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Abstract: With the flourishing development of wireless communication, further challenges will be
introduced by the future demands of emerging applications. However, in the face of more complex
communication scenarios, favorable decoding results may not be yielded by conventional channel
decoding schemes based on mathematical models. The remarkable contributions of deep neural
networks (DNNs) in various fields have garnered widespread recognition, which has ignited our
enthusiasm for their application in wireless communication systems. Therefore, a reliable DNN-based
decoding scheme designed for wireless communication systems is proposed. This scheme comprises
efficient local decoding using linear and nonlinear operations. To be specific, linear operations are
carried out on the edges connecting neurons, while nonlinear operations are performed on each
neuron. After forward propagation through the DNN, the loss value is estimated based on the output,
and backward propagation is employed to update the weights and biases. This process is performed
iteratively until a near-optimal message sequence is recovered. Various factors within the DNN
are considered in the simulation and the potential impacts of each factor are analyzed. Simulation
results indicate that our proposed DNN-based decoding scheme is superior to the conventional
hard decision.

Keywords: DNN-based decoding; local decoding; activation function; loss function

1. Introduction

With the rapid development of technology, information exchange in society has be-
come increasingly frequent and convenient. Digital communication, as a fundamental
infrastructure for modern information exchange, has also achieved unprecedented develop-
ment [1]. In today’s digital communication, including mobile communication, the internet,
and the internet of things, it is necessary to ensure efficient and reliable transmission of
information [2]. However, in digital communication, factors such as noise and channel
interference can cause errors during the transmission process. To ensure the accuracy of
information during transmission, channel decoding is required for detecting and correcting
errors at the receiver [3]. The importance of channel decoding is self-evident. Although tra-
ditional channel decoding schemes can effectively correct errors in the channel and have
achieved some success in practical applications, there are still limitations and inefficiencies,
particularly when communication scenarios become excessively complex. Implementation
of mathematically based communication block models can become imprecise, thereby
limiting the performance of traditional schemes. To address the aforementioned challenges,
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there is growing interest in exploring new paradigms for channel decoding that differ from
traditional approaches.

Deep neural networks (DNNs) have become one of the research hotspots in the field
of deep learning (DL) in recent years [4]. Due to its excellent performance, DNN has been
widely applied in many domains, including but not limited to image classification [5],
object detection [6], speech recognition [7], and so on. The success of DNN in these areas
has also sparked our interest in applying DNN to wireless communications. Compared
to conventional communication system models, which require precise mathematical mod-
eling, DNN can automatically learn the whole process from input data to output results
through end-to-end learning. Therefore, manual design and adjustment of various model
components is unnecessary, as DNN can learn all necessary features by itself. This makes
it possible for DNN to be applied to communication systems without being limited by
specific mathematical models. Moreover, DNN computations can be easily parallelized,
which means they can take advantage of modern hardware accelerators such as GPUs to
achieve faster training and inference speeds [8].

Inspired by the advantages of DNNs, there have been various applications in the
field of wireless communications. In [9], several novel communication frameworks based
on DL were investigated and their superior performance was demonstrated. In [10],
the DL-based channel estimation model was analyzed and shown to not be limited to a
specific signal model. It was also shown to perform close to the minimum mean square
error estimation in various cases without requiring prior knowledge of channel statistics.
In [11], the authors proposed a method for achieving high localization accuracy and real-
time operation in vehicular networks, assisted by DNN. In [12], the DL-based physical
layer communication achievements were summarized, and the capabilities of DL-based
communication systems with block architecture in terms of signal compression and signal
detection were demonstrated. Work [13] proposed three DNN models to address the issue
of nonlinear distortions caused by power amplifiers in multiple input multiple output
(MIMO) systems. A DL approach using DNNs for joint MIMO detection and channel
decoding was proposed in [14], with improved performance demonstrated compared to
conventional model-based receivers. In [15], a DL-based decoding scheme was presented
for sparse code multiple access communication system. However, in contrast to these
previous works, we provide guidance on how to apply DNN to the channel decoding block
of a wireless communication system as well as for selecting appropriate DNN parameters.
Favorable results are achieved by adjusting different parameters in the DNN. Specifically,
in the field of channel decoding, DNN can establish a statistical model by learning a
large number of data samples and then perform channel decoding operations based on
this model. Compared to traditional decoding approaches, DNN can complete decoding
operations more accurately.

In this study, we propose a DNN-based decoding scheme over an additive white
Gaussian noise (AWGN) channel. Specifically, we first partition the signal received from
the AWGN channel into multiple equally sized groups, with each group undergoing an
independent local decoding process. The DNN-based decoding scheme carries out local
decoding in the input layer, hidden layers, and output layer, respectively. The local decod-
ing involves two types of operations: linear operations and nonlinear operations. A linear
operation involves calculating the weighted sum of the previous layer’s neuron outputs
multiplied by the corresponding weights and adding the biases. A nonlinear operation
involves applying a nonlinear activation function to the output of neurons. Following
multiple rounds of local decoding, the loss value is calculated using the mean squared
error (MSE) loss function. Secondly, employing the gradient descent (GD) optimization
algorithm, the weights and biases are updated for the subsequent iteration based on the loss
value. After a large number of iterations, the most reliable message sequence is recovered.
Simulation results demonstrate that our proposed DNN-based decoding scheme is superior
to the conventional hard decision.
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The remainder of this paper is organized as follows: In Section 2, the concepts of the
Hamming hard decision and the DNN model are reviewed. In Section 3, we propose a
DNN-based decoding scheme, and present the principles and examples of the proposed
scheme. Meanwhile, an analysis of the memory cells of the proposed scheme is conducted.
Simulation results considering different activation functions, loss functions, and learning
rates are presented in Section 4. In this section, we also analyze the possible reasons for
the good performance of our proposed scheme and evaluate its memory cell requirements.
Overall conclusions are presented in Section 5.

2. Preliminary

In this section, we introduce some basic knowledge about the Hamming hard decision
and DNN.

2.1. Hamming Hard Decision

For the Hamming hard decision, the decoding principle is to compare the values of
Hamming distances [16]. In general, the Hamming distance between two vectors a and b
is denoted as

dH(a, b) =
n

∑
i=1

(ai ⊕ bi) (1)

where a = (a1, a2, · · · , an), b = (b1, b2, · · · , bn), and⊕ represents the XOR operator. For the
two bits ai and bi in vectors a and b, ai ∈ {0, 1}, bi ∈ {0, 1}, 1 ≤ i ≤ n, the Hamming
distance is equal to 0 if ai is equal to bi and 1 otherwise.

2.2. DNN Basics

As the number of layers in a neural network increases, the model’s data processing
capabilities improve. An artificial neural network is composed of multiple neurons con-
nected to each other by edges. Neural networks consist of an input layer, multiple hidden
layers, and an output layer to enable more accurate and complex pattern recognition and
classification tasks. It is because the neural network contains multiple hidden layers that it
is named DNN. In the DNN model, each neuron and the edges connected to it have their
own specific roles. There is an activation function and a bias parameter on each neuron,
and a weight parameter on the edge connected to the neuron. The activation function is
a nonlinear transformation of the neuron’s output [17]. The input signal is multiplied by
the weight, added to the bias, and then activated to obtain the output signal. In DNN,
weights and biases are used to control the strength of connections between neurons and
the offset of neurons. The activation function, weights, and biases in the DNN interact
with each other and, by adjusting them, the strength of connections, offsets, and output
results between neurons can be controlled, thereby achieving learning and prediction of
the neural network.

The structure of a typical DNN model is presented in Figure 1. Any neurons in the
(l − 1)th layer of the neural network must be interconnected with the neurons in the lth
layer. For each layer of neurons, there exists a mapping: xl = hl(xl−1; θl), 1 ≤ l ≤ M.
The mapping of each layer depends not only on the output xl−1 of the previous layer
but also on the selection of the parameter θl . We use θ = {θ1, · · · , θM} to denote the
selection of parameters in each layer of the neural network. The lth layer mapping structure
has the following form:

hl(xl−1; θl) = f (Wl xl−1 + bl) (2)

where Wl is the weight parameters and bl is the bias parameters, and f (·) is an activa-
tion function.
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Figure 1. Deep neural network (DNN) structure diagram.

The forward propagation algorithm is a fundamental algorithm in DNN, responsible
for transmitting input signals from the input layer to the output layer and achieving model
inference and prediction. This algorithm starts from the input layer, performs layer-by-layer
computation, and continues until the output layer produces the final result. The forward
propagation algorithm is primarily divided into two steps: the first step involves computing
the weighted sum of inputs for each neuron and the second step involves activating the
input values of the neurons. For the first step, the input signal xj is multiplied by the weight
wij of each neuron i through a weighted sum and then added with the bias bi, resulting in
the neuron’s weighted sum expressed as Formula (3). For the second step, the activation
function is applied to the weighted sum zi of each neuron i, resulting in the neuron’s output
expressed as Formula (4).

zi =
n

∑
j=1

wijxj + bi (3)

ai = f (zi) (4)

The following Table 1 lists some common activation functions along with their cor-
responding expressions and output ranges. Effective selection of the activation function
is crucial for accurate predictions in DNN, as different activation functions have different
usage scenarios.

Table 1. List of activation functions.

Name f (z) Range

linear z (−∞,+∞)

tanh ez−e−z

ez+e−z (−1,+1)

sigmoid 1
1+e−z (0, 1)

relu max(0, z) [0,+∞)

Compared to the forward propagation algorithm, the backward propagation algorithm
is used to update the weights and biases. We employ the notation Θ = (Wl , bl) to briefly
represent the weight and bias parameters of the lth layer. Its basic idea is to compute
the loss value through the loss function [18] and propagate the loss value layer-by-layer
backwards to calculate the gradients of each neuron. Finally, the optimization function
updates the Θ of each neuron based on the gradients and learning rate to gradually reduce
the error [19]. The backward propagation algorithm and the forward propagation algorithm
often require a significant number of iterations to achieve satisfactory results. In Table 2,
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two frequently used loss functions and their corresponding expressions are listed. Note
that the selection of the loss function, like that of the activation function, must be adjusted
flexibly based on the training data.

Table 2. List of loss functions.

Name E(ŷi, yi)

MSE 1
n

n
∑

i=1
(ŷi − yi)

2

MAE 1
n

n
∑

i=1
|ŷi − yi|

3. The Proposed DNN-Based Decoding Scheme and Memory Cell Analysis

In this section, we present our DNN-based decoding scheme and the memory cell
analysis.

3.1. The Proposed DNN-Based Decoding Scheme

A block diagram of a communication transmission system is depicted in Figure 2.
The source randomly generates a message sequence of length K, denoted as t = (t1, · · · , tK),
ti ∈ {0, 1}, 1 ≤ i ≤ K.

Coding Modulation Channel DNN-based Decodingt
c x y

t̂

Noise

Figure 2. System model.

The message sequence t is multiplied by the generation matrix GK×N to obtain the
encoded vector c = (c1, · · · , cN). We will favor ci ∈ {+1,−1} over ci ∈ {0, 1} under
the mapping {0↔ 1, 1↔ −1}, which is called binary phase shift keying (BPSK). Then,
the modulated signal x = (x1, · · · , xN) is fed into the AWGN channel for transmission.
The receiver gets a superimposed signal vector y = (y1, · · · , yN) with

yi = xi + zi, 1 ≤ i ≤ N, (5)

where zi is a zero-mean Gaussian variable with a variance of σ2, i.e., zi ∈ N (0, σ2).
The DNN-based decoding scheme is performed to recover the message sequence t. The trans-
mission rate is R = K/N. The symbols and codeword synchronization are assumed.

Our DNN-based decoding scheme can also be described by the graph in Figure 3.
The graph has three types of layers: the input layer in blue circles, where the input correspond
to the received signal y; the hidden layer in red circles, where the input and output correspond
to linear and nonlinear operations, respectively; and the output layer in red circles, where
the output correspond to the recovered message sequence t̂. The edge from the ith neuron in
the (l − 1)th layer to the jth neuron in the lth layer represents the weight parameter W l−1

ij .

Moreover, the bias parameter of the jth neuron in the lth layer is bl
j.

The DNN-based decoding scheme is accomplished by efficient local decoding at all the
neurons and interactions. During a decoding iteration, each neuron acts once to perform
local decoding and updates the message on the edges to each of its adjacent neurons.
A decoding iteration starts from the local decoding at the neurons in the input layer. Based
on the received signal y, each neuron performs a local decoding. This local decoding
employs a nonlinear operation by an activation function. Based on these activation function
results, a local decoding is performed on each edge, which connects the neurons of the
input layer and the first hidden layer. This local decoding employs a linear operation of
the weights and biases. A similar process is performed in hidden layers and output layer.



Electronics 2023, 12, 2973 6 of 14

Here, the sigmoid function is employed as the activation function in the hidden and output
layers. In the output layer, the loss values is calculated by the MSE. Based on these loss
values, the weights and biases on each edge are updated for the next iteration using the
GD algorithm. After a large number of iterations, the message sequence t̂ is recovered.
It should be emphasized that the DNN-based decoding scheme provides near-optimal
performance, by carrying out the local decoding iteratively, compared with hard decision.
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Figure 3. DNN-based Hamming decoding process graph.

For easy understanding, we give an example for the (7, 4) Hamming code. Based on
the structure of the (7, 4) Hamming code, the numbers of neurons in the input layer and the
output layer are set to 7 and 4, respectively. The signal y is equally divided into multiple
groups. Each group contains seven symbols, which are denoted as m = (m1, · · · , m7). Let

O0
n , mn, 1 ≤ n ≤ 7, (6)

be the output of the nth neuron in the input layer.
In general, given the outputs O0

n on the right side of the input layer, the overall inputs
I1
j of the jth neuron on the left side in the first hidden layer can be represented as a function

of weights and biases

I1
j =

7

∑
n=1

W0
njO

0
n + b1

j , 1 ≤ j ≤ 140. (7)

Obviously, this is a linear operation.
In the first hidden layer, for a given overall input I1

j , the jth neuron performs a

nonlinear operation and, thus, its output O1
j is

O1
j = f (I1

j ) =
1

1 + e−I1
j

, (8)
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where f (·) is the sigmoid function.
Similarly, for the outputs Ol−1

j of the (l − 1)th (2 ≤ l ≤ 3) layer, a linear operation is

performed to produce the overall inputs Il
j of the jth neuron in the lth layer

Il
j =

140

∑
n=1

W l−1
nj Ol−1

j + bl
j. (9)

Based on the overall inputs Il
j of the jth neuron in the lth layer, a nonlinear operation

is performed to get the corresponding output,

Ol
j =

1

1 + e−Il
j
. (10)

In the output layer, the same linear and nonlinear operations are performed, and thus
we obtain the output O4

k of the kth (1 ≤ k ≤ 4) neurons.
For the output O4

k on the right side of the output layer, the loss value E is estimated by
the MSE function [20]

E =
1
4

4

∑
k=1

(O4
k − tk)

2, (11)

where tk is a length-4 sequence of a group equally divided by t, based on the (7, 4) Ham-
ming code.

Based on this estimation and the GD algorithm [21], the update rules of weights and
biases on each edge are 

W l−1
nj = W l−1

nj − η
∂E

∂W l−1
nj

(12)

bl
j = bl

j − η
∂E
∂bl

j
(13)

where η is the learning rate. The selection of η is used to control the update rate of the
weights and biases.

This process above is performed iteratively until the message sequence has been
recovered. The procedure of DNN-based decoding scheme is shown in Algorithm 1.

Algorithm 1: DNN-based Decoding Algorithm
Input: input received signal y
Output: output the recovered message sequence

1 Create input layer;
2 Create hidden layers;
3 Create output layer;
4 Initialize weights and biases;
5 while i < LOOPMAX do
6 while l ≤ 4 do
7 Calculate the input of each layer I l ;
8 Calculate the output of each layer Ol ;
9 l++;

10 end
11 Calculate the loss value E;
12 Update weights and biases;
13 i++;
14 end
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3.2. Memory Cell Analysis

For each group, the code length divided by the received signal is n and the message
length after decoding is k. In the DNN-based decoding scheme, it does not require a
comparison with the Hamming codebook. As n changes, it only corresponds to the weights
between the input layer and the first hidden layer. If the number of neurons in the first
hidden layer is P, the size of the weight matrix is (P× n). As k changes, it only corresponds
to the biases at the output layer. The size of the bias matrix is (1× k). No extra memory
cells are created during the decoding iteration due to the changes in n or k. Thus, the total
memory cells of the DNN-based decoding scheme are (Pn + k).

On the other hand, in the hard decision, the received codeword is required to be
compared with the codebook and the codeword that gives the minimum Hamming distance
is selected. To compare the minimum Hamming distance, the size of the Hamming distance
matrix is (1× 2k). The codebook has 2k rows with n lines per row. Therefore, the total
memory cells of hard decision are 2k(n + 1), as shown in Table 3.

Table 3. List of memory cells.

Different Decoding Schemes Size

DNN-based decoding Pn + k

Hard decision 2k(n + 1)

Note that, as the message length k of linear codes increases, the exponentiation in
hard decision becomes particularly large, which will require especially large memory cells.
Therefore, as k increases, the number of memory cells in our proposed scheme is much
lower than that of hard decision.

4. Simulation Results

In this section, we present some simulation results of our proposed DNN-based
decoding scheme. The training platform for the DNN-based decoding scheme in simulation
is established by TensorFlow [22]. The generator matrix of the (7, 4) Hamming code
employed in our study is shown below.

1 0 0 0 1 0 1
0 1 0 0 1 1 1
0 0 1 0 1 1 0
0 0 0 1 0 1 1

 (14)

In Table 4, we present the number of neurons in the input layer, hidden layers, and out-
put layer of the DNN model.

Table 4. List of the number of neurons in each layer.

Name The Number of Neurons

Input layer 7

Hidden layers 140

Output layer 4

Note that the number of layers in the hidden layer is 3 and the optimization process is
accomplished by the GD algorithm. Our proposed DNN-based decoding scheme is limited
by the influence of various parameter settings. To identify the parameters that are most
effective in reducing the bit error rate (BER), we conducted simulation analyses to observe
their impact on the BER.
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4.1. Effect of Different Learning Rates on BER Performance

In this section, the activation function of each neuron is set as sigmoid and the loss
function is set as MSE. The learning rate in DNNs determines the scale of parameter
adjustments during each iteration, impacting the speed and stability of the learning process.
Let the learning rate η in the GD algorithm take on the values of 0.01, 0.05, 0.08, and 0.1,
respectively. In Figure 4, it is shown how the variation of learning rates affects the BER
performance of the DNN-based decoding scheme. When Eb/N0 is within the range of
0–3 dB, the BER curves for the four learning rates are almost identical. However, when
the Eb/N0 exceeds 3 dB, the four curves show significant differences. As Eb/N0 increases,
we can observe that the curve with η = 0.08 decreases at the fastest rate. This indicates
that η = 0.08 is the most suitable learning rate for DNN-based decoding among these four
curves, while keeping the other parameters constant. Moreover, the BER curve does not
continuously increase with the increase in η. When η = 0.10, the curve is higher than
that of η = 0.08. An excessively large η may cause the GD algorithm to iterate repeatedly
near the optimal solution, resulting in the possibility of skipping the optimal solution and
encountering non-convergence regions. For a too small η, it will cause slow parameter
updates, requiring more iterations to converge to the optimal solution, thereby increasing
training time and computational cost. Additionally, a learning rate that is too small may
result in the GD algorithm being trapped in local optima and unable to reach the global
optimal solution, as there may be multiple local optima in the parameter space.

B
E
R

Figure 4. BER performance of the DNN-based decoding scheme with different learning rates.

4.2. Effect of Different Loss Functions on BER Performance

In this section, the activation function of each neuron is set as sigmoid and the learning
rate η in the GD algorithm is set as 0.08. The loss function guides DNNs to minimize
the discrepancy between predicted output and actual target during training. Let the
loss functions employed in the simulation be MAE and MSE, as mentioned in Table 2.
In Figure 5, the BER performance of the DNN-based decoding scheme is compared using
MAE and MSE loss functions. We can observe that the difference in the BER values between
these two loss functions is not significant when Eb/N0 is within 0–3.5 dB. As Eb/N0
increases, the performance of the MSE and MAE loss functions in terms of BER gradually
diverges. This phenomenon can be attributed to the fact that, when the signal power
is significantly higher than the noise power, the MSE loss function can more sensitively
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capture the slight difference between the predicted value and the true value, leading to
more precise model optimization and minimized errors. On the other hand, the MAE loss
function may not be sensitive enough to minor differences and not effectively optimize
the model.

B
E
R

Figure 5. BER performance of the DNN-based decoding scheme with different loss functions.

4.3. Effect of Different Activation Functions on BER Performance

In this section, we employ the MSE loss function and set the learning rate to 0.08 in
the GD optimization algorithm. The activation function in DNNs introduces nonlinearity
to enhance their suitability for channel decoding requirements. Let the activation functions
employed in the simulation be linear, tanh, sigmoid, and relu, as mentioned in Table 1.
The effects of different activation functions on the BER performance of the DNN-based
decoding scheme are plotted in Figure 6. The activation functions of the first and second
hidden layers are set with corresponding labels in the figure, while the activation functions
of the third layer in the hidden layer and the output layer are both set to the sigmoid
function. The advantage of using the sigmoid function as the activation function is that
it maps the neural network’s output into the range of (0, 1). This corresponds to the 0
and 1 in the binary sequence generated by the source and the encoded sequence. It can be
observed from Figure 6 that, starting from Eb/N0 = 0 dB, the BER curve corresponding to
the use of the sigmoid activation function for all neurons is the lowest. The combination
of relu and sigmoid functions as well as the combination of tanh and sigmoid functions
show minor differences in the BER curves, while the BER curve corresponding to the
combination of linear function and sigmoid function is the highest. The reason why the
linear function performs poorly is because its derivative is constant, limiting the network’s
ability to learn complex nonlinear patterns. Nonlinear activation functions, such as sigmoid,
relu, and tanh, provide stronger nonlinear transformation capabilities and improve the
network’s performance. Therefore, in practical applications, these nonlinear activation
functions are often used to replace linear functions.
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B
E
R

Figure 6. BER performance of the DNN-based decoding scheme with different activation functions.

4.4. BER Performance Comparison of Different Decoding Schemes

In this section, based on the simulation results of the learning rate in the GD op-
timization algorithm, loss function, and activation function mentioned above, the BER
comparison curves between the DNN-based decoding scheme and the conventional hard-
decision decoding scheme are plotted in Figure 7. For the DNN-based decoding scheme,
the learning rate η = 0.08 is set to 0.08, the loss function is MSE, and the activation function
for all neurons is sigmoid. The simulation results indicate that the DNN-based decoding
scheme outperforms the hard decision scheme in terms of BER, demonstrating lower values
over the range of Eb/N0 from −4 dB to 8 dB. Moreover, this phenomenon verifies the
feasibility of our proposed scheme.

B
E
R

Figure 7. BER performance comparison of different decoding schemes.
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4.5. Memory Cell Requirements Comparison Between Our Proposed Scheme and Hard Decision

In this section, our work can also be analyzed in terms of memory cell requirements.
In practice, the required memory cells can be calculated based on Table 3. The memory
cells required by hard decision and the DNN-based decoding scheme are denoted as Mhard
and MDNN , respectively. Let us compare the memory cells of these two schemes.

When employing the (7, 4) Hamming code, the memory cell requirements for the
hard decision are Mhard = 24 × (7 + 1) = 128. On the other hand, the memory cell
requirements for the DNN-based decoding scheme are MDNN = 140× 7 + 4 = 984. Here,
the number of neurons in the first hidden layer is P = 140. It can be obtained that the
memory cell requirements for our proposed DNN-based decoding scheme are greater than
those required for the traditional hard decision. However, when employing the (15, 11)
Hamming code, the situation changes significantly. The memory cell requirements for
these two schemes are Mhard = 211 × (15 + 1) = 32,768 and MDNN = 140× 15 + 11 = 2111.
The memory cell requirements of the hard-decision decoding scheme increase exponentially,
while those of the DNN-based decoding scheme are in product form. When k increases
to 26, Mhard = 226 × (31 + 1) = 2.1475× 109 and MDNN = 140× 31 + 26 = 4366, our
proposed scheme requires about 105 times fewer memory cells than hard decision, as shown
in Table 5 .

Table 5. List of the memory cell requirements comparison for different decoding schemes.

Different Hamming Codes Hard Decision DNN-Based Decoding

n = 31, k = 26 2.1475× 109 4366

n = 15, k = 11 32,768 2111

n = 7, k = 4 128 984

5. Conclusions

We proposed a DNN-based decoding scheme and demonstrated its effectiveness
through a practical case study. Based on the communication transmission system model,
the proposed DNN-based decoding scheme could replace the conventional channel decod-
ing scheme. DNN models have the ability to learn through deep nonlinear transformations,
which enhance the signal decoding capability and consequently achieve a lower bit error
rate. Specifically, after receiving the signal from the channel, it was fed to the input layer of
the DNN model at the receiver. After multiple rounds of local decoding, i.e., linear and
nonlinear transformations, the predicted sequence was obtained in the output layer during
this iterative process. To assess the correctness of the predicted sequence in each iteration,
we introduced the MSE loss function to measure the loss value. Based on the evaluated
loss value, we applied the GD algorithm to optimize the weight and bias parameters of
the DNN. After numerous iterations aimed at minimizing the loss value, we recovered
the near-optimal message sequence. In the simulation, we considered various factors that
could impact the performance of the DNN. A detailed analysis was conducted to assess
the impact of each factor, including learning rate, loss function, and activation function,
on decoding performance. The optimal combination of these three factors was carefully
selected for the final simulation of BER. The simulation showed that our proposed DNN-
based decoding scheme was superior to the conventional hard decision decoding scheme.
Moreover, this demonstrated the feasibility of our proposed scheme.

In this paper, we proposed a novel decoding scheme that integrated the DNN model
with communication transmission systems. Our hope is that this decoding scheme, which
is not limited to mathematical models, can inspire the application of DNNs in the field
of wireless communication. An interesting problem for future research is how to jointly
integrate DNNs with channel coding, channel transmission, and channel decoding. Fur-
thermore, in real-world scenarios, the deployment of the DNN-based decoding scheme is
not only constrained by learning rates, loss functions, and activation functions. Factors
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such as computational resources, the availability of training data, and the requirement for
hardware acceleration also play equally important roles.
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