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Abstract: Non-autoregressive neural machine translation (NAMT) has received increasing attention
recently in virtue of its promising acceleration paradigm for fast decoding. However, these splendid
speedup gains are at the cost of accuracy, in comparison to its autoregressive counterpart. To close this
performance gap, many studies have been conducted for achieving a better quality and speed trade-
off. In this paper, we survey the NAMT domain from two new perspectives, i.e., target dependency
management and training strategies arrangement. Proposed approaches are elaborated at length,
involving five model categories. We then collect extensive experimental data to present abundant
graphs for quantitative evaluation and qualitative comparison according to the reported translation
performance. Based on that, a comprehensive performance analysis is provided. Further inspection is
conducted for two salient problems: target sentence length prediction and sequence-level knowledge
distillation. Accumulative reinvestigation of translation quality and speedup demonstrates that
non-autoregressive decoding may not run fast as it seems and still lacks authentic surpassing for
accuracy. We finally prospect potential work from inner and outer facets and call for more practical
and warrantable studies for the future.

Keywords: non-autoregressive; autoregressive; machine translation; fast decoding

1. Introduction

Developing fast and accurate machine translation in a wide range of applications is
an elementary orientation for both research and industry. This decade has witnessed the
rapid progress of neural machine translation (NMT) benefiting from the application of
various artificial neural networks [1–6]. Particularly, Transformer has realized state-of-the-
art performance and has become the de facto mainstream architecture [6–10]. The vanilla
Transformer adopts an encoder–decoder framework [1,2]. Taking a sentence from one
language as input on the source side, the framework converts it into another language
as an output on the target side. Among this, the encoder maps the input sentence into
hidden representation, and then the decoder decodes the hidden representation into an
output. While this process can be trained with high parallelism via teacher forcing [11], the
decoding of the inference stage is autoregressive and non-parallel. In order to produce a
current token, the previous time step predication must be the extra decoder input, which
means that each token is predicted not only based on the source input but also the previ-
ously generated token, sequentially forming a left-to-right and word-by-word generating
arrangement. Although it achieves impressive performance success, this intrinsically se-
quential Autoregressive Transformer (AT) process cannot be parallelizable during inference,
leading to a high inference latency and preventing industrial application, in which low
latencies and simultaneous responses are demanded.

To mitigate this, a flurry of recent work has been developed for fast decoding towards
non-autoregressive neural machine translation (NAMT) (Figure 1). Gu et al. [12] firstly pro-
posed a Non-Autoregressive Transformer (NAT) based on the Transformer network, which
could generate each token independently and simultaneously. The NAT assumed that
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the prediction of each token on the target side was conditionally independent and merely
based on a source input without respecting previously generated words, thus generating
all target tokens in parallel and at once. Consequently, NAT obtained a latency of 39 ms per
sentence and 15.6 times speedup of decoding speed, compared to the 607 ms per sentence
of Transformer. However, the great speedup gains were at the cost of accuracy, which could
have been up to 5.76 points compared to its counterpart (i.e., Autoregressive Transformer),
according to the BLEU score [13], a general criterion for automatically evaluating the quality
of machine translation.
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This accuracy drop distinctly stems from the strongly conditional independence as-
sumption on the target side, which, in the meantime, induces the prominent challenge
of capturing the highly multimodal distribution of target translations (i.e., multiple fea-
sible translations correspond to a single source). Two prevailing problems empirically
observed in the non-autoregressive output are: (1) Over-translated data, where repeated
words are generated at in consecutive positions. For example, given two German source
sentences “Danke schön” and “Vielen Dank”, which can be translated into “thank you”
and “thank you very much” in English, respectively, NAT could generate “thank” for the
second output token, even though the word “thanks” has already been selected, and it
could output possible translations such as “thanks thank” and “thanks very very much”.
(2) Under-translated data, where the semantics of several phrases from the source can be
blundered or missed in the output. See a specific instance in Table 1 for more intuitional
detail regarding each phenomenon.

Table 1. Over-translated and under-translated phenomena of NAMT.

Vielen Dank

Reference Thank you very much (standard translation)
Over-translated Thank you much much (repeated translation)

Under-translated (1) Thanks you very much (mistaken semantic)
Under-translated (2) Thank
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very much (missing semantic)

Both of these issues suggest the inferior ability of NAT to capture the multimodal
distribution of output space compared to AT. More precisely, to maximize the likelihood of
an entire output sentence, AT selects words with maximal probability for each token. This
searching process is effectively performed via beam search based on the previous tokens
as a certain restriction, with narrowed solution space of tractable width and depth. For
example, given the source sentence “谢谢你 ” in Chinese and target translation “thank
you” in English, AT is unlikely to produce any other words in addition to “you” when the
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previously generated word is “thank”. By contrast, the prior restriction disappears in NAT
as the sequential dependencies between tokens on target side are removed. There could
be multiple alternative words mapped to an unpredicted token in the output of NAMT,
resulting in an enlarged solution space that is intractable for NAT. Consequently, in order
to minimize the loss, NAT seeks to select the word with highest likelihood for each target
token in spite of the correlations between them.

To close the accuracy gap between the AT and NAT models while alleviating the
inconsistency in the generation of NAMT, successive endeavors have been made by re-
searchers. A line of work aims to loosen the dependencies on the target side by utilizing
latent variables or other intermediates as pivots to accomplish the transformation from
source to target, realizing fully parallel non-autoregressive generation. Another branch of
this study focuses on reconstructing the interdependencies through multiple-step decoding
and iteratively refining the generations until the final output. Except for managing the se-
quential dependency on the target side, some researchers turn to implementing alternative
training strategies, including new objectives and multiple training methods, considerably
boosting the performance of NAMT.

In this paper, we provide an elaborate review of non-autoregressive neural machine
translation during the past 5 years. It is worth mentioning that a preprinting study [14] is
similar to our work, which describes this domain from four aspects concurrently, covering
other non-autoregressive generation tasks. However, different from it, we center more
on neural machine translation and inspect this field with decent insight from two new
perspectives: dependency management on the target side and training arrangement for
NAT models. Other than delivering quantitative description and qualitative comparison
for various methods, we also anticipate promising future directions for this area, following
up the latest findings, including simultaneous translation [15,16], automatic speech recog-
nition [17–19], speech translation [20–22], image caption [23], and text editing [24–29], as
well as the emerging large language models [30,31].

Our contribution to this community can be summarized in three aspects:

1. We provide a concise retrospective on the technology evolving of non-autoregressive
neural machine translation from the different viewpoints of target-side dependency
management and training strategy arrangement.

2. We made a comprehensive comparison among the methods applied in this field ac-
cording to both effectiveness and accuracy via quantitative evaluation of the reported
data and qualitative analysis based on the proposed theory.

3. In addition to the review, the practices for fast decoding in corresponding tasks are
also described, along with the challenges of NAMT and the prospects for future
direction in this area.

The rest of this paper is organized as follows: Section 2 briefly introduces the pre-
liminary knowledge of machine translation; Section 3 elaborates various efforts made to
promote the performance of NAMT; Section 4 provides a quantitative comparison and
a qualitative analysis for the methods mentioned before; in Section 5, crucial problems
of NAT models in common are inspected; further critical discussion and future work are
conveyed in Section 6; and the final Section 7 concludes the whole paper.

2. Preliminary

In this section, we first introduce some fundamental knowledge about translation.
A brief description of the comparison between human translation (HT) and machine
translation (MT) is also provided. Then, we pass the preliminary statements of the AMT
with Transformer. Finally, the depiction of the principle theory in NAMT is detailed, along
with the problems that need to be grappled with.

Translation is the creation of a translated text to perform a function. The connection
it maintains with its source text will be materialized according to the functions expected
or required by the translation. Currently, translation methods can be divided into human
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translation and machine translation according to whether the translation is performed by
humans or machines.

Machine translation generally refers to the conversion of one natural language into
another natural language by a machine. Literally, the translated texts from machine transla-
tion are considerably decent in some specific scenarios. In more open fields, nevertheless,
it does not perform desirably. Specifically, in simultaneous translation, the quality and
accuracy of machine translation need further advancements to meet practical applications.
For the translation of novels, machine translation still lags behind manual work. It is also
more entertaining than a realistic deployment when translating poems via machine. In
comparison, human translation has certain strengths over machine translation in simul-
taneous interpretation, literary translation, and other aspects of high translation quality
requirements. Machine translation has viable advantages over human translation for large
amounts of translation, such as web page translation and document translation.

(a) Machine translation

The notation of machine translation, formally proposed in 1949 by Weaver [32], is
expected to automatically transfer sequences from one language to another. Following the
technology of computational machines, researchers at Georgetown University attempted
the first automatic machine translation in 1954, opening the study of syntactic-driven
machine translation systems, which perform translation via manually formulated syntactic
rules. However, the world’s thousands of languages change rapidly over time and vary
dramatically in regions. In spite of the high overheads of various human-crafted syntactic
rules, this schema suffers from limited coverage and poor robustness. At the beginning of
the 1980s, the electronization of literal resources enriched the available data and linguistic
corpus for language learning, leading to the emergence of data-driven machine translation.
The series of models formulates the transformation between languages based on the theory
of statistical mathematics (i.e., statistical machine translation [33,34]). On top of this, since
2013, the boom of deep learning techniques has brought about another boost for MT. By
using various artificial neural networks, neural machine translation realizes state-of-the-art
accuracy via an end-to-end framework without the many necessary preprocessing steps
that statistical machine translation needs.

(b) Autoregressive neural machine translation

Most autoregressive neural machine translation (AMT) models attaining SOTA per-
formance on the task of MT use the Transformer architecture [6]. The vanilla Transformer
adopts an encoder–decoder framework. Generally, the encoder is composed of six identical
sub-layers, which contain a multi-head self-attention module and a feed-forward neural
network. The decoder is also a stack of the same six sub-layers. In addition to the two
sub-modules aforementioned in each encoder’s sub-layer, a different layer, namely, masked
multi-head attention, is inserted on top of encoder outputs. Considering a source input
sentence X = {x1, x2, . . . xM} and the corresponding target sentence Y = {y1, y2, . . . yN},
Transformer models the translation from X to Y as a probability conditioned on input X
and previous predictions, which can be formulated as a chain of conditional probabilities:

f (X→ Y) = P(Y|X) = P(y1, y2 . . . yN | X; θAT) =
N

∏
i=1

P(yi|y<i, X; θAT) (1)

in which yi and y<i indicate the present i-th time step token and the previously generated
tokens, respectively. N is the length of the entire target sentence, and θAT is the parameter of
the model. In particular, the encoder first maps a source input sentence X = {x1, x2, . . . xM}
into a continuous hidden representation Z = {z1, z2, . . . zM} and passes it to the decoder.
The decoder then decodes the hidden representations and generates the target output
Y = {y1, y2, . . . yN} one element at a time. At each time step, the prediction is autoregressive
by consuming previously predicted tokens as extra decoder inputs when predicting the
next, leading to a sequential left-to-right and word-by-word generating paradigm.
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This autoregressive decoding process is often trained to converge using the standard
cross-entropy loss function, which minimizes the negative log-probability as follows:

Lmxe(θ) = −
N

∑
i=1

log(P(yi|y<i, X; θAT)) (2)

In the training stage, this translation process mentioned above can be paralleled by
employing the algorithm of teacher force by feeding the prepared ground-truth words
to the model as target side inferences. However, the intrinsic sequential property that
lies in autoregressive decoding is inevitable during the inference phase. It is unavailable
to use ground-truth words as the target side, which, consequently, causes high inference
latency and hinders the industrial application, especially in scenarios where low latency
or real-time responding is demanded. In addition, the effectiveness inconsistency during
decoding between training and inference limits the transformer’s parallelism and also
hampers the full utilization of the parallel processing capacity of the graphical processing
unit (GPU).

(c) Non-autoregressive neural machine translation

To speed up the autoregressive decoding, Gu et al. (2017) first proposed the Non-
Autoregressive Transformer (NAT) to generate target tokens independently and simulta-
neously, namely, non-autoregressive neural machine translation (NAMT) [12]. The NAT
adopts a similar encoder–decoder framework. However, different from AT, the NAT’s
decoder discards the dependencies among tokens on the target side, assuming that the pre-
diction of every target token is independent from each other, and thus generates all tokens
in parallel and at once. Given a source sentence X = {x1, x2, . . . xM} and the correspond-
ing target sentence Y = {y1, y2, . . . yN}, based on this naive assumption of conditional
independence, NAT models the translation from X to Y as:

f (X→ Y) = P(Y|X) = P(y1, y2 . . . yN | X; θNAT) = P(N|X; θNAT)
N

∏
i=1

P(yi|X; θNAT) (3)

yi refers to the i-th time step token, N is the length of the target sentence, and θNAT is
the parameter of NAT. In this formulation, NAT produces each word on the target side
merely based on source input sentences without recalling preceding predictions, achieving
a speedup of 39 ms, 15.6 times beyond the 607 ms per sentence of AT. However, coarsely
removing the internal dependency between words in the target sentence does not yield
desirable accuracy. The impressive speedup gains come at the cost of potential performance
degradation compared to its AT counterpart. Typically, NAT suffers from the multimodality
problem that the model is poor at properly capturing the highly multimodal distribution of
target side sentences since there are multiple feasible translations for a single source input,
inducing translation inconsistency on two aspects, i.e., over-translated and under-translated.
In particular, the over-translated problem refers to the phenomenon of repeated translations
in which the same words are generated at adjacent token positions, e.g., with the English
sentence “Thank you” which can be translated into any one of the three “Danke”, “Danke
schön”, or “Vielen Dank” in German, the NAT could output possible translations such as
“Danke Dank” and “Vielen schön”. Another under-translated problem means the model
fails to convert complete semantic information from the source side into the target side,
causing words to be missing or lexical errors, leading to inferior translation quality.

3. Proposed Approaches

Given a source sentence, NAMT is intuitively akin to asking each member of a transla-
tion panel to offer one word for a particular position without interacting with each other.
The final translation is formed by collecting every single member’s answer independently.
On the one hand, the mission is challenging because limited information can be acquired
merely based on the source. On the other hand, the omitted communications among
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experts amplify the difficulty in making a favorable translation decision. To contend with
this, feasible tactics can be empirically formulated from two distinct inspirations based on
the analogy. One is to manage the lost dependency, including reducing this dependency
through resorting to other alternatives or recovering it as much as possible. Proposed
models following this inspiration cover fully non-autoregressive decoding (FNAD) and
iterative non-autoregressive decoding (INAD), which are identified according to their
decoding manner and methodology notation. Another is to exert effective training on
each expert inside the group via new training goals or instrumental training strategies.
Proposed models stimulated by this purpose comprise new training objectives (NTB) and
multiple training strategies (MTS), which are classified in terms of their training motivation.
Some works that integrate multiple mechanisms from the aforementioned categories are
identified as multi-mechanism integrated (MI).

To mitigate the aforementioned inconsistency and achieve the trade-off between de-
coding speed and generation quality, extensive work has been investigated by researchers
for NAMT. In light of the selection criteria above, in this section, we elaborate on the
efforts that have been made in two aspects: dependency management and training ar-
rangements. The former contains fully non-autoregressive decoding (FNAD) and iterative
non-autoregressive decoding (INAD), and the latter involves new training objectives and
multiple training strategies, respectively. In addition to that, some multi-mechanism
integrated methods are also introduced. Figure 2 depicts a global profile for all methods.
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3.1. Dependency Management

The strong independence assumption of NAMT is unnatural in reality, as there is
inherent context among words in a sentence. Omitting the dependencies from the target
side also results in a locally isolated prediction. Due to the lack of internal communication
during inference, there may be repeated, missing, or wrong words submitted by experts
from different positions. To remedy this, one distinct way is to relieve the dependencies
on the target side by exploiting sequential information from the source side as much as
possible, which refers to dependency reduction for fully non-autoregressive decoding
(FNAD). Another natural solution is to gradually reconstruct the omitted dependencies on
the target side, which involves dependency reconstruction via iterative non-autoregressive
decoding (INAD).
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3.1.1. Dependency Reducing for Fully NAD (FNAD)
Due to the fact that context dependencies on the target side are discarded, dependency

reduction aims to relieve the dependence on the target side through modeling latent
variables z = (z1, z2, . . . , zm) as a pivot to complete the conversion from source to target,
thus generating all target tokens at once and in parallel. This category features non-iterative
and one-pass decoding as well as fully non-autoregressive decoding (fully NAD). The
modeling can be factorized into a chain of conditional probabilities based on x and z:

f (X→ Y) = P(Y|Z, X) = P(y1, y2 . . . yN | Z, X; θNAT) = P(Z|X; θNAT)
N

∏
i=1

P(yi|Z, X; θNAT) (4)

Some studies use discrete latent variables. Specifically, Gu et al. [12] first used fertilities
as discrete latent variables, which are produced by an exclusive fertility predictor, to copy
the source sentence as the decoder input. The fertility value of each source token specifies
how many times this word will be duplicated to form the decoder input. Additionally, the
total sum of each fertility for a single input sentence equals the length of the corresponding
target sentence. Kaiser et al. [35] then extended this work through the Latent Transformer.
They used a transformer module to autoregressively construct discrete latent variable
sequences with discretization techniques such as vector quantized autoencoders (VQ-
VAE) [36] and improved semantic hashing [37]. Aurko Roy et al. [38] moved further by
incorporating the EM algorithm to train VQ-VAE, which yielded significant improvements.
Xuezhe Ma et al. [39] attempted a flow-based sequence-to-sequence model, a mathematical
framework called generative flow, to approach the distribution of discrete latent variables.
Jongyoon Song et al. [40] devised a specialized Aligner as an extra module to produce
aligned decoder inputs. It helped the model progressively learn one-to-one mapping.
Differently, DongNyeong Heo et al. [41] aimed to alleviate the defects of information
redundancy, increased parameters, and semantic loss caused by an extra module of latent
variable prediction.

Other works adopted different alternatives. One was to use syntactic knowledge as
weak supervision. Nader Akoury et al. [42] replaced the discrete latent variables with
syntactical parser chunks to simultaneously generate target sequences conditioned on
autoregressively predicted constituency parsing sequences. Ye Liu et al. [43] integrated
structured information, e.g., syntactic tags of Part-Of-Speech (POS) and semantic labels of
Named-Entity-Recognition (NER), into latent variables as decoder inputs. Bao Yu et al. [44]
instead substituted the syntactic labels with categorical codes that acted similar to fuzzy
target categories for each target sequence without using syntactic trees. The other uti-
lized positional information rather than syntactic knowledge. Ran Qiu et al. [45] mod-
eled the reordering information of source inputs to guide the parallel decoding of NAT.
Bao Yu et al. [46] explicitly modeled the positions of output tokens as latent variables for
target side predictions.

3.1.2. Dependency Reconstructing for Iterative NAD (INAD)

Another distinct way to handle this deficiency is to accumulatively reconstruct the
lost dependencies between target tokens, so called dependency reconstruction. This ap-
proach is characterized by multi-pass decoding as well as iterative non-autoregressive
decoding (INAD).

The premier INAD method was proposed by Lee Jason et al. [47]. They treated the
rebuilding phase as a conditional denoising process based on latent variables and de-
ployed two non-autoregressive decoders to parallelly produce outputs through multiple
passes. During inference, the outputs generated by the first decoder will be passed to
the second decoder as inputs for iterative refinements until a prepended stopping cri-
terion is met. Inspired by discrete latent variables and the iterative refinement method,
Shu Raphael et al. [48] introduced continuous latent variables and executed refining in latent
space rather than a discrete output space using a delta posterior. Similarly, Lee Jason et al. [49]
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shifted to performing refinements on complete continuous latent variables, yielding a better
trade-off between quality and speed.

A variant of INAD is semi-autoregressive decoding (SAD). SAD combines autoregres-
sive and non-autoregressive generation jointly to train the fast-decoding model. Wang
Chunqi et al. [50] first proposed semi-autoregressive neural machine translation by gener-
ating phrases autoregressively in global while maintaining non-autoregressive properties
inside the phrase. During inference, the decoder generates several consecutive words
within the same group parallelly and then predicts the next group conditioned on the
former. Stern Mitchell et al. [51] came up with the Insertion Transformer, which permits
flexible sequence generation via various inserting operations conditioned on previously
initialed sequences. For example, one insertion each time step in an autoregressive manner
or multiple insertions for different locations in a non-autoregressive manner. Furthermore,
Kasai Jungo et al. [52] put forward the Disentangled Context (DisCo) transformer, allowing
simultaneous prediction of current tokens conditioned on arbitrary subsets of other tokens
rather than preceding context generated before. Differing from Wang Chunqi et al. [50],
RecoverSAT, proposed by Ran Qiu et al. [53], separates the target sequence into a few
segments and performs non-autoregressive prediction at the segment level. The model
autoregressively produces tokens within a single segment based not only on other tokens
inside the same group but also on tokens in other segments. Guo Pei et al. [54] adopted
two decoding modules: the former generates coarse translation that is then renewed by the
latter, both of which are performed in one pass.

Another variant of INAD is conditional masked non-autoregressive decoding (CM-
NAD). The masked language model stems from the pre-training strategy of BERT [10],
which pretrains the model to recover the portion of words that have been randomly
masked in source input by jointly considering the observed context. Ghazvininejad Marjan
et al. [55] introduced a conditional masked language model (CMLM) for the first time to
non-autoregressive neural machine translation by repeatedly masking out and generating
words in parallel that the model has the least confidence in. The mask–predict framework
first produces fully masked target tokens parallelly as a coarse version when decoding, and
then it masks out words in which the model is least confident in and predicts them based
on the unmasked subset of words in current translation. This mask–predict cycle keeps
executing circularly until termination is met. Inspired by CMLM, Kreutzer Julia et al. [56]
explored better inference strategies for CMLM by forbidding re-masking words that have
been masked before and selecting positions to be masked out via certain probability thresh-
olds. Xiao Yisheng et al. [57] further introduced an adaptive masking strategy to strengthen
the refinement capability of CMLM’s decoder.

3.2. Training Arrangement

As the aforementioned analogy indicated, dependency management provides a dis-
tinct way to require these experts in the translation panel, considering the learning space
of target side sequences. This stands for the perspective of how to better make use of
source inputs to accomplish the common translation task. However, in consideration of
the interior constituents of the panel itself, there can be a discrepancy between different
experts. To be specific, experts with superior translation capacities may submit a better
answer and contribute positively to this mission. On the contrary, the inferior one with
limited capabilities is likely to impose negative degeneration on the whole translation by
offering repeated, missing, or wrong tokens. Despite this, and different from dependency
management, another feasible therapy for NAMT is to implement more effective training
for experts inside the panel to promote their competence and narrow the capacity gap
between them. This branch of work focuses on various training arrangements, including
new training objectives and multiple training strategies.
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3.2.1. New Training Objectives (NTO)

Both AMT and premier NAMT use word-level cross-entropy (XE) as a loss function
guiding the model’s training. At each token’s position, in order to maximize the likelihood
probability, XE draws on one-to-one accurate alignments between the outputs and standard
references. This can be seamlessly tractable for AT, as previously generated tokens provide a
precise scaffold to model the offsets. However, it is almost impossible for NAT to accurately
capture the token matching due to the lack of target sequential dependencies. Some
researchers attributed the quality gap between AT and NAT to the improper loss function
used and thus proposed new training objectives (NTO) to guide the training of NAT.

Libovick Jindrich et al. [58] first replaced the XE with connectionist temporal classifica-
tion (CTC) [59] as a loss function to guide the training of the NAT model. Utilizing dynamic
programming, CTC is able to marginalize all possibilities for output sentences without rigid
one-to-one alignments, akin to XE, which accommodates more viable schemas. Wang Yiren
et al. [60] devised two delicate regularization terms, i.e., similarity regularization and recon-
struction regularization, to tackle repeated translation caused by indistinguishable adjacent
hidden states in encoder outputs and incomplete translations incurred by incomplete se-
mantic information representing hidden states in decoder inputs. Li Zhuohan et al. [61] de-
signed two kinds of hints to encourage the NAT to imitate the consecutive hidden states and
attention distribution inside the decoder layers of the AT teacher. Shao Chenze et al. [62]
proposed to construct target-side dependencies by minimizing the bag-of-n-grams (BoN)
differences between the inference outputs and reference sentences instead of XE, allowing
phase-level approximations rather than restricting word-level alignments. Ghazvininejad
Marjan et al. [63] came up with aligned cross entropy (AXE), a new loss function alternative
to XE that assigns loss based on monotonic word matching among target outputs and infer-
ence sentences. This encourages the NAT model to center on radical errors such as words
missing or mistaking rather than penalizing heavily on local token position caused by slight
word order shifts, which exerts almost-little effects on semantic meanings. Tu Lifu et al. [64]
deployed a pretrained autoregressive teacher model to define the energy, and then the
non-autoregressive student is regarded as an inference network to be trained to minimize
the energy of the AT teacher. Du Cunxiao et al. [65] facilitated this thread further through
Order-Agnostic Cross Entropy (OAXE) to remove penalties on word order errors that were
fundamentally adopted in XE. The strategy results in a more relieved loss by distributing
the loss in terms of best alignments, as well as lexical matching, between target predictions
and reference sequences. Shao Chenze et al. [66] integrated and extended two preceding
conference works [62,67] by incorporating sequence-level training techniques and a novel
loss function through the bag-of-n-grams method to evaluate achieving a compositive
decoding speed and quality balance.

3.2.2. Multiple Training Strategies (MTS)

Apart from exploiting new objectives, some work turns to transferring training strate-
gies proven to be effective in other domains to NAMT, including conventional machine
learning techniques and emerging pretrain–finetuning language learning methods.

As for conventional machine learning techniques, Wei Bingzhen et al. [68] adapted the
intuition of imitation learning to a non-autoregressive scenario. By using an AT demon-
strator to supervise the states of a NAT learner at each decoding step across all decoding
layers, the NAT learner is forced to imitate the intermediate representations of AT decoders.
Sun Zhiqing et al. [69] incorporated a linear chain of conditional random fields (CRF)
to model richer distributions on the target side by formulating the sequence generation
problem as a sequence labeling task. Inspired by the region of automatic speech recogni-
tion (ASR), Zdenek Kasner and Jindrich Libovick’y et al. [70] combined CTC with beam
search in an n-gram language model to improve the coherence of target-side generations of
NAT. Guo Longteng et al. [71] applied the reinforcement training paradigm, formulated
non-autoregressive generation as multi-agent reinforcement learning, and came up with
Counterfactual-Critical Multi-Agent Learning. Shan Yong et al. [72] made use of model
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coverage information that has been effectively applied in autoregressive generation to discrim-
inate the untranslated subsets of words from source inputs and demonstrate the model if the
source token is translated or not to improve the coherence of non-autoregressive generations.

About pretraining and fine-tuning methods, widely used in the computer vision do-
main, Guo Junliang et al. [73] united this paradigm with a curriculum learning method to
progressively switch the knowledge and generalization ability of an AT model to a NAT
model. Furthermore, Liu Jinglin et al. [74] utilized task-level curriculum learning to shift
from AT generation, an easier task, to NAT generation, a harder task, using an intermediate
task with an adaptive hyperparameter K. Apart from indicating the extent of parallelism,
the K is used to manage and smooth the transfer process. Guo Junliang et al. [75] directly
incorporated the strong pre-trained language model BERT to realize non-autoregressive
sequence generation. Through two delicately devised adapters, the pre-trained BERT is
adapted to the NAMT task as an encoder and decoder, respectively. Su Yixuan et al. [76]
continued this incorporation between the BERT model and non-autoregressive generation,
and an extra CRF layer was additionally appended to better capture target-side dependen-
cies. Li Pengfei et al. [77] proposed CeMAT, a multilingual conditional masked pre-trained
language model in which the encoder and decoder are trained with MLM and CMLM,
respectively. To initialize the encoder and decoder of NAT and fine-tune them on the
corresponding datasets, the model yields considerable performance progress.

3.3. Multi-Mechanism Integrated (MI)

In addition to the methods above, there are also some combinations with multiple
mechanisms and methods to improve the performance of NAMT.

For FNAD, Guo Junliang et al. [78] proposed to enhance the decoder inputs in two
aspects. One was to use a pre-trained phrase table to generate a coarse translation as
decoder input. Another was to map the source embedding to the target embedding by
optimizing the L2 distance at the sentence level and the adversarial loss at the token
level. Gu Jiatao et al. [79] explored the combinations of multiple methods to relax the
dependency on the target side in terms of four dimensions, including the training cor-
pus, model architecture, training objective, and learning strategy. Huang Fei et al. [80]
proposed a DA-Transformer and utilized a directed acyclic decoder to capture the trans-
lation multimodality, yielding competent performance. Shao Chenze et al. [81] then used
a Viterbi decoding framework to promote the decoding accuracy of the DA-Transformer.
Ma Zhengrui et al. [82] turned to modeling a fuzzy alignment between the directed acyclic
graph paths and reference translations. Huang Fei et al. [83] attempted to pre-train DA-
Transformer to adapt to a wider range of text generation tasks beyond machine translation.
Shao Chenze et al. [84] introduced a specialized module to rephrase the reference transla-
tions to fit the NAT output for model training, realizing a better balance between speed
and quality.

Additionally, concerning INAD, several proposed ideas were integrated together to
recapture the lost target sequential information. Inspired by the masked language model
and curriculum learning framework, Qian Lihua et al. [85] utilized both in the proposed
Glancing Language Model with Glancing Transformer to shift the procedure of iterative
refinements from the inference stage to the training phase. By replacing the masked token
with the corresponding context source embedding, all unsampled tokens are predicted
in one pass. Xie Pan et al. [86] added two consistency regularization terms to the CMLM
model and yielded slight improvements. Savinov, Nikolay et al. [87] unfolded the process
of denoising the autoencoder with the Markov Chain to refine the prediction in an unrolled
step-by-step manner conditioned on the corrupted portions of the sequence. Huang
Chenyang et al. [88] switched to construct a variant of the iterative decoding paradigm
from the angle of the model’s architecture. The decoder retains autoregressive decoding in
the former layers while keeping non-autoregressive decoding in the last layer by generating
words in parallel. Though both AT and NAT models are jointly trained to collaborate,
Wang Minghan et al. [89] aim to perform predictions based on different contexts, and Ge,
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Tao et al. [90] adopted a draft-verification pattern. In addition, Qin, Bo et al. [91] conducted
a probe into a better trade-off between speed and quality when there were batches of
sentences processed. Wang Xinyou et al. [92] introduced accessorily weaker AT decoders
to strengthen the NAT models accumulatively, yielding decent performance progress. All
of those works tried to complement the superior generation quality of the AT with the
preponderance of the latency of the NAT.

Towards NTO, Saharia Chitwan et al. [93] attempted a CTC loss function with Imputer
Transformer [94], used in automatic speech recognition, to model monotonically latent
alignments between prediction and reference by marginalizing over all possible alignments.
Zhang Kexun et al. [95] combined the CTC with OAXE and came up with a new objective to
address the syntactic multi-modality of the translations. In addition, Shao Chenze et al. [96]
explored non-monotonic alignments based on CTC loss to achieve competent performance.
Du Cunxiao et al. [97] extended OAXE to phrase-based OAXE by allowing for reordering
among n-gram phrases. Li Yafu et al. [98] proposed multi-granularity optimization for
NAT, accommodating various dependency evaluations and obtaining competitive results.

4. Quantitative and Qualitative Analysis

In this section, we first briefly introduce the model architectures of various meth-
ods elaborated on in Section 3 and present their performances according to the reported
BLEU [13] scores in the form of quantitative graphs. Finally, a qualitative analysis will also
be provided.

4.1. Model Architectures and Results Overview
4.1.1. Transformer

Transformer adopts a self-attention-based encoder–decoder framework. The encoder
part consists of six identical encoders, and each contains two sub-layers, i.e., a feed-forward
neural network and a self-attention layer, with a residual connection and a layer normaliza-
tion operation inserted between them. The decoder part keeps the same structure, except
that an extra masked encoder–decoder attention layer is attached to each decoder before
the two sub-layers. Figure 3 depicts the transformer architecture.
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During inference, the source inputs are first encoded into hidden representation
vectors in high dimensions by the encoder, and then the decoder predicts each target word
autoregressively conditioned on the source inputs and the hidden states.

The key to the splendid accuracy of the Transformer model is the attention mechanism.
A Linear transformation is performed on the matrix composed of input vectors obtained
through source embedding to produce three matrices, Q, K, and V, parallelly. After the dot
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product operation, the Q and K matrices are scaled according to the predefined dimension.
The results are then normalized through a softmax function to obtain the attention weight
matrix, which is multiplied by matrix V to produce the final outputs. This process can be
formulated as the equation below:

Attention(Q, K, V) = so f tmax
(

QKT
√

dk

)
V (5)

where
√

dk is the dimensionality of matrix Q and K, and softmax means the softmax
normalization function.

4.1.2. Latent-Variable-Based Model for FNAD

For FNAD, the latent-variable-based model prevails due to its distinct transition flow
from source side to target side. The source inputs are first encoded into source embedding
representations. Based on that, corresponding latent variables are produced. The decoder
finally predicts all the target tokens in parallel, conditioned on the latent variables and
source inputs. Due to the lack of previously generated tokens as a posterior condition, it is
hard for the NAT model to consider the multimodal distribution of target sentences based
merely on input information. With the use of latent variables, feasible posterior conditions
are supplemented to provide richer supervision, bridge the tough mapping gap between
source and target, and allow tractable searching in output space.

As Figure 4 shows, the encoder of this model category stays unchanged as Trans-
former, whereas the casual restriction in the masked encoder–decoder attention layer is
abandoned to enable future attendance across all positions. Positional encoding is also
needed to capture reorder information. Other than that, an additional module or special-
ized technique is required in order to generate proper latent variables. Specifically, three
types of latent variables are most commonly used: discrete latent variables constructed
by a particular predictor using a discretization technique such as VQ-VAE with varia-
tional inference; syntactic and semantic prior knowledge generated through an external
parser or appended neural networks; and reordering or position information modeled by a
predefined predicting module.
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4.1.3. Iterative Model for INAD

INAD sacrifices a certain speed to balance the trade-off between translation accuracy
and decoding latency. The speed loss mainly derives from the iterative refinement pro-
cess induced by multi-step decoding. Using the former generated sentences as posterior
knowledge to accumulatively approach the golden distribution, the current decoding pass
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produces outputs conditioned on source inputs as well as outputs from the previous pass
when decoding. The process can be regarded as an autoregressive generation paradigm at
the sentence level. This thread of the model can be divided into single-decoder iterations
and multi-decoder iterations, according to whether the refinements of multiple steps are
performed within the same decoder or not. As described in Section 3.1.2, the original
iterative refinement decoding by Lee Jason et al. [47] adopted two decoders to achieve
multi-step decoding.

In this framework in Figure 5a, decoder 1 produced a coarse version of the translation
used for the following refinements, which happened in the second decoder. The final
generation came from multiple iterations of coordination via both decoders. Most other
refinement policies, such as SAD and CMLM, generally executed multiple iterations via
one single decoder with the necessary modifications to the vanilla Transformer model,
including removing the self-attention mask and appending positional embedding. Despite
the similarity of the model’s architecture, as Figure 5b depicts, the difference mainly stems
from decoding policies. SAD combines local autoregressive generation with global non-
autoregressive generation or vice versa, whereas CMLM utilizes a mask-predict paradigm
to realize parallel predicting.
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4.1.4. Models with New Training Objectives (NTO)

Training with cross-entropy yields significant accuracy in AT. The golden prediction
can be made in order to minimize the training loss between ground truth and model pre-
dictions because previously generated words offer certain posterior restrictions. However,
the same objectives degenerate in NAT, as it is intractable for the model to tackle the expo-
nentially increased output space of non-autoregressive generation. In addition, reordering
information is amplified by the unrestricted parallel decoding of NAT, which does not hap-
pen in AT. This results in potential error alignments and weak correlations between the loss
function and the translation quality. To alleviate this inconsistency, on the one hand, some
new objectives guide the model to focus on the whole semantic coherence at the sentence
level, such as CTC [59] and BoN [62], thus bypassing restricting word-to-word alignment.
On the other hand, some models are encouraged to imitate the hidden representation from
AT teachers such as hint-based and auxiliary regularization, therefore avoiding modeling
the complicated reordering information of output space. Figure 6 shows an instance of a
model with new training objectives.
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4.1.5. Models by Multiple Training Strategies (MTS)

To simplify, this series of models trained by multiple training strategies can be roughly
divided into two categories: One of them is a model incorporating conventional machine
learning techniques such as CTC and CRF [99]. Another utilizes pre-trained and fine-tuned
exemplifications such as BERT [10]. The former adopts a similar encoder structure akin to
the AT model but implements some advisable modifications to adapt the decoder for the
appended CRF module. For the latter, to apply the pre-trained and fine-tuned techniques
to the NAT models, specialized neural networks such as encoder–decoder adapters and
delicate transferring methods such as curriculum learning policies are implemented. See
an approximate demo in Figure 7 for this line of model.
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4.1.6. Results Overview for All Models

We selected the best performance from the reported work for each model category
to offer a results overview for all models in Table 2. The autoregressive baseline, basal
performance, and optimum performance are listed in the left, middle, and right order
for each column. BLEU gains are obtained by subtracting the autoregressive baseline
from basal and optimum performance separately. Table 2 presents a global glimpse of the
best results for all model categories, and a more specific and comprehensive performance
description will be detailed in Section 4.2.
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Table 2. An overview of the best results achieved by each of the mentioned models.

WMT14 En-De Latency Speedup BLEU Gains

FNAD-[43] 27.48/24.64/27.50 1.00×/22.6×/9.3× −2.84/+0.02
INAD-[53] 27.17/26.32/27.11 1.00×/4.31×/2.16× −0.85/−0.06
NTO-[66] 27.42/23.90/25.54 1.00×/15.6×/15.6× −3.52/−1.88
MTS-[75] 28.04/28.08/28.69 1.00×/4.7×/2.4× +0.04/+0.65
MI-[90] 27.38/28.73/28.89 1.00×/3.0×/3.6× +1.35/+1.51

4.2. Performance Description

This segment will provide a quantitative description of the various model endeavors
toward NAMT mentioned above. In order to assess the performances of the proposed
works, we quote four strong candidates, as well as the baseline work for each model
category in terms of the reported BLEU score.

The original NAT model is trained and validated on three types of languages, covering
English, German, and Romanian. The BLEU scores are evaluated on official test sets, i.e.,
newstest2014 for WMT English-German (http://www.statmt.org/wmt14/translation-task
(accessed on 20 June 2023)) and newstest2016 for WMT English-Romanian (http://www.
statmt.org/wmt16/translation-task (accessed on 20 June 2023)) or the development set
for IWSLT16 English-German (https://wit3.fbk.eu/ (accessed on 20 June 2023)). Though
BLEU scores vary moderately with regard to different languages (an average difference of
5.9) and even different translation directions (an average difference of 2.4), the tendencies of
translation accuracies and speedup gains are considerably consistent across all languages
and datasets. As the task mainly investigates the implications of non-autoregressive gener-
ation patterns on the sphere towards decoding speedup and quality changes, the selection
of datasets and language types exert limited impacts on the performance evaluations for
the proposed approaches. In addition, succedent works may validate their models on
various datasets, but the newstest2014 for WMT English-German (WMT14 En-De) is most
commonly used.

Therefore, without loss of generality and for the sake of simplicity and comparability,
we mainly center on the most recognized dataset of WMT14 En-De to demonstrate the
performance case. The reported BLEU score for each proposed paper is collected and
listed according to the left, middle, and right order, which manifests the autoregressive
baseline, basal performance with fundamental setting up, and best performance with
optimal deployment, respectively. In addition, the corresponding latency speedup is also
exhibited separately with respect to the model’s setup. To better compare the accuracy
of different models, the BLEU score gains are additionally listed according to their clean
value. The value is obtained by subtracting the AT baseline from the BLEU score of basal
and optimal setting up. Tables 3–7 refer to the fully non-autoregressive model (FNAD),
iteratively non-autoregressive model (INAD), new training objectives (NTO), multiple
training strategies (MTS), and multi-mechanism integrated (MI), respectively.

Table 3. The translation accuracy and latency for FNAD. The autoregressive baseline, basal perfor-
mance, and optimum performance are listed in the left, middle, and right order for each column.
BLEU gains are obtained by subtracting autoregressive baseline with basal and optimum performance
separately. AVG means the average value. “null” means the data are not reported.

WMT14 En-De Latency Speedup BLEU Gains

FNAD-base [12] 23.45/17.35/19.17 1.00×/15.6×/2.36× −6.10/−4.28
[43] 27.48/24.64/27.50 1.00×/22.6×/9.3× −2.84/+0.02
[44] 27.33/25.56/26.60 1.00×/10.37×/5.59× −1.77/−0.73
[40] 27.40/25.70/26.40 1.00×/13.9×/13.0× −1.70/−1.00
[88] 27.48/ null /27.02 1.00×/ null /14.8× null/−0.46

AVG B - - −3.10/−1.29
AVG S - 1.00×/15.62×/9.01× -

http://www.statmt.org/wmt14/translation-task
http://www.statmt.org/wmt16/translation-task
http://www.statmt.org/wmt16/translation-task
https://wit3.fbk.eu/
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Table 4. The translation accuracy and latency for INAD.

WMT14 En-De Latency Speedup BLEU Gains

INAD-base [47] 24.57/13.91/21.61 1.00×/8.9×/1.2× −10.66/−2.96
[50] 27.11/23.93/26.90 1.00×/5.58×/1.51× −3.18/−0.21
[53] 27.17/26.32/27.11 1.00×/4.31×/2.16× −0.85/−0.06
[49] 28.30/25.70/27.40 1.00×/15.0×/6.20× −2.60/−0.90
[57] 28.41/ null /27.57 1.00×/ null /2.3× null/−0.84

AVG B - - −4.32/−1.00
AVG S - 1.00×/8.45×/2.67× -

Table 5. The translation accuracy and latency for NTO.

WMT14 En-De Latency Speedup BLEU Gains

NTO-base [58] 22.94/12.51/17.68 1.00×/5.8×/3.4× −10.43/−5.26
[60] 27.30/20.65/24.61 1.00×/27.6×/15.1× −6.65/−2.69
[61] 27.30/21.11/25.20 1.00×/30.2×/17.8× −6.19/−2.10
[62] 24.57/16.05/20.90 1.00×/10.76×/10.77× −8.52/−3.67
[66] 27.42/23.90/25.54 1.00×/15.6×/15.6× −3.52/−1.88

AVG B - - −7.06/−3.12
AVG S - 1.00×/20.00×/12.53× -

Table 6. The translation accuracy and latency for MTS.

WMT14 En-De Latency Speedup BLEU Gains

MTS-base [68] 27.41/22.44/24.15 1.00×/18.6×/9.70× −4.97/−3.26
[69] 27.41/20.27/26.80 1.00×/14.9×/4.39× −7.14/−0.61
[73] 27.30/21.70/25.75 1.00×/28.9×/16.0× −5.60/−1.55
[74] 27.30/21.94/25.37 1.00×/27.6×/16.0× −5.36/−1.93
[75] 28.04/28.08/28.69 1.00×/4.7×/2.4× +0.04/+0.65

AVG B - - −4.61/−1.34
AVG S - 1.00×/18.94×/9.70× -

Table 7. The translation accuracy and latency for MI.

WMT14 En-De Latency speedup BLEU gains

MI-base [78] 27.41/20.26/24.28 1.00×/24.3×/12.4× −7.15/−3.13
[93] 27.80/25.80/28.20 1.00×/18.6×/3.9× −2.00/+0.40
[79] 27.48/19.50/27.49 1.00×/17.6×/16.5× −7.98/+0.01
[87] 27.30/27.94/28.46 1.00×/4.7×/1.4× +0.64/+1.16
[90] 27.38/28.73/28.89 1.00×/3.0×/3.6× +1.35/+1.51

AVG B - - −3.03/−0.01
AVG S - 1.00×/13.64×/7.56× -

In terms of translation quality, we can see from all tables that the basal performances
all degenerate to the optimal setting up, as the latter demands more complicated technique
deployments and calculating costs. Due to the different model deployment of AT baseline
and Graphical Processing Unit (GPU) platforms, the reported BLEU scores could be various,
and it is improper to directly compare different works merely based on the cited BLEU
value. We consider the BLEU gains a better criterion in spite of their own AT baseline. As
shown in Table 7, four of the five cited MI models all outperform the AT baseline, most by
1.51 points. MI achieves the best translation performance with the highest average BLEU
gains of −0.01, compared to other model categories. The second place is the INAD models
of Table 4 with the average BLEU gains of−1.00. By contrast, the NTO models demonstrate
the worst translation quality according to the lowest average BLEU gains of −3.12. The
other two, FNAD and MTS, are in third and fourth place with similar average values of
−1.29 and −1.34. In addition to the NTO model, the rest of the four categories are able to
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catch up with or even surpass their AT baseline. This phenomenon supports the conclusion
that the NTO model is globally inferior to other models in terms of translation quality. As
for latency speedup, the five categories all achieve significant decoding speed gains beyond
their AT baselines in all tables. However, the speedups of models under optimal setups
almost lag behind those with basal deployment. This may empirically be caused by the fact
that the former arrangement consumes extra modules to achieve better accuracy, generally
leading to additional latency and slowing down the decoding process. In general, the
NTO models realize the fastest speedup times beyond all the other categories, with largest
average latency speedups of 20.00 and 12.53, according to Table 5. The MTS achieves the
second acceleration with average speedups of 18.94 and 9.70, which were followed by the
FNAD with lower speedups of 15.62 and 9.01, separately, in Tables 3 and 6. The subsequent
model is MI, with inferior speed values of 13.64 and 7.56 compared to the former two.
Not surprisingly, the INAD models in Table 4 fell behind previous categories by a large
margin, with the lowest speedup gains of 7.76 and 2.8. These were consistent with the
iterative property of such a method. Additionally, several works, such as [62,66,79,90], still
maintain the latency superiority of basal setting up and approach superior accuracy even
when optimal deployment is arranged.

4.3. Performance Analysis

On top of the performance description above, a more in-depth analysis of each model
category is elaborated on in this subsection. To this end, we first score each model category
according to their rankings of translation quality and latency speedup for a comprehensive
evaluation across all types. Next, to shed more light on the intrinsic properties of all cate-
gories, the superiority and deficiency of each are also detailed, as are further discussions.

Firstly, we assigned a performance score (P score) for each model category to denote
their compositive performance capabilities in terms of their rankings of translation quality
and latency speedup. As Table 8 shows, the assigned scores were inversely proportional
to their rankings. For instance, the top category obtained 5 points, whereas the last one
obtained 1 point, and so on. Additionally, the final P score was summed of their own
ranking score from translation quality and latency speedup. Then, the ultimate P score
for each model type was P (MI) = 5 + 2 = 7, P (FNAD) = 3 + 3 = 6, P (NTO) = 1 + 5 = 6,
P (MTS) = 2 + 4 = 6, and P (INAD) = 4 + 1 = 5. The histogram in Figure 8 depicts a global
performance evaluation across all categories.

Table 8. The performance score for all model categories.

Ranking Translation Quality Latency Speedup Score

1 MI NTO 5
2 INAD MTS 4
3 FNAD FNAD 3
4 MTS MI 2
5 NTO INAD 1

In general, the MI earns the highest P score, i.e., 7, and shows the best non-autoregressive
translation performance. Although it is not precisely in line with the authentic situation, the
fact that the FNAD, NTO, and MTS obtain identical P scores manifests a similar translation
capacity tendency for the three model types. Moreover, the FNAD achieves an optimal
quality–speed balance through the same P1 and P2 scores, which means its translation
accuracy is well associated with speedup. The largest difference value (namely, 4) between
P1 and P2 stems from NTO, revealing an uncoordinated correlation between translation
quality and latency speed. Moreover, with the lowest P score of 5, INAD exhibits inferior
translation ability compared to others, which suggests that the inspiration of trading speed
for accuracy yields no sparkling outcome but limited benefit.
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To accommodate more insightful views, we inspect all categories from four aspects:
what are the basic properties? What is it able to do? What is the advantage? What is the
flaw? For the purpose of qualitative comparison, Table 9 provides a compositive summary
of those four dimensionalities.

Table 9. A summary and qualitative comparison for all model categories.

Methods Properties What can do Advantage Disadvantage

MI Multi-mechanism
integrated

Allow multi-mechanism
learning

Complement each
other’s superiority

Need to integrate
multi modules

FNAD Pivot and
latent-variable-based

Model any types of
dependencies Concise transfer flow Model is hard to train

and converge

NTO Multimodality
alignments regularized

accommodate
coarse-grained match

Model training is
end-to-end without
intermediates

Lack of strong
performance modules

MTS Cross-domains transfer
of ready methods Enable one-stop training With established

performance basics
Require delicate
adapting schema

INAD Multi-pass decoding
Sentence-level
autoregressive
generation

Mechanism is distinct
and tractable

Repeated decoding
lags speed

As an example, from the perspective of the task itself, FNAD represents the original
enlightenment of NAMT and is characterized by totally non-autoregressive generation via
one-pass decoding. By using latent variables and other alternative pivots, it is plausible
for FNAD to model any dependencies and bridge the omitted posterior gap between NAT
and AT. However, generating the proper discrete latent variables demands a complicated
discrete bottleneck that is indifferentiable and cannot be optimized by the effective gra-
dient propagation algorithm. Though this can be addressed by Evidence-Lower-Bound
optimization, the model will be hard to train and converge.

Scarifying speed with quality can be regarded as another natural idea, but this trade-
off schema is likely to be limited by the dual contradiction. The appended decoding
step can successively promote the quality of the original translation, whereas generation
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latency is also induced. It is hard to tell which benefits INAD more. By contrast, with the
use of the new loss function, NTO enables one-stop model training without relying on
any intermediate modules in an end-to-end manner, which bypasses the knotty balance
problem. MTS resorts to relevant tasks and transfers the methods effectively utilized in
other domains where delicate adapters or operational training schemas need to be devised.
Other than that, it seems to be a promising way to integrate multiple effective mechanisms
and enable MI to learn from other methods. To sum up, we list the following conclusions:

(1) On behalf of the original NAMT, FNAD achieves a favorable balance between transla-
tion quality and speed, though it is hard to train the model.

(2) Restricted by the compromising contradiction, INAD yields limited benefits by substi-
tuting speed for quality.

(3) NTO allows one-stop model training and bypasses the trade-off problem, but strong
modules or means are needed to further promote translation accuracy.

(4) MTS and MI all learn from other effective methods. However, the former focuses on
correlative domains and tasks, thus requiring an extra adapting module or training
schema. Additionally, the latter mainly integrates available mechanisms from the
same field to complement each other. In general, MI seems to be a more promising
way to gain further progress by combining the superiorities of others.

5. Problem Inspection

Even though a comprehensive analysis of all model categories is illustrated in Section 4,
we mainly center on separate properties for each, putting aside potential difficulties and
challenges they may encounter in common. This section will inspect two general problems
facing all models: (1) target sentence length prediction and (2) sequence-level knowledge
distillation and explore probable therapies for them.

5.1. Target Sentence Length Prediction

Due to the autoregressive operation during inference, the AT model can determine
the length of the target sequence adaptively. However, this adaptive mechanism does
not exist in NAT because the dependencies among target words are discarded, and there
is no iterative pattern in non-autoregressive decoding. Figure 9 illustrates the inference
framework of the target sentence for both.
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Specifically, during the running period, the AT model takes into account the recently
generated word and predicts the next. For each step, the word with the highest probability
is selected by beam search to maximize the likelihood of the whole sentence. This course
dynamically ends when a stopping token is encountered. Given a source Chinese sentence
“早上好 ” and its target translation “good morning”, after the word “morning” is generated,
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the <EOS> token with the highest probability will be selected to output, which stands for
the termination symbol of the sentence.

By contrast, as all words are produced in parallel, there is no suitable stop thresh-
old in the NAT. Therefore, the length of the target sentence needs to be determined in
advance. As the picture shows, before decoding “good morning”, the most probable tar-
get length is predicted as three, which functions as a scaffold and accommodates for the
subsequent generation for the entire sequence. For instance, in the original literature of
NAMT, Gu et al. [12] utilized the fertility to copy source words as decoder inputs while
tactfully determining the target lengths. By specifying a fertility value for every word in
the source input, the final length of the target output can be ascertained by calculating
the sum of all fertility values for the whole source sequence. The prediction of fertility
sequence towards the source sentence is accomplished by an exclusive module, which is
composed of a one-layer network with a softmax classifier and appended on top of the last
encoder layer.

Following this practice, the common approaches used in subsequent literature to
acquire the target sentence length mainly fall into two categories. One is to ascertain
the exact length via an exclusively trained length predictor [12,46,48,67–69,71]. Another
is to predict the difference between source and target length using a specialized classi-
fier [39,47,49,60–62,100]. However, due to the uncertainty of the target-side distribution,
the target-length prediction is more akin to an explicit reflection of the multi-modality
problem in NAMT’s output space. It is non-trivial to precisely finalize the accurate value for
the target length. Therefore, the most recognized schema is to produce multiple available
target sentences and select the best one based on several predicted target lengths.

Noisy parallel decoding (NPD) Inspired by Cho [101]’s noisy parallel approximate
decoding (NAPD), Gu et al. [12] sampled multiple fertility sequences from the fertility space.
By generating one translation for each fertility sequence, various translations (namely, eight
candidates in this paper) can be acquired. These alternative translations are then re-scored
by a pre-trained autoregressive model. The one with the highest score will be selected to be
the target output as the optimal translation. As the scoring model is pre-trained, and all
candidates can be generated and ranked in parallel, this process adds a little latency to the
overall decoding speed. As there are multiple translations, the rest of the candidates in the
translation set function as “noise” and need to be excluded compared to the final output,
which is called noisy parallel decoding.

Length parallel decoding (LPD) Another widely adopted decoding strategy is length
parallel decoding. Similar to NPD, LPD also generates multiple candidates and ranks
them using an autoregressive teacher. Wei Bingzhen et al. [68] initially put forward LPD,
which first determines a target length T0 with a trained module and then predicts multiple
target lengths varying from [T0 − C, T0 + C], where C is a prepended constant according to
searching precision. Based on all target lengths, the model generates various translations in
parallel, and the optimal one is identified by the pre-trained autoregressive model. Beyond
that, some researchers [47,60] employed a more distinct method. They predefined target
length T = TS +∆T, where TS denotes the length of the source sequencez and ∆T is the bias
offset that can be set in terms of the overall statistical lengths of all training data. Others
turned to expanding the search beams by predicting the difference in the sequence length
between the source and target using a classifier ranging from {−B, B}, where B is the width
of the window [39]. By contrast, [61,69] predicted a compositive length among [TS + C − B,
TS + C + B], where C is a constant term that can be determined by surveying the average
difference between source and target sequence length. B is the halfwidth that manages the
searching range. Contrasting with NPD, which emphasizes the prediction of the original
target length, LPD pays more attention to a variational range of target length, which is
called length parallel decoding.

Although it is beneficial to generate multiple candidates before identifying the opti-
mum translation, this necessary preliminary target length prediction actually cuts both
ways. We empirically observed that the two types of potential problems induced by the
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length predicting operation are: (1) length exposure bias, where the target length is dif-
ferent between training and inference phases; and (2) additional overheads, where extra
computational cost is caused by the exclusive predictor or classifier. First, with the existence
of standard references, the model uses the ground truth length of the target side to guide
the parallel generation of the NAMT in the training stage. However, during inference, this
ground-truth length is unavailable. The model has to use the predicted one, leading to an
inconsistency between the training and reasoning phases, which we call length exposure
bias. As the target length works as a scaffold for later parallel decoding, potential problems
could be caused by this inconsistency, as well as other de facto accuracy errors. Second,
predicting target length with a specialized predictor or classifier becomes a general practice
for most published papers. In view of the fact that different target lengths have a significant
influence on model performance, it is important to predict the target length as accurately
as possible. This, consequently, increases the additional time and computational overheads
required to train an exclusive module or network with high accuracy.

Some researchers proposed to add a special LEGNTH token to the encoder’s in-
put [55,64,65,75]. By taking the encoder’s output as a representation, predicting the target
length is akin to predicting another token from a different vocabulary. The loss of the
LENGTH token is added to the cross-entropy loss from the target side, jointly optimized
and integrated into the entire model’s training loss, thus avoiding the expense of training a
separate length predicting module. Yet, the need for length prediction still remains.

Some solutions can be explored for a more elegant pattern to bypass the uncertainty
of target sequence length. In specific, one way is to utilize CTC to accommodate sufficient
length changes via more many-to-one alignments. The length of mapping representations
can be k times over the output sequence, which enables abundant possible alignments
from input to output. In addition, strong generation models such as parameterized Markov
chains can determine target-length samples from the noise distribution. A combination of
CTC and other stronger models to dynamically adapt target length may offer a possible
way to elude this problem for accuracy promotion.

5.2. Sequence-Level Knowledge Distillation

Another key ingredient in the training recipe of non-autoregressive models is sequence-
level knowledge distillation (SKD) [102]—a variant of knowledge distillation (KD) [103]—which
is employed in almost all existing NAMT literature. Inspecting the different functions of
larval and adult forms of insects in the natural world, Hinton et al. [103] proposed knowl-
edge distillation to transfer knowledge from a large teacher model with high performance
to a student model that was lightweight and easy to train. An original practice to apply this
intuition, first utilized by Hinton in the domain of classification tasks, is to use the label
predicted by the teacher to supervise the training of the student model. The practice aims
to encourage students to mimic the teacher’s distribution and catch up with its capacity.

Based on that, Yoon Kim et al. extended this schema to the context of NMT and came
up with sequence-level knowledge distillation (SKD) [102]. In specific, the student model is
trained on a new dataset created by replacing the target side with output translations from
a pre-trained teacher network. Inspired by this practice, Gu et al. [12] then adopted the SKD
to mitigate the multimodal distribution of NAMT, which yielded significant improvements.
Generally, the SKD is widely used in NAMT with the following two deployments: firstly,
the AT teacher model with the same architecture as the NAT student is trained on raw
training data. Secondly, replacing the target sentence of each source sentence in the raw
data with the translation results generated by the AT teacher as the new ground truth to
form a new training dataset—a distilled pseudo-parallel corpus—on which the NAT model
is trained. Figure 10 simulates the establishment of the dataset.

In order to show the effect of SKD, we quoted three works along with a baseline model
for each model category elaborated in Section 4 to offer a quantificational profile. Table 10
depicts the reported BLEU score, including basal performance, optimal performance, and
clean gains comparing the optimal with the basal one.
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Table 10. The reported BLEU score of some selected papers with the distillation and without the
distillation. The column on the left of/represents the basal performance, and the right one denotes
the optimal performance. BLEU gains are calculated by subtracting the former with the latter. The
growth rate is also provided in the bracket for convenient contrast. The best scores for each item as
well as the average for all BLEU gains are bold in black.

BLEU Score
without SKD

BLEU Score
with SKD BLEU Gains

FNAD
[12] 16.51/18.87 20.72/25.20 4.21/6.33 (25%/33%)
[38] 21.40/22.40 26.40/26.70 5.00/4.30 (23%/19%)
[39] 18.55/20.85 24.15/23.72 5.60/2.87 (30%/14%)

INAD
[47] 20.91/23.65 26.17/27.11 5.26/3.46 (25%/15%)
[51] 19.34/22.64 22.75/25.45 3.41/2.81 (18%/12%)
[55] 10.64/24.61 18.05/27.03 7.41/2.42 (70%/10%)

NTO
[64] 8.28 14.58 6.30 (76%)
[63] 20.40 23.53 3.13 (15%)
[65] 22.70 26.20 3.50 (15%)

MTS
[68] 16.51/23.56 20.72/28.41 4.21/4.8(25%/21%)

MI
[93] 15.6/24.7 25.4/27.9 9.80/3.20 (63%/13%)
[79] 11.40 19.50 8.10 (71%)
[86] 22.89/24.37 26.25/27.39 3.36/3.02 (15%/12%)

Avg. gains 5.33/3.69(36%/17%)

As the table exhibits, with the use of SKD, the translation quality of the NAT can
be improved by 9.8 and 6.33 points at most and by 3.13 and 2.42 points at least for basal
and optimal performance, respectively. The highest increasing rate reaches 76 percent
compared to the configuration without SKD. The least progress still obtains 10 percent
increases in the literature. Contrasting with optimal performance, the basal one usually
benefits more from improvements from SKD, probably because of the difficulty in further
improving the accuracy based on the existing basal performance. The average gains for
those collected papers are 5.33, 3.69, 36%, and 17%, which proves the effectiveness and
significant improvements made by utilizing SKD over NAMT.

Why does NAMT benefit a lot from SKD? It is assumed that the new target side
sentences generated by the AT teacher can reduce the “modes” of training data (multiple
feasible translations for a source sentence), be less multimodal, and be more aligned to
the source. It then helps the NAT model capture the target-side distribution more easily.
This hypothesis is identified through an experiment that simulates multiple modes in
the output space of NAMT. By aligning a source sentence in English to corresponding
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target translations in German, Spanish, and French, respectively, the study formulates
a multi-target En-De/Es/Fr corpus and explicitly includes three modes in output space.
Zhou et al. [104]. Experimental visualization indicates that NAT tends to cluster more
closely to a single language mode after being trained on a corpus decoded by an AT
teacher yet scatters broadly across all language types when trained on the original dataset.
Zhou et al. [104] also examined the impact of data complexity on model performance by
generating datasets with different complexities via various AT models with diversified
capacities. The study suggested that NAT models with larger parameters and higher
capacities require distilled data with more complexity to achieve better translation quality.
Based on the earlier discussion, Xu Weijia et al. [105] subsequently explored two types of
data complexity, i.e., lexical diversity and word reordering degree. Experiments showed
that decreasing lexical diversity and word reordering degrees via SKD both lowered the
data complexity and helped NAT students learn better alignment between the source and
target. Other than that, Ren Yi et al. [106] analyzed the attention weight ratio on the target
token over that on full context when predicting a target word from the perspective of target
dependencies rather than the data level. By using SKD to train the NAMT model, they
observed that dependency on target tokens was reduced, encouraging the model to rely
more on source sentences for target predictions.

Inspired by those analyses, Zhou Jiawei et al. [107] leveraged AT teachers to generate
more target translations for a large amount of source text from monolingual corpora. The
model was trained on the newly formed larger distilled pseudo-parallel corpus, which
moderately improved the NAMT model’s performance. Guo Jiaxin et al. [108] adopted
self-distillation mix-up data to train the NAT model, yet this yielded limited progress. Shao
Chenze et al. [109] came up with diverse distillation that generated multiple inference
translations and selected the optimum one for model training. A similar inspiration was
also adopted by Liu Min et al. [110] through selected knowledge distillation.

To sum up, it becomes an indispensable component to utilize SKD to train NAT models.
This strategy, on the one hand, provides a practical way to promote translation quality and
significant improvements in the model’s performance. On the other hand, extra overheads
for training AT models are required in order to generate new teacher translations. Running
different models on various training corpora also leads to repeated operation redundancies
and additional computational costs.

The training of NAT models heavily relies on the SKD strategy, and how to relieve
this dependency for NAMT is still unclear. Some works [80–82] integrated directed acyclic
graphs to perform inference, yielding competent performance even without the use of SKD.
Training models on raw data with GAN [111] and other data augmentation techniques is
perhaps a promising solution.

6. Discussions

In this section, we go through the fundamental properties of NAMT alongside the
problems elaborated before and pose more critical discussions about speedup decoding.
Additionally, we shed a bit of light on language settings with regard to low-resource
languages, monolingual languages, and other lingual orientations towards the application
of NAMT. A tentative examination of these language settings is also discussed.

Reexamined translation quality The proposal of original non-autoregressive decod-
ing aims to facilitate fast translation by paralleling a new decoding paradigm to autoregres-
sive generation. Subsequent studies either manage target dependency through reducing,
constructing, or arranging training schemas via new objectives or multiple strategy trans-
fers. While some attempts at mixing superiorities from these works achieve hyper-accuracy
beyond the corresponding AT baseline, almost all existing literature still focuses on closing
the gap between NAMT and AMT. None of them realizes a separate, thorough surpassing
over the basal autoregressive Transformer, despite the fact that the translation quality of a
mass of emerging models has far exceeded the latter. In addition, length prediction and
sequence-level knowledge distillation boost performance for non-autoregressive models.
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However, both of them demand supervision from the AT teacher model and, to some
extent, already set an upper bound for the generating quality of NAMT. This prevents the
models from further promoting translation accuracy.

Reexamined translation speed Despite its accuracy, non-autoregressive decoding
literally accelerates the translation process, varying from 2 to 15 times faster compared
to its autoregressive baselines in the original proposal by Gu et al. [12]. Generally, the
latency is computed by the wall time to decode a single sentence without batches in a
GPU environment. Nevertheless, a few subsequent studies empirically observed that
the latency varied when measured in different hardware environments and application
scenarios [112–114]. More precisely, in line with previous works on deep encoders or
shallow decoders [115–117], the experiments demonstrated that the AT Transformer with a
deep-shallow configuration (12 encoders pairing with 1 decoder) ran faster than the CMLM
model of non-autoregressive decoding by a large margin when sentences per batch over
50 were processed. Further detail assumed that the computation was large enough to
exhaust parallelism on the GPU in the scenario where batch processing was encountered,
thus canceling out the speed benefit from NAD. Though aiming to speed up decoding,
NAD may not run as fast as it seems. Specific circumstances such as hardware configura-
tion, speed measurement, and application scenarios should be taken into consideration.
Consequently, authentic fast decoding still earns little reward from practical applications
and calls for more comprehensive and warranted work.

Investigate language setting Although nearly all aspects of translation speed and
quality are emphasized, the application of NAMT to the configuration of diversified lingual
orientations is rarely investigated and certainly valued. Initially, the original archetype of
the NAMT model is drilled and validated in high-resource languages, with BLEU scores
evaluated on official test sets, encompassing Newstest 2014 for WMT English-German,
Newstest 2016 for WMT English-Romanian, or the development set for IWSLT16 English-
German. When it comes to low-resource languages, however, training data-hungry NAT
models is a non-trivial challenge, confronted with limited language processing tools and
an inadequate parallel corpus of target minor languages, let alone potential accuracy
degradation, which can be amplified due to the increased morphological complexity,
such as Serbian [118,119], and the ulterior linguistic connections compared to resource-
prosperous languages such as English and Romanian. To contend with this dilemma, extra
data augmentation techniques such as back-translations offer viable means to train the NAT
models, considering the inherently dual properties of machine translation tasks [120,121].
In addition, a combination of the Generative Adversarial Network [122] at the sentence
level may also boost accuracy.

Additionally, varied language configurations such as monolingual, multilingual, and
cross-lingual [123–125] wield certain impacts on the NAT models. More precisely, mono-
lingual data are an integral part of the training of translation models, and the extensive
use of target monolinguals can facilitate the fluency of output results. In the NAMT task,
Sennrich et al. [120] procured a larger number of target monolingual corpora to train the
NAT models, resulting in consistent performance advancements and stronger adaptabilities
to long sentences. Moreover, Chi, ZW et al. [126] utilized a partially non-autoregressive
generation pattern to predict that the remaining words belonged to the same span corrup-
tion in a multilingual text-to-text setting. This application yielded improved cross-lingual
transferability over mT5 [127]. Agrawal et al. [128] adapted NAT models to multilingual
scenarios, where six types of languages were involved. Though the dataset distilled from
the multilingual teacher indeed showcased diminished lexical complexity and boosted
alignment monotonicity, the mighty degenerated accuracy score manifested inevitably at
an ill-suited time for multilingual NAT models.

7. Conclusions and Future Work

In this paper, we reviewed non-autoregressive neural machine translation during
the past 5 years. Unlike a previous study that surveyed this domain from four aspects
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at a fine granularity involving other non-autoregressive generation tasks, we paid more
concentrated attention to non-autoregressive neural machine translation. Our study inves-
tigated this task from two new viewpoints at a coarse granularity, i.e., target dependency
management and training strategy arrangement. According to the reported BLEU scores,
quantitative graphs and qualitative comparisons were provided for various models to
conduct a comprehensive analysis. Two prominent problems, target sentence length pre-
diction and sequence-level knowledge distillation, were empirically observed for further
inspection. Accumulative reexamination of translation quality and speedup suggested that
non-autoregressive decoding may not run as fast as it seems and still lacks an authentic
transcendence for accuracy. Based on that, potential work through the inner and outer
facets of this task is also prospected.

In the near future, we call for more warrantable work as well as application-oriented
research. Resolving internally knotty problems, such as target length prediction and
sequence-level knowledge distillation, can lead to possible progress. While both become
indispensable for the training of NAT models, they limit the model’s performance to some
extent. Determining target length in advance partially scaffolds output words yet augments
indeterminacy in the output by identifying multiple candidates. Exposure bias between
training and inference potentially aggravates accuracy errors. The combination of CTC
and other stronger models to dynamically adapt target length may offer a possible way
to elude this problem for accuracy promotion. Apart from that, distilled data with lower
lexical diversity lack higher semantic information and are second-hand knowledge from
AT teachers, inevitably leading to inferior quality. Training NAT models on raw data with
GAN or other data augmentation techniques could possibly further promote the upper
bound for translation quality.

Drawing external inspiration from similar domains or the emerging large language
models may also help. More precisely, except for machine translation, sequence-to-sequence
generation contains various tasks, including simultaneous translation (SMT), speech trans-
lation (ST), image caption (IC), automatic speech recognition (ASR), and text editing (TE).
SMT and ASR require low response latency, which matches the notion of fast decoding
in NAMT. ST and IC provide additional ideas for cross-modal fusion. TE is explicitly
consistent with the paradigm of iterative decoding for fast generation. In addition, a flurry
of recent work has been developed in the interest of large language models (LLM). When
the parameter scale exceeds a certain level, the enlarged language models obtain surging
performances and exhibit surprising capabilities that are unseen in smaller sizes, which
are called emergent abilities. For example, the 175B-parameter GPT-3 shows extraordinary
in-context learning ability yet is unavailable in the 1.5B-parameter GPT-2 and the 330M-
parameter BERT. More remarkably, by adapting LLM (e.g., the GPT series) to practical
applications such as dialogue, ChatGPT presents a striking conversational ability to interact
with humans. Naturally, it may be a promising direction to adapt the powerful capacity of
LLMs to a specific non-autoregressive translation task, leading to an interesting promotion.
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