention and sequential
sequence code, the results on these five English datasets have further improved compared
with the above. Table 2 illustrates that the proposed model has a significant improvement
on most of the datasets. For instance, in the Inspec dataset, our model improves F1@ M
by 3.4% over the Transformer-based model, and 6.3% over CopyRNN. After adding title
attention, all indicators of the model are higher than the Transformer-based model, which
shows that the title attention mechanism combined with sequence code embedding is an
effective approach to improve keyphrase prediction.

In contrast to F1@5 and F1@M of our model, TAtrans performs better on longer
keyphrase sequence generation. This result may be attributed to the utilization of the
ONE2SEQ training mechanism. From training data, the model could pick up additional
keyphrase sequence information.
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5.2. Absent Phrases Prediction

In this section, we evaluate the performance of the model in predicting absent
keyphrases. As in the previous section, we use F1@5 and F1@M to evaluate the per-
formance of our method and baseline methods in predicting absent keyphrases on different
datasets. Table 3 reports the details of these results.

Table 3. The absent keyphrase results of five compared keyphrase generation models on multiple
datasets (we round to one decimal place). The best results are bold.

Method
Kp20K Inspec Krapivin NUS SemEval

F1@5 F1@M F1@5 F1@M F1@5 F1@M F1@5 F1@M F1@5 F1@M

CopyRNN [36] 1.5 3.2 0.4 0.8 1.8 3.6 1.6 2.8 1.6 2.8
CatSeq [8] 1.5 3.2 0.4 0.8 1.8 3.6 1.6 2.8 1.6 2.8

CatSeqTG [39] 1.5 3.2 0.5 1.1 1.8 3.4 1.8 3.6 1.1 1.8
Transformer-based [37] 2.2 4.6 1.1 1.9 3.5 6.3 2.6 4.4 1.4 1.8

TAtrans (ours) 3.4 4.5 1.4 2.6 4.6 6.2 3.9 5.3 1.6 2.6

As the result above show, our model is also the best at predicting absent keyphrases.
Our method outperforms the Transformer-based method by 1.2 times in terms of the top
five absent phrases prediction, which indicates that our model can understand the core
meaning of the text more accurately and generate absent keyphrases more efficiently.

5.3. Prediction on Chinese Dataset

To verify our model cross-language compacity, we implemented our model on the
Chinese dataset CNKIBL and compared it with the Transformer-based method. We use
F1@5, F1@10, and F1@ M to evaluate our model performance on the Chinese dataset. Before
training, we utilized Jieba as the tokenizer to segment the Chinese text. Then the rest of the
process is the same as in English. Table 4 displays the overall results of generating present
keyphrases on the CNKIBL dataset:

Table 4. Overall results of F1@5, F1@10, and F1@ M on the CNKIBL dataset. The best results are bold.

Metric Transformer-Based [37] TAtrans (Ours)

F1@5 33.5 35.7
F1@10 34.9 36.6
F1@M 36.1 37.5

From the Table 4, it can be concluded that our method has shown improvements
in the F1@5, F1@10, and F1@M metrics compared to the baseline Transformer method.
Our method achieves a 1.4% increase in F1@M score over the Transformer-based method.
Moreover, the results of F1@5 of the model outperform those of the baseline model on the
Inspec and SemEval English datasets.

As seen in Figure 4, our method has improved results on both the English and Chinese
datasets. This confirms that the model can complete cross-lingual keyphrase prediction
tasks effectively.

5.4. Prediction Order Analysis

In addition to measuring the present and absent keyphrase prediction separately, we
utilize MAP as an additional metric to evaluate the overall quality of the keyphrase se-
quences generated by models. MAP takes the order information of the complete keyphrase
sequence into account while assessing the accuracy of the k-th keyphrase prediction. The
main reason is because the higher the correct keyphrase position generated, the greater
the AP value according to Equation (13). The suggested model’s comparative results with
CopyRNN [36] and the Transformer-based method on five datasets are presented in Table 5.
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Figure 4. The results of F1@5, F1@10, and F1@M of Transformer-based and TAtrans on KP20K
and CNKIBL.

Table 5. The MAP results comparison of CopyRNN, Transformer-based [37], and TAtrans for
keyphrase generation. The best results of each dataset are bold.

Model
MAP

Inspec Krapivin NUS SemEval KP20k

CopyRNN [36] 0.17 0.22 0.21 0.13 0.27
Transformer-based [37] 0.2 0.33 0.34 0.2 0.35

TAtrans (ours) 0.33 0.64 0.47 0.32 0.42

As shown in Table 5, the model we proposed performs the best over all five datasets.
This suggests that, in compared to other models, the keyphrases generated by our model
have a significant sequential advantage. The results of the Transformer-based model over
all five datasets were also better than those of CopyRNN, indicating that self-attention has
improved the model’s keyphrase recognition capabilities. Compared to the Transformer-
based model [37], our model has improved by at least 0.07 (on KP20K) and at most 0.29 (on
Krapivin). This result proves that adding keyphrase sequence code embedding for each
phrase before inputting the decoder can accelerate generating the right keyphrase. On the
other hand, Krapivin’s data quality is better than KP20K, since it is calibrated by viewers,
whereas KP20K has many errors in both the abstract and target keyphrase. Therefore, it
further implies that the training data used to feed the model has an essential impact on its
prediction performance.

5.5. Ablation Study

We conducted an ablation study experiment to validate the effectiveness of the main
components of the TAtrans model. The results of the ablation study experiment perfor-
mance on both present keyphrase generation and absent keyphrase generation on the
KP20K dataset are reported in Table 6.

As shown in Table 6, after removing the title attention component and only retaining
the maintain parts of the model (the w/o Title Attention (our model), the present keyphrase
generation F1@M scores decrease more than 1.5%, and the absent keyphrase generation
performance also becomes obviously worse. We next investigated the effect of removing
sequence code embedding from the proposed model architecture. According to Table 6, it
can be observed that the F1@5 and F1@M decrease more than 1.8% on both present and
absent keyphrase generation, which demonstrates the effectiveness of the sequence code
embedding in generated keyphrases.



Electronics 2023, 12, 2968 13 of 17

Table 6. The results (%) of the ablation study of the TAtrans model (proposed in this paper) compared
with two baselines on the KP20k dataset. w/o means eliminating a component from the model.

Model
Present Absent

F1@5 F1@M F1@5 F1@M

CatSeq [8] 29.1 35.7 1.6 2.8
Transformer-based [37] 32.2 37.6 2.2 4.6

w/o Title Attention (our model) 34.1 37.8 3.32 4.4
w/o Sequence Code Embedding (our model) 33.7 37.3 3.22 4.31

TAtrans (our model) 35.4 39.2 3.4 4.5

Further investigation revealed that when comparing the removed component’s model
with the baseline model (Transformer-based [37] and CatSeq [8]), retaining title attention or
sequence code embedding alone is also superior to the Transformer-based model, suggest-
ing that each of these two components has a distinct improvement effect on the keyphrase
generation. The two components combined further improve the model’s capacity to pro-
duce keyphrases significantly.

5.6. Case Study
5.6.1. Title Attention Analysis

In order to verify the effectiveness of title attention in predicting keyphrases, we se-
lected a section of text from the KP20k dataset titled “A Prime Dual Approximation Algorithm
for the Asymmetric Prime Collecting TSP” and fed it into the Transformer-based model and
the TAtrans model proposed in this article for prediction. The Transformer-based predic-
tion keyphrase is “primal algorithm”, and this article can accurately predict the ‘primal-dual
algorithm’. We visualized the attention of the encoder in the Transformer-based model and
the TAtrans model proposed in this article, but the results are shown in Figure 5.

According to Figure 5, it can be observed that the text “present a primary manual log(n)
approximation algorithm for the Asian prize collecting” overlooks the significance of the word
‘dual’ in the initial model, despite its importance in the title “A primary dual approximation
algorithm for the Asian prize collecting TSP”. However, after the title attention output, the
attention weight of ‘dual’ increased, enabling the model to capture the phrase ‘primary-dual’.
This highlights the effectiveness of title attention in adjusting the model’s attention weight
for keyphrases, ultimately enhancing the accuracy of the model’s predictions.

5.6.2. Error Analysis

We further analyze the effectiveness of the keyphrase sequence produced by TAtrans.
An example prediction is illustrated in Figure 6. In comparison, the baseline Transformer-
based model repeatedly generated the word “design” when generating the keyphrase
sequence for an abstract text titled “Blotto Game Based Low Complexity Fair Multiuser Sub-
carrier Allocation for Uplink Odma Networks”. However, the proposed model, TAtrans,
successfully generated distinct phrases. This occurrence can be attributed to autoregres-
sive models, which rely on previous tokens to predict the next one, often resulting in the
repetition of generating tokens after encountering the same terms. To address this issue
and ensure the distinction between delimiter tokens, we incorporate additional embedding
features for each delimiter sign. This approach highlights the effectiveness of keyphrase
sequence code embedding in diversifying the generated phrases.
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6. Conclusions

This paper proposed a Transformer-based framework keyphrase generation model
incorporating title attention and adding a sequence order embedding in the decoder. We
conducted experiments on multiple datasets, including English and Chinese. The results
show that our method outperforms the existing seq2seq model and further improves upon
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the Transformer-based approach. The additional keyphrase sequence code embeddings
help the model produce more diversified phrases and achieve the best MAP result when
considering the order information of the keyphrase sequence comparison with the Copy-
RNN and Transformer-based model. The main reason is that this method enables the
model to distinguish delimiters embeddings between phrases so that it prevents generating
duplicate words. To evaluate the cross-language capability of our model, we collected a
Chinese dataset named CNKIBL, which contains scientific and technological literature.

The proposed method has made various improvements compared to previous methods
in generating public datasets with five keyphrases datasets. In the Inspect dataset, the
TAtrans model improves F1@M by 3.4% over the Transformer-based model, and 6.3% over
CopyRNN [36]. In addition, we use the MAP metric to consider the quality of the model in
generating keyphrase sequences. The experimental results show that the TAtrans model
outperformed both CopyRNN [36] and Transformer-based models. In the Krapivin dataset,
the proposed model improved by up to 0.29 compared to Transformer-based models. This
result indicates that the TAtrans model has the ability to capture the order information of a
specific keyphrase sequence. The experimental results on CNKIBL demonstrate that our
model’s performance also outperforms recently proposed generation models in Chinese
datasets. Notably, its performance on Chinses literature text exceeds the transformer-based
model by 2.2%, highlighting its cross-language keyphrase generation ability.

However, the proposed method still has certain weakness, especially when we incor-
porate the enhanced information in keyphrase generation instead of transforming in-depth
the architecture of the transformer-based model. This may make the model unable to
adapt to other types of NLP tasks easily. Moreover, our model’s performance in absent
keyphrase generation has not significantly improved. This limitation may be attributed
to the inference procedure and the requirement for more effective decoding strategies. In
future work, it is necessary to investigate diverse approaches for distinguishing delimiters
between phrases in the keyphrase sequence.
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