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Abstract: Multimodal sentiment analysis (MSA) has attracted more and more attention in recent
years. This paper focuses on the representation learning of multimodal data to reach higher prediction
results. We propose a model to assist in learning modality representations with multitask learning
and contrastive learning. In addition, our approach obtains dynamic weights by considering the
homoscedastic uncertainty of each task in multitask learning. Specially, we design two groups of
subtasks, which predict the sentiment polarity of unimodal and bimodal representations, to assist
in learning representation through a hard parameter-sharing mechanism in the upstream neural
network. A loss weight is learned according to the homoscedastic uncertainty of each task. Moreover,
a training strategy based on contrastive learning is designed to balance the inconsistency between
training and inference caused by the randomness of the dropout layer. This method minimizes the
MSE between two submodels. Experimental results on the MOSI and MOSEI datasets show our
method achieves better performance than the current state-of-the-art methods by comprehensively
considering the intramodality and intermodality interaction information.

Keywords: multimodal sentiment analysis; multitask learning; contrastive learning

1. Introduction

With the development of social media, netizens have begun to make comments and
expressed views by utilizing diverse modalities other than text, such as audio and video.
Analyzing the emotional information embedded in these multimodal messages has become
crucial for market analysis, preference analysis, and other related fields. Consequently,
multimodal sentiment analysis (MSA) has gained growing attention in recent years [1–3].

Compared to the conventional text-specific sentiment analysis tasks, MSA incorporates
two or more modalities as inputs. MSA achieves superior accuracy in sentiment prediction
by integrating various pieces of modal information, including natural language, facial
expressions, and voice intonation. Figure 1 illustrates that leveraging multiple modalities
provides significant advantages over relying solely on data from a single modality for
sentiment analysis.

The five main challenges of multimodal tasks are representation, translation, align-
ment, fusion, and colearning [4]. Multimodal fusion is one of the most important topics
in multimodal learning, which can be categorized into three types: early, late, and hybrid
fusion [5]. A significant research focus in multimodal fusion is how to extract effective
complementary information from multiple modalities and integrate it into a fused repre-
sentation. Zadeh et al. [6] introduced the tensor fusion network (TFN), which captured
interactions within and between modalities by computing tensor cross-products of modali-
ties. Liu et al. [7] proposed a low-rank multimodal fusion approach, leveraging low-rank
tensors to reduce the computational complexity of tensor methods while performing
multimodal fusion. Hu et al. [8] proposed a multimodal sentiment knowledge-sharing
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framework (UniMSE) which fused modalities at the syntactic and semantic levels and incor-
porated contrastive learning to capture the consistency and differences between sentiments
and emotions.

Figure 1. Multimodal sentiment analysis based on text, audio, and video.

Based on the review of previous works, it is observed that most studies employ simple
traditional neural networks to extract modal vectors, which are then directly used as inputs
for the representation fusion module. These works primarily emphasize representation
fusion, while potentially ignoring the significance of learning modal representations. The
fusion of representations can sometimes suppress the predictive power of individual
modalities, despite the fact that each piece of unimodal data contains rich sentiment
information. Therefore, leveraging the hidden information in these heterogeneous data
sources can contribute to training an effective model and enhancing the prediction accuracy.
Tsai et al. [9] proposed a joint generation–discriminant objective optimization method,
which decomposed the representation into multimodal discriminants and mode-specific
generation factors. The former was employed for sentiment classification, while the latter
facilitated the learning of mode-specific generation features. Sun et al. [10] introduced the
interaction canonical correlation network (ICCN), which learned multimodal embeddings
by capturing hidden correlations among different modalities. In the context of multimodal
data where random modality data may be missing, Sun et al. [11] proposed a framework
called efficient multimodal transformer with dual-level feature restoration (EMT-DLFR)
to enhance the robustness of models in such scenarios. EMT utilized utterance-level
representations of each modality as global multimodal context and interacted with local
unimodal features, thereby encouraging the model to learn semantic information from
incomplete data.

In this paper, we introduce a model named MCM (multitask learning and contrastive
learning for multimodal sentiment analysis) to assist in learning modal representations.
Our proposed model comprises two key components: a multitask learning module and
a contrastive learning module. Given the diverse nature of multimodal data, it presents
an excellent opportunity for leveraging multitask learning. To exploit this potential, we
design subtasks specific to different modal representations, aiming to effectively extract the
underlying emotional information. While multitask learning primarily serves as a method
for unimodal representation learning, we extend our investigation to the learning of fusion
representations. We achieve this by incorporating contrastive learning to constrain the
fusion prediction, enabling the assisted learning of fusion representations. This approach
adds additional complexity to our model, allowing for a more comprehensive learning of
the multimodal representations.

In previous studies, multitask learning was applied to multimodal sentiment analysis
tasks, and a common characteristic of these studies was that they only utilized unimodal
data as subtasks for auxiliary learning [12]. However, we believe that such a design tends
to excessively focus on modeling within each modality while overlooking the modeling of
interactions between modalities. The key distinction between multimodal and unimodal
tasks lies in the interactions among different modalities. Therefore, in addition to the
subtasks targeting unimodal data, we propose incorporating subtasks specifically designed
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for bimodal representations generated by a gating mechanism. This design allows our
model to simultaneously consider both intramodal and intermodal interactions, fully
harnessing the advantages of multimodal tasks.

Contrastive learning was initially used in unsupervised learning tasks to learn sentence
embeddings from unsupervised data, and later it was gradually extended to supervised
data [13]. Previous research has demonstrated that dropout can lead to inconsistencies
between the training and inference stages [14,15], which can have a detrimental effect on
the final multimodal sentiment polarity prediction results. Therefore, the randomness of
the dropout mechanism can be effectively utilized to maintain an output consistency by
constraining multiple prediction results, thereby enhancing the overall performance of
the model.

For the multitask module in MCM, the main task focuses on predicting the sentiment
polarity of fusion representations, while the subtasks involve predicting the sentiment
polarity of unimodal representations extracted by traditional networks and bimodal rep-
resentations generated through a gating unit. By jointly training these tasks, we aim to
capture the sentiment information hidden in the vectors. To enhance the performance of
multitask learning, we propose a strategy that dynamically acquires task weights based
on the existence of homoscedastic uncertainty [16] in the data. This approach replaces the
conventional manual weight setting method, improving the predictive results and reducing
computation time. For the contrastive learning module in MCM, we mitigate the issue of
training and inference inconsistency caused by the randomness of the dropout mechanism
by constraining the consistency of the output results from the two submodels.

The contributions of our work can be summarized as follows:

1. We propose a dynamic weighted multitask learning method to facilitate the learning
of hidden emotional information within modal representations. By assigning dynamic
weights based on homoscedastic uncertainty, our approach enhances the effectiveness
of multitask learning.

2. Our method incorporates a contrastive learning module, which ensures the consis-
tency between training and inference by constraining the training of the model. This
module optimizes the training process and improves the overall performance of
the model.

3. Experimental results on two widely used datasets, MOSI and MOSEI, demonstrate the
superiority of our method compared to current approaches in the field of multimodal
sentiment analysis. Our approach achieves comprehensive representation learning
under the consideration of both intramodal and intermodal interactions, resulting in
improved performance.

2. Related Work
2.1. Multimodal Sentiment Analysis

Multimodal sentiment analysis is a multidisciplinary research field that encompasses
natural language processing, computer vision, speech processing, and more. Zadeh
et al. [17] introduced the memory fusion network (MFN), a multiview gated memory net-
work that captures both in-view and cross-view interactions. Tsai et al. [18] proposed the
cross-modal transformers model (MulT), which strengthened the target modality through
cross-modal attention learning. In the late fusion stage, MulT first learned intramodal
representations and then performs intermodal fusion. Hazarika et al. [19] proposed MISA,
a method capable of learning modality-invariant and modality-specific representations.
Rahman et al. [20] proposed a method that achieved data alignment by employing mul-
timodal adaptive gates in different layers of BERT [21] and XLNet [22]. Han et al. [23]
presented the MultiModal InfoMax (MMIM) framework, which maximized mutual in-
formation hierarchically during multimodal fusion. MMIM enhanced the mutual infor-
mation between unimodal input pairs, as well as between multimodal fusion results and
unimodal input.
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Xue et al. [24] proposed a multi-level attention map network (MAMN) to address the
denoising problem within and between multimodal inputs. The MAMN filtered out noise
in the fusion process and captured both consistent and heterogeneous correlations across
multiple granularities. MAMN consisted of three modules: the multigranularity feature
extraction module, the multilevel attention map generation module, and the attention
map fusion module. Considering that traditional methods struggle to capture the global
contextual information of long time series data when extracting temporal features from a
single modality and often overlook the correlations between modalities during multimodal
fusion, Cheng et al. [25] proposed the attentional temporal convolutional network (ATCN)
for extracting temporal features from individual modalities. They also introduced the
multilayer feature fusion (MFF) model, which utilized different methods to fuse features at
various levels based on their correlation coefficients, thereby enhancing the effectiveness of
the multimodal fusion.

Wang et al. [26] proposed the recurrent attended variation embedding network
(RAVEN), which focused on learning word representations by modeling the fine-grained
structure of nonverbal modalities. It is worth mentioning that RAVEN employs an attention
mechanism to calculate the shift vector of the text representation, enabling the nonlinear
combination of visual and acoustic embedding. Yu et al. [12] proposed a model called Self-
MM, which jointly trained unimodal and multimodal representations to capture consistency
and differences. The unimodal labels in Self-MM were obtained using a label generation
module based on self-supervised learning. Different from Self-MM, our approach includes
a set of bimodal subtasks in addition to the unimodal subtasks. Furthermore, we directly
use multimodal sentimental intensity labels as targets for subtask learning, aiming to learn
representations that comprehensively consider both intramodal and intermodal interactions
by aligning the training results of the subtasks with the multimodal learning targets.

2.2. Multitask Learning

Multitask learning is one of the transfer learning methods, which aims to leverage
valuable information contained in multiple related tasks to enhance the generalization
performance of all tasks [27]. There are two main mechanisms for parameter sharing
in multitask learning: hard parameter sharing and soft parameter sharing. The hard
parameter sharing mechanism [28], illustrated in Figure 2a, is the most commonly used
parameter sharing strategy. In this approach, multiple tasks share the parameters of the
upstream network while maintaining their own independent task-specific output layers to
achieve specific tasks. This parameter sharing method enables downstream tasks to learn
more comprehensive and informative representations from the shared upstream layer. The
soft parameter sharing mechanism [29], as shown in Figure 2b, does not directly share
network parameters among tasks. Instead, each task has its own independent network
with a dedicated set of parameters. The parameter space sharing is achieved by imposing
distance regularization constraints on each model parameter.

In this work, we employed the hard parameter sharing method. Specifically, two sets
of subtasks shared partial upstream network parameters with the main task. This parameter
sharing method allowed the subtasks to benefit from the shared network while focusing on
their specific objectives. Furthermore, we introduced a dynamic weighted method based
on homoscedasticity uncertainty. This approach allowed us to assign dynamic weights
to the subtasks during training, based on their respective uncertainties. By incorporating
homoscedasticity uncertainty, we can adaptively adjust the importance of each subtask and
optimize the overall learning process.
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(a) (b)

Figure 2. Sharing mechanisms of multitask learning. (a) Hard parameter sharing; (b) Soft parame-
ter sharing.

2.3. Contrastive Learning

Contrastive learning is a type of self-supervised learning that aims to learn effective
representation by bringing semantically similar samples closer together while pushing
semantically dissimilar samples apart [30]. An example of contrastive learning is the
SimCSE method proposed by Gao et al. [31], which focuses on learning sentence vectors
by using contrastive learning method. SimCSE leverages the randomness of dropout [32]
for data augmentation, mitigating the concern that manual data augmentation might alter
the semantics of the data. It is important to note that SimCSE is specifically designed for
unsupervised tasks.

With the advancement of research on contrastive learning, it has gradually been
applied to supervised tasks. Wu et al. [13] proposed a method called R-Drop, which built
upon the idea of “Dropout Twice” similar to SimCSE. R-Drop suggested that two distinct
submodels could be obtained by applying dropout twice. The final loss was computed
by combining the predicted losses of these two submodels with the Kullback–Leibler
(KL) divergence of their different outputs after applying dropout twice. This approach
leveraged the randomness of the dropout mechanism to create diverse submodels and
encouraged consistency between the predictions of these submodels, leading to enhanced
representation learning and improved performance in supervised tasks.

The randomness of the dropout mechanism can introduce inconsistencies between
the training and prediction phases. During training, dropout randomly deactivates certain
parameters in the neural network by setting them to zero. Consequently, determining the
optimal model within the ensemble becomes challenging. In theory, averaging the multiple
predictions of the same input is a reasonable approach to obtain the final prediction for
the models with a dropout layer. However, in practical prediction scenarios, dropout is
typically disabled, and no parameters are set to zero, leading to inconsistencies between
training and inference. To address this issue, we incorporated the contrastive learning
strategy, which introduced a regularization term that encouraged consistency among
the model’s outputs under different dropout configurations. Specifically, we applied
the concept of “Dropout Twice” to the task-specific output layer of the main prediction
task following the multimodal representation fusion layer. The mean squared error (MSE)
between the outputs of the two submodels was set as the regularization term. This approach
effectively addresses the challenge of inconsistency between training and inference. This
regularization enhances the model’s robustness and improves its overall performance.
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3. Methodology

In this section, we provide an overview of the MCM model. We first introduce the
general structure of MCM, followed by a detailed description of the dynamic weighted
multitask learning module and the contrastive learning module incorporated within MCM.

3.1. Overall Architecture

The architecture of the proposed MCM model in this paper is illustrated in Figure 3.
Our model comprises three sets of tasks, with multimodal sentiment analysis as the main
task and unimodal and bimodal sentiment analysis as subtasks.

Figure 3. The architecture of MCM.

Unimodal Sentiment Analysis. The original representations of text, audio, and video are
denoted as ft ∈ Rdt , fa ∈ Rda , and fv ∈ Rdv , respectively. d denotes the dimension of the
representation, and θ denotes the trainable parameters in the corresponding network. For
the text modality, we extracted features using a pretrained BERT model. The vector Ft,
which corresponds to the embedding of the first word in the output of the last layer of
BERT, was taken as the representation of the whole sentence.

Ft = BERT( ft; θt) ∈ Rdt (1)
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For the audio and video modalities, we extracted features by using a bidirectional
LSTM network [33] to capture the sequential characteristic of the audio and video data.

Fa = LSTM( fa; θa) ∈ Rda (2)

Fv = LSTM( fv; θv) ∈ Rdv (3)

The final prediction part consisted of two linear transformations followed by a
ReLU activation function. W denotes the weights in the linear layer, while b denotes
the bias parameters.

F
′
s = ReLU(Ws

u1Fs + bs
u1) (4)

ys = Ws
u2F

′
s + bs

u2 (5)

where s ∈ {t, a, v}, Ws
u1 ∈ Rds×ds′ , Ws

u2 ∈ Rds′×1, and ys is the prediction result of the
unimodal task. We took these three unimodal prediction tasks as the first group of subtasks.
The upstream network and parameters for learning unimodal representations were shared
with the main task.
Bimodal Sentiment Analysis. The purpose of the gating mechanism is to generate an
intermediate representation by combining data from different modalities [34]. To achieve
this, we designed a bimodal gated module that learned bimodal representations with
dimension h by integrating the information from two unimodal representations. The
module structure is shown in Figure 4.

Figure 4. Bimodal gated module.

Specifically, first we combined the three unimodal representations pairwise as Fα, Fβ,
where (α, β) ∈ {(a, t), (v, t), (v, a)}. These combined representations were then taken as the
input for linear layers with a tanh activation function.

hα = tanh(Wαβ
b1 Fα + bαβ

b1 ) (6)

hβ = tanh(Wαβ
b2 Fβ + bαβ

b2 ) (7)

where Wαβ
b1 ∈ Rdα×h, Wαβ

b2 ∈ Rdβ×h. We concatenated the two representations Fα and Fβ.
Then, gαβ, a weight controlling the contribution of two unimodal inputs, was calculated by
a linear transformation and a ReLU activation function.

gαβ = ReLU(Wαβ
b3 [Fα; Fβ] + bαβ

b3 ) (8)
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where Wαβ
b3 ∈ R(dα+dβ)×h. Finally, the bimodal representation hαβ was calculated by a

weighted sum.
Fαβ = gαβhα + (1− gαβhβ) (9)

The final prediction part consists of two linear transformations and a ReLU
activation function.

F
′
αβ = ReLU(Wαβ

b4 Fαβ + bαβ
b4 ) (10)

yαβ = Wαβ
b5 F

′
αβ + bαβ

b5 (11)

where Wαβ
b4 ∈ Rh×h′ , Wαβ

b5 ∈ Rh′×1, and yαβ denotes the prediction result of the bimodal task.
These three bimodal prediction tasks were taken as the second group of subtasks. Similar
to unimodal sentiment analysis, the upstream layers used to learn bimodal representations
were shared with the main task.
Multimodal Sentiment Analysis. As the main task of MCM, this task combines the uni-
modal and bimodal representations and utilizes the fusion representations as input for the
multimodal sentiment prediction network. In addition to the representation learning layers
shared with unimodal and bimodal sentiment prediction, this task includes a task-specific
sentiment polarity prediction layer to get the final results.

In the first stage, the multimodal fusion representation Fm was constructed by concate-
nating three unimodal and three bimodal representations.

Fm = [Ft; Fa; Fv; Fat; Fvt; Fva] (12)

In the second stage, the multimodal prediction result was derived through a linear
regression.

F
′
m = ReLU(Wm

1 Fm + bm
1 ) (13)

ym = Wm
2 F

′
m + bm

2 (14)

where Wm
1 ∈ R(dt+da+dv+3×h)×dm , Wm

2 ∈ Rdm×1, and ym denotes the prediction result of the
multimodal task. It represents the final sentiment analysis prediction result of MCM.

3.2. Multitask Learning Module

In this paper, the independent sentiment polarity prediction of three unimodal repre-
sentations Ft, Fa, Fv and three bimodal representations hat, hvt, hva were considered as two
groups of subtasks. The prediction of the multimodal fusion representation Fm was taken
as the main task. By the joint training of multiple tasks, the shared layers between the
main task and subtasks were trained simultaneously. The visual sharing graph between
different tasks in MCM is shown in Figure 5. From the graph, we can intuitively observe
that the shared layers between the unimodal subtasks and the main task were designed to
capture the emotional information present in the unimodal data and generate unimodal
representations. This design enabled the model to capture underlying sentimental infor-
mation within the unimodal data, thereby enhancing the effectiveness of the generated
unimodal representations.

However, relying solely on unimodal subtasks may cause certain limitations. In the
case of multimodal tasks, it is crucial to consider both intramodal and intermodal interac-
tions. Training auxiliary tasks for individual modalities primarily focuses on capturing
intramodal interactions, neglecting intermodal interactions. Consequently, the unimodal
representations obtained through this approach may exhibit stronger independent pre-
dictive capabilities, but they may not be optimal for subsequent modal fusion stages. To
address this, we introduced bimodal prediction subtasks. The bimodal representations
derived from the gating unit could effectively capture intermodal information, thereby
compensating for the limited learning of intermodal interactions in the unimodal subtasks.
Thus, the bimodal subtasks facilitated the learning of intermodal interaction information,
serving as valuable support for multimodal tasks. Additionally, they acted as constraints
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on the unimodal subtasks, preventing the learned unimodal representations from deviating
too far from the requirements of the multimodal task.

The loss of each task was calculated by the mean squared error (MSE). The simple loss
function of multitask learning was calculated as follows:

LMT = ∑
i∈k

(
1
N

N

∑
j=1

(σi‖yij − ŷ‖2)) (15)

where k ∈ {m, t, a, v, ta, tv, va}. σ represents the weight coefficient for each task and is a
hyperparameter. yi represents the predicted sentiment intensity score for each task, and ŷ
represents the sentiment intensity label. The weight coefficient σ described above is usually
set manually, which is inaccurate and time-consuming. Thus, we proposed a method to
weigh the loss function by considering the homoscedastic uncertainty of each task.

Figure 5. The visual sharing graph between different tasks in MCM. The blocks with blue color
indicate that this part of the network structure is shared between the unimodal subtasks and the main
task, while the red blocks indicate that this part of the network and parameters are shared between
the bimodal subtasks and the main task.

There are two types of uncertainties commonly observed in deep learning: epistemic
uncertainty and aleatoric uncertainty [35]. Epistemic uncertainty arises from a lack of train-
ing samples, while aleatoric uncertainty arises from unexplained information in the training
data and can be further categorized into data-dependent heteroscedastic uncertainty and
task-dependent homoscedastic uncertainty [36]. The former depends on the input data,
while the latter depends on different tasks. Both types of uncertainty can be captured
using Bayesian deep learning methods [37]. In this paper, we addressed the heteroscedastic
uncertainty by incorporating a dynamic weighted multitask learning loss function based on
a Bayesian neural network. This approach allowed us to effectively consider the uncertainty
associated with different tasks and optimize the model accordingly.

Define f w(x) as the final output of the neural network when the input is x with weight
w. For regression tasks, we defined a Gaussian likelihood with a noise scalar σ:

p(y| f w(x)) = N ( f w(x), σ2) (16)
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For a multitask learning model with multiple outputs, we defined f w(x) as the suf-
ficient statistics. For k outputs y1, . . . , yk, the multitask likelihood was defined as follows:

p(y1, . . . , yk| f w(x)) = p(y1| f w(x)). . . p(yk| f w(x)) (17)

The negative log likelihood was calculated as follows:

− log p(y1, . . . , yk| f w(x)) ∝
k

∑
i=1

(
1

2σ2
i
‖yi − f w(x)‖2 + log σi) (18)

The optimization objective, which served as the loss function for multitask learning,
was defined based on the maximum likelihood estimate.

LMT = − log p(y1, . . . , yk| f w(x)) ∝
k

∑
i=1

(
1

2σ2
i
‖yi − f w(x)‖2 + log σi) (19)

Therefore, the multitask learning loss function in this paper was modified as follows:

LMT = ∑
i∈k

(
1
N

N

∑
j=1

(
1

2σ2
i
‖yij − ŷ‖2 + log σi)) (20)

σ is a dynamic adaptive parameter. yij is the output of modality k, where k ∈
{m, t, a, v, at, vt, va}, for input x. ŷ is a truth label. The ground truth labels used by all
the tasks in this paper were multimodal sentiment intensity labels provided by the dataset.

3.3. Contrastive Learning Module

For the task of predicting the sentiment polarity for fusion representations, the mul-
timodal fusion vector Fm was passed into the network twice to get two sets of prediction
results. Subsequently, we compute the mean squared error (MSE) between these two sets
of results, which serves as the loss function for the contrastive learning module.

LCL =
1
N

N

∑
j=1
‖ymj − y

′
mj‖2 (21)

where N is the size of the dataset, and ymj and y
′
mj represent the two predicted sentiment

intensity scores obtained after applying dropout twice, respectively. The MSE between the
output of two submodels was utilized as the optimal objective, aiming to minimize the
discrepancy between the two predictions and encourage the model to generate consistent
and reliable results. The contrastive learning module played a crucial role in enhancing the
alignment and coherence of the predictions, thereby improving the overall performance of
the multimodal sentiment analysis task.

3.4. Optimization Objectives

By incorporating both multitask learning and contrastive learning into the training
objective, the final loss function was defined as follows:

L = LMT + αLCL = ∑
i∈k

(
1
N

N

∑
j=1

(
1

2σ2
i
‖yij − ŷ‖2 + log σi)) + α

1
N

N

∑
j=1
‖ymj − y

′
mj‖2 (22)

where k ∈ {m, t, a, v, at, vt, va}. α represents a hyperparameter.
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4. Experiments
4.1. Dataset

In this paper, our model was evaluated on two open multimodal sentiment analysis
datasets, MOSI [38] and MOSEI [39].

MOSI. CMU-MOSI consists of 2199 short videos edited from 93 monologue movie
commentary videos available on YouTube. The dataset is divided into 1284 training samples,
229 validation samples, and 686 test samples. Each sample is manually annotated by human
annotators with a sentiment score ranging from −3 to 3. A higher score indicates a stronger
positive emotion, while a lower score indicates a stronger negative emotion.

MOSEI. CMU-MOSEI consists of 23,453 annotated sentences collected from videos
featuring over 1000 online speakers discussing 250 different topics on YouTube. The dataset
is divided into 16,326 training samples, 1871 validation samples, and 4659 test samples.
Similar to MOSI, each sample in CMU-MOSEI is annotated with a sentiment score ranging
from −3 to 3, representing the intensity of the sentiment expressed in the sentence.

4.2. Feature Extraction

Text. The raw text data were obtained by manually transcribing the utterances from the
video sources. To extract sentence-level text features, we utilized the BERT pretrained model.
This choice was motivated by the fact that BERT had undergone extensive pretraining on a
large corpus and had demonstrated excellent feature capturing and language representation
capabilities. BERT’s pretraining involves two tasks, namely masked language model
(MLM) and next sentence prediction (NSP). The resulting pretrained model is able to
generate text features with a dimension of 768, which is consistent with both datasets
under consideration.

Audio. More than 32 audio features, including NAQ (normalized amplitude quotient),
MFCCs (Mel-frequency cepstral coefficients), peak slope, energy slope, were extracted
using the COVAREP toolkit [40]. The dimension of the audio features was 5 for the MOSI
dataset and 74 for the MOSEI dataset. These features provided valuable information about
the acoustic characteristics of the utterances, enabling the model to capture audio-related
cues for sentiment analysis.

Video. The video features were extracted using Facet, a tool that captures facial
expression features for each frame. These features include 16 facial action units, 68 facial
landmarks, head pose and orientation, 6 basic emotions, and eye gaze [41,42], based on
a facial action coding system. The dimension of the video features was 20 for the MOSI
dataset and 35 for the MOSEI dataset. These features, which captured facial expressions
associated with emotions, played a crucial role in enabling the model to perform sentiment
analysis effectively.

4.3. Baselines

We compared the performance of MCM with the following baseline methods.
TFN (tensor fusion network) obtains unimodal, bimodal, and trimodal interaction

information by calculating the outer product of the multimodal tensor.
LMF (low-rank multimodal fusion) is an improvement of the TFN that uses a low-

rank tensor for the multimodal fusion, reducing the computational complexity of tensor-
based methods.

MFN (memory fusion network) is a multiview sequential gated memory network
that models view-specific and cross-view interactions.

RAVEN (recurrent attended variation embedding network) is a method that assists
in learning word embeddings by modeling the fine-grained structure of nonverbal modalities.

MFM (multimodal factorization model) learns modality-specific generative features
and discriminative features for classification by decomposing representations into genera-
tive and discriminative factors.
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MulT (multimodal transformer) proposes a multimodal transformer structure that
captures the interactions between different multimodal sequences by using bidirectional
cross-modal attention.

Self-MM implements joint learning for unimodal and multimodal to learn the consis-
tency and differences between different modal representations.

4.4. Basic Settings

Experimental Design. We use Adam as the optimizer with learning rates of {1×
10−3, 1× 10−4, 5× 10−5}. The hyperparameter α was set to one. The dimension h of the
three bimodal representations was unified as 512. To ensure the robustness of our results, we
ran our model five times with different random seeds within {1111, 1112, 1113, 1114, 1115}
for each task. The final result was obtained by averaging the outcomes of these five runs.

Evaluation Metrics. In line with previous works, we employed four evaluation
metrics to assess the effectiveness of our method. Specifically, we utilized the Acc-2
(binary classification accuracy) and F1 score to evaluate the classification performance.
The Acc-2 metric measures the percentage of correctly classified samples out of the total
number of samples, which is evaluated in two ways: negative/non-negative [43], and
negative/positive [18]. The former considers zero as a negative sentiment intensity, while
the latter excludes zero from the classification, focusing solely on nonzero sentiment
intensities. The F1 score is calculated in the same two ways, and its calculation formula is
as follows:

F1 =
2× Precision× Recall

Precision + Recall
(23)

Precision refers to the percentage of samples that are correctly predicted as “positive”
out of all samples predicted as “positive”. Recall refers to the percentage of samples
predicted as “positive” out of all samples that are actually “positive”. F1 score can effectively
evaluate the datasets with imbalanced samples. The F1 score is a metric that combines
precision and recall and is particularly useful for evaluating datasets with imbalanced
samples. It provides a balanced measure of the model’s performance by considering both
precision and recall.

In addition, we used the MAE (mean absolute error) and Corr (Pearson correlation
coefficient) to assess the regression performance. The MAE measures the average absolute
difference between the predicted values and the true values. It is calculated as follows:

MAE =
1
N

N

∑
i=1
|yi − ŷ| (24)

where N is the number of samples, yi represents the predicted value, and ŷ represents the
true value. Corr is a metric used to measure the degree of similarity between the predicted
results and the true labels. It is calculated using the Pearson correlation coefficient, which
is defined as follows:

Corr = ∑N
i=1(Xi − X̄)(Yi − Ȳ)√

∑N
i=1(Xi − X̄)2

√
∑N

i=1(Yi − Ȳ)2
(25)

where X represents the predicted results, and Y represents the true labels in our method.

4.5. Results

Table 1 shows the experimental results of the MCM method proposed in this paper on
the MOSI and MOSEI datasets. We reproduced the best baseline Self-MM.
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Table 1. The results on MOSI and MOSEI datasets. For Acc-2 and F1 score, the left of the “/” is
classified as “negative/non-negative” and the right is classified as “negative/positive”; the same
below. Models with * are reproduced under the same conditions.

Model
MOSI MOSEI

Acc-2 F1 MAE Corr Acc-2 F1 MAE Corr

TFN -/80.8 -/80.7 0.901 0.698 -/82.5 -/82.1 0.593 0.700
LMF -/82.5 -/82.4 0.917 0.695 -/82.0 -/82.1 0.623 0.677
MFN 77.4/- 77.3/- 0.965 0.632 76.0/- 76.0/- - -

RAVEN 78.0/- 76.6/- 0.915 0.691 79.1/- 79.5/- 0.614 0.662
MFM -/81.7 -/81.6 0.877 0.706 -/84.4 -/84.3 0.568 0.717
MulT 81.5/84.1 80.6/83.9 0.861 0.711 -/82.5 -/82.3 0.58 0.703

Self-MM * 83.15/84.61 83.12/84.62 0.725 0.790 81.96/84.92 82.33/84.83 0.533 0.766

MCM 83.32/85.37 83.24/85.35 0.727 0.794 82.23/85.54 82.65/85.49 0.536 0.770

The results demonstrated that MCM outperformed all the baseline methods in terms
of most evaluation metrics on both datasets, particularly in Acc-2 and the F1 score. No-
tably, MCM surpassed the performance of Self-MM, a method that leverages automatically
generated labels for unimodal subtasks in multitask learning. Similar to Self-MM, pre-
vious multitask learning methods used in multimodal sentiment analysis have typically
employed unimodal representations as subtasks, neglecting the learning of interactions be-
tween modalities. However, MCM addresses this limitation by jointly training single-mode
and bimodal subtasks, considering both intramodal and intermodal interactions. This
advancement in learning modal representations contributes to the overall improvement in
model performance.

4.6. Ablation Study

To further analyze the contribution of each module in MCM, we conducted experi-
ments on the MOSI dataset to compare the performance of models with different combina-
tions of modules. The results of these experiments are shown in Table 2.

Table 2. Results of the ablation study on MOSI dataset. MT1 refers to the first group of subtasks in
multitask learning, MT2 refers to the second group of subtasks in multitask learning, and CL refers to
contrastive learning.

Model Acc-2 F1 Score MAE Corr

Base 82.45/84.6 82.31/84.54 0.740 0.790
MT1 82.45/84.45 82.35/84.42 0.725 0.792
MT2 82.91/84.97 82.85/84.97 0.723 0.794

MT1/2 83.32/85.27 83.22/85.24 0.720 0.795
CL 82.62/84.63 82.52/84.6 0.731 0.790

MT1/2,
CL(MCM) 83.32/85.37 83.24/85.35 0.727 0.794

The experimental results demonstrated that the complete MCM model outperformed
the model without the multitask learning and contrastive learning modules across all
evaluation metrics. Regarding multitask learning, the MCM model with both unimodal
and bimodal subtasks achieved superior results compared to the model without any
subtasks. This finding highlights the beneficial role of multitask learning in our model, as
it enabled the model to leverage the shared information across different tasks and enhance
overall performance.

The incorporation of contrastive learning led to better results compared to the model
that solely included the multitask learning module. This outcome validated the effec-
tiveness of contrastive learning in improving the multimodal sentiment analysis task. By
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encouraging the consistency in the predictions, the contrastive learning module enhanced
the reliability and robustness of the generated representations.

The inclusion of both unimodal and bimodal subtasks yielded superior performance
compared to models with only one set of subtasks. This outcome suggested that the
bimodal subtasks effectively constrained the learning of unimodal representations and
prevented the model from overly focusing on intramodal interactions at the expense of
neglecting intermodal interactions.

In addition to the ablation experiments conducted for different modules, we further
analyzed the impact of each subtask in the multitask learning module. Specifically, we
compared the performance of various combinations of unimodal or bimodal subtasks.
By examining the results from these experiments, we gained insights into the individual
contributions of each subtask in the multitask learning module of our model. These
findings provided a deeper understanding of how the model benefited from the integration
of different subtasks and shed light on the significance of capturing both intramodal and
intermodal interactions for an effective multimodal sentiment analysis. The results of these
experiments are shown in Table 3 for the unimodal subtasks and Table 4 for the bimodal
subtasks, respectively.

Table 3. Results of the models containing different unimodal subtasks on the MOSI dataset.

Model Acc-2 F1 Score MAE Corr

T 82.1/83.96 82.05/83.98 0.734 0.793
A 82.36/84.24 82.29/84.23 0.740 0.790
V 82.19/84.14 82.11/84.14 0.741 0.789

T, A 82.83/84.73 82.75/84.71 0.730 0.794
T, V 82.36/84.24 82.29/84.23 0.737 0.793
V, A 82.48/84.48 82.41/84.48 0.734 0.791

T, A, V 82.45/84.45 82.35/84.42 0.725 0.792

Table 4. Results of the models containing different bimodal subtasks on the MOSI dataset.

Model Acc-2 F1 Score MAE Corr

AT 82.1/83.84 82.04/83.84 0.741 0.788
VT 82.74/84.7 82.69/84.7 0.734 0.793
AV 82.33/84.36 82.24/84.34 0.728 0.793

AT, VT 82.27/84.15 82.21/84.14 0.743 0.789
AT, AV 82.42/84.3 82.34/84.28 0.730 0.792
VT, AV 82.62/84.63 82.52/84.6 0.731 0.790

AT, VT, AV 82.91/84.97 82.85/84.97 0.723 0.794

Based on the results obtained from the two sets of experiments, it is observed that the
performance of the model remained relatively similar when using only one or two subtasks.
However, the improvement achieved in comparison to the base model was quite limited.
This finding emphasized the necessity and effectiveness of joint training for both unimodal
and bimodal representations in our model, which was consistent with our previous analysis
regarding the purpose of incorporating unimodal and bimodal subtasks.

In summary, the experimental results stressed the effectiveness of multitask learning
and contrastive learning in improving the multimodal sentiment analysis task. The combi-
nation of these modules, along with the inclusion of both unimodal and bimodal subtasks,
led to significant performance improvements for the MCM model.

4.7. Dynamic Weights in Multitask Learning

In order to analyze the effect of dynamic weights in multitask learning in our model,
we conducted five groups of comparison experiments. In these experiments, instead of
adjusting the weights dynamically, we manually specified the weights of different tasks.
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The weight wm for the main task was set to a value in {1.0, 0.8, 0.6, 0.4, 0.2}, while the weight
for the subtask was (1− wm). The experimental results on the MOSI dataset are shown in
Figure 6.

The results demonstrated that the dynamically adjusted weights method outper-
formed the manually adjusted weights method in terms of both Acc-2 and F1 score. This
suggested that by using dynamic weights, we could obtain optimal weight configurations
that led to improved prediction results. Additionally, the dynamic weights were learned
simultaneously during model training, which offered the advantage of saving a significant
time compared to manually adjusting weights.

(a) Acc2 results. (b) F1 score results.

(c) Acc2 results. (d) F1 score results.

Figure 6. The results on the MOSI dataset with different weights. The results in figure (a,b) are
classified as “negative/non-negative”. The results in figure (c,d) are classified as “negative/positive”.
The number in the independent variable indicates the weight of the main task, and dw indicates the
dynamic weighting method in our model.

4.8. Case Study

To assess the efficacy of learning modal representations with the assistance of multitask
learning, we selected two samples from the MOSI dataset and analyzed their unimodal as
well as fusion multimodal prediction results. For comparison, the results obtained from
the model without the multitask learning module were also included. The experimental
results are shown in Table 5.

To ensure the representativeness of the selected samples, we intentionally chose one
sample with a positive sentiment polarity and another with a negative sentiment polarity.
Analyzing the results presented in the table, we can observe that the multitask learning
module had a more pronounced impact on the prediction results for the text modality
compared to the video and audio modalities. This suggested that multitask learning could
refine the text representations, which played a crucial role in the final prediction.

Furthermore, in the absence of the multitask learning module, the individual modal
representations learned independently may contain misinformation that contradicts the
true sentiment polarity. However, with the incorporation of multitask learning, these
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misinformation effects could be effectively mitigated. By jointly training the model on
multiple tasks, the conflicting information from individual modalities could be rectified,
ensuring that the overall prediction remained consistent with the true sentiment polarity.

Table 5. Results of two selected samples from the MOSI dataset. The number before the text represents
the true label of that sample. Positive sentiment polarity is represented by scores highlighted in
green, where darker shades indicate a higher degree of positivity. Negative sentiment polarity is
represented by scores highlighted in red, with darker shades indicating a higher degree of negativity.

Example With Multitask Without Multitask

(−2.4000) But when I saw it

was just totally boring.
M: −2.0249

T: −1.9917

A: −0.2503

V: −0.1818

M: −1.9375

T: −0.0810

A: −0.1243

V: 0.0928

(1.4000) Because um you

really wanna see it for yourself.
M: 1.4141

T: 1.5259

A: 0.5150

V: 1.0769

M: 1.3603

T: −0.0492

A: −0.1243

V: 0.0935

5. Discussion

With the development of multimedia, multimodal tasks have attracted increasing
attention. Multimodal sentiment analysis aims to predict the sentiment polarity of data by
integrating emotional information from multiple modalities. Current research primarily
focuses on modal fusion, neglecting the importance of modality representation learning
in prediction tasks. Therefore, we employed a multitask learning approach to assist in
learning modality representation. In contrast to previous multitask learning methods, we
designed subtasks specifically for bimodal representations generated by a gating mecha-
nism. This allowed us to fully leverage the advantages of multimodal data, consider both
intramodal and intermodal interactions, and enhance the model’s ability to capture hidden
emotional information in multimodal data. Additionally, we introduced a dynamic weight
computation method to improve the performance of multitask learning. Furthermore,
considering the presence of dropout layers in the model with the issue of inconsistencies
between training and inference, we proposed a contrastive learning approach, which pro-
moted consistency among the outputs of submodels with different dropout configurations,
thereby strengthening the model’s robustness and enhancing its performance. Through
the auxiliary learning of modality representation and the resolution of dropout-related
issues, this paper effectively improved the model’s performance and holds practical value
in real-world applications.
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6. Conclusions

In this paper, we proposed MCM, a model that utilized multitask learning and con-
trastive learning to facilitate the learning of modal representations. A large number of
previous studies of multimodal sentiment analysis take the modal representations obtained
by training with a traditional neural network as the input to the modal fusion phase directly
and focus their research on the fusion of multiple modal representations. However, modal
data contain valuable emotional information that can significantly enhance the predictive
power of the model. Therefore, we introduced a dynamic weighted multitask learning
module to enable our model to capture the hidden information in the modal data. In addi-
tion, to alleviate the problem of inconsistent training and inference caused by the dropout
layer, a contrastive learning module was added to further improve the effectiveness of our
method. Experiment results indicated the efficacy of our proposed method.

During the experiment, it was observed that the prediction accuracy of audio, video,
and video–audio representations was much lower than that of other modalities. This
indicated that there was still room for improvement in the preprocessing of audio and
video source data, as well as the fusion of audio and video features. In future research, we
will continue to investigate and improve these areas.
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