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On the Application of the Stability

Methods to Time Series Data.

Electronics 2023, 12, 2988. https://

doi.org/10.3390/electronics12132988

Academic Editors: Simeone Marino,

Radu Ciprian Bilcu and Ionut

Schiopu

Received: 17 May 2023

Revised: 25 June 2023

Accepted: 5 July 2023

Published: 7 July 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

electronics

Article

On the Application of the Stability Methods to Time Series Data
Vicky Deng and Ciprian Doru Giurcăneanu *
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Abstract: The important problem of selecting the predictors in a high-dimensional case where the
number of candidates is larger than the sample size is often solved by the researchers from the signal
processing community using the orthogonal matching pursuit algorithm or other greedy algorithms.
In this work, we show how the same problem can be solved by applying methods based on the
concept of stability. Even if it is not a new concept, the stability is less known in the signal processing
community. We illustrate the use of stability by presenting a relatively new algorithm from this
family. As part of this presentation, we conduct a simulation study to investigate the effect of various
parameters on the performance of the algorithm. Additionally, we compare the stability-based
method with more than eighty variants of five different greedy algorithms in an experiment with air
pollution data. The comparison demonstrates that the use of stability leads to promising results in
the high-dimensional case.

Keywords: stability; time series; prediction; vector autoregressive model with exogenous variables;
air pollution data

1. Introduction
1.1. Motivation

According to the presentation from [1], which considers the evolution of the statistical
inference over the past decades, one of the prominent research topics after 1990 was high-
dimensional statistical modeling, where the sample size (n) is much smaller than the
number of covariates (p). This problem is difficult because the large value of p makes the
total number of candidate variables impractically large [2].

For the sake of concreteness, let us assume that we possess the response vector
y = [y1 · · · yn]>, where (·)> denotes transposition, and the matrix X = [x1 · · · xp] of p
potential predictors. In many cases, the vector y and the columns of X are centered; the
columns of X are normalized so that the Euclidean norm is the same for all of them. In
signal processing, the matrix X is called a dictionary and the columns of the matrix X are
dubbed atoms. We wish to represent y as a sparse linear combination of the columns of X,
i.e., y = X β̂, where most of the entries of the vector β̂ are equal to zero. It is evident that
the residual sum of squares (RSS) is given by ‖y− X β̂‖2

2, where ‖ · ‖2 is the symbol for the
Euclidean norm. However, if p = 100 and we want vector β̂ to have exactly five non-zero
entries, the naive approach that considers all possible subsets of five atoms for selecting the
best one is totally impractical because the number of subsets that should be evaluated is(

100
5

)
= 75, 287, 520.

1.2. Background and Related Works
1.2.1. Greedy Algorithms

A possible solution can be obtained in the following way. First, construct a sequence
of linear models and then choose the best model from this sequence using either cross-
validation or an information theoretic (IT) criterion. This strategy relies on greedy algo-
rithms. One of the greedy algorithms often employed in signal processing is the Matching
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Pursuit Algorithm (MPA) [3]. According to Scopus, the term “matching pursuit algorithm”
appears in the title/abstract/keywords of 257 documents that have been published in
journals/conference proceedings/book chapters that contain in their titles the term “signal
processing”. In MPA, β̂ is initialized with the vector of length p whose entries are equal to
zero, hence the initial value of RSS equals ‖y‖2

2. At each iteration of MPA, the column of
X is selected, which leads to the largest reduction of RSS. The entry of β̂ that corresponds
to the selected column of X is updated, whereas all other entries of β̂ remain unchanged.
The total number of iterations is large and gives the total number of competing models [4].
The selection of the best model by IT criteria is not straightforward because the criteria for
Gaussian linear regression should be altered before applying them to the models generated
by MPA. The interested reader can find in [5] a list of 22 IT criteria that are suitable for MPA
as well as more technical details about the algorithm itself.

A variant of MPA commonly employed in signal processing is the Orthogonal Match-
ing Pursuit (OMP) [6,7]. An indication of the fact that OMP is more popular than MPA
in the signal processing community is provided by the number of Scopus documents
found when, in the search mentioned above, we replace “matching pursuit algorithm” with
“orthogonal matching pursuit”. This time the result is 592, which is clearly greater than
the result produced by the previous search. The technique used by OMP is the same as in
MPA, in the sense that, at each iteration, the column of X that leads to the largest reduction
of RSS is selected. The main difference is that all the entries of β̂ that correspond to the
columns of X selected at the current and past iterations are updated by least squares, hence
the IT criteria for Gaussian linear regression can be used. For example, in [8], 12 different
IT criteria have been employed for selecting the best model from the candidates yielded
by OMP.

In the same reference, three other greedy algorithms are presented: Relaxed Matching
Pursuit (RMP) [4,7], Frank-Wolfe Algorithm (FWA) [9] and Constrained Matching Pursuit
(CMP) [4]. These algorithms are applied less frequently to signal processing problems.
Performing a search for “Frank-Wolfe” on Scopus, where the other settings are the same as
in the searches made before, returns only 35 documents. At the same time, it is remarkable
that FWA and CMP are solvers for the Lasso problem [10], which can be formulated as
a penalized estimation with an `1-penalty. For more details, see [4,11] and the references
therein. Note that five algorithms for the Lasso problem are reviewed in [12]. Our search
on Scopus (with the settings above) finds “lasso” in 514 documents, which demonstrates
that Lasso is extensively used in signal processing research.

1.2.2. Stability Methods

It is known that one of the disadvantages of Lasso is the lack of control over the
selection of false or irrelevant variables (see [13] for a discussion on this topic). An option
for controlling the false discovery proportion is to consider the stability of the selection
under subsampling. In connection with this approach, it was proposed in [14] that instead
of applying Lasso to the whole data set of size n, Lasso is applied repeatedly to subsets of
size n/2, and a variable chosen frequently when running the experiments is deemed to be
relevant. For simplicity, we assume that n is even. More importantly, a variable is included
in the model only if the empirical probability of being selected in the experiments is greater
than a fixed threshold, which is chosen by the practitioner. The major difficulty is that the

experiments should be executed for all
(

n
n/2

)
subsets of size n/2. Another variant for

stability-based variable selection was introduced in [15]. An important difference between
the method from [15], which is called Complementary Pairs Stability Selection (CPSS), and
the one from [14] is that CPSS does not consider in each experiment a subset of size n/2,
but a pair of subsets of size n/2 whose intersection is the empty set. It is not needed to run
experiments for all the pairs with these properties; it is enough to execute the subsampling
B times, where B is a tuning parameter. The Lasso selection is applied to each subset in
the pair and the statistics concerning how many times a particular variable is selected are
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computed by taking into account the selection results obtained for each subset, in each
experiment. The decision of including a variable in the model is based on the comparison
of the computed statistic with a threshold. More interestingly, instead of a bound on false
discovery proportion, CPSS asserts the bounds in the following terms: (i) “the expected
number of variables chosen by CPSS that have low selection probability under the base
selection procedure” and (ii) “the expected number of high selection probability variables
that are excluded by CPSS”. In the case that is of interest for us, the base selection procedure
is Lasso, but it is evident that the stability methods from [14,15] can be applied to other
selection procedures as well. As a continuation of the series of statistics from Scopus that
we have presented above, we mention that the reference [15] is cited 171 times on Scopus,
but there is no citation in journals/conference proceedings/book chapters that contain in
their titles the term “signal processing”. A possible explanation might be that CPSS as well
as the stability method from [14] were designed for independent and identically distributed
data. It seems that the only work in which CPSS was altered to be suitable for time series
is [16]. The key point of the modification of CPSS proposed in [16] consists in sampling
from data blocks that are ‘almost’ independent.

According to [17], the stability has been employed in statistical inference for a long
time; it was applied not only in the cases where the data perturbation was produced
by subsampling, but it was also used in conjunction with other perturbation schemes
as jackknife or bootstrap. For instance, in the signal processing literature, the stability
was proven to be instrumental in finding the number of groups when performing data
clustering (see, for example [18]). A comprehensive analysis of the stability-based methods
for clustering that have been proposed during the last decades can be found in [19]. More
recently, the stability was used for the identification of differential equations from noisy
spatio-temporal data [20]. The results of extensive simulation studies that evaluate the
capabilities of the stability methods for high-dimensional biomedical data were reported
in [21,22]. The aim of the study conducted in [21] was to compare the abilities of four base
selection procedures to correctly identify the true predictors in artificial data when the
stability criterion is applied. The results have shown that Lasso can lead to modest results
when there is correlation among the significant variables. We should mention that the study
did not use the stability methods from [15,16].

1.3. Organization of the Paper and the Main Contributions

In this work, we make an attempt to introduce the stability-based selection of predic-
tors to the signal processing community:

• We consider the algorithm from [16]. The algorithm is conceptually simple and can
be regarded as a modification of the method from [15], which does not seem to be
currently used in signal processing.

• We relate this algorithm to the problems of interest in multivariate signal processing
by applying the algorithm to the selection of predictors in the case of a vector autore-
gressive (VAR) model [23]. Scopus indicates that vector autoregressive can be found in
the title/abstract/keywords of 359 documents published in signal processing venues.
As we are interested in estimating an entry of a time series by employing the past
observations and (if available) the current observations collected for other time series
(see [5] and the references therein), we use a variant of the VAR model, which is called
vector autoregressive with exogenous variables (VARX) [16,23]. In Section 2, we justify
why the sparse VARX model is appropriate and show how the main algorithm, with
Lasso as the base selection procedure, can be applied to find the relevant predictors.

• We conduct experiments with simulated data in order to evaluate the influence of
various parameters on the performance of the main algorithm. As the ground truth is
known, the performance is evaluated by measuring the feature selection capabilities
in terms of the true positive rate and the false positive rate. We also discuss a modified
variant of the main algorithm (see Section 3).



Electronics 2023, 12, 2988 4 of 18

• We compare the performance of the stability-based method with the performance
of methods that rely on greedy algorithms and IT criteria/cross-validation. The
comparison involves more than eighty methods and it is carried out by using air
pollution data that were measured in Auckland, New Zealand. As the ’true’ predictors
are not known for the real-life data, the comparison of various methods is made by
considering the prediction accuracy. Additionally, we analyze the predictors that
are selected most often and give an interpretation based on what is known from the
environmental chemistry (see Section 4).

Section 5 concludes the paper.

2. Main Algorithm
2.1. Notation

We use bold letters for both vectors and matrices. In particular, I is the identity matrix
of appropriate size. The symbol v(i) denotes the ith entry of an arbitrary vector v. The
notation for the number of non-zero entries of ||v|| is ||v||0 and size(v) denotes the total
number of entries of v. The symbol ||v||η denotes the `η-norm, where η ∈ {1, 2}. In the
case of an arbitrary matrix M, M(i, j) is the entry located at the intersection of the ith row
and the jth column. For a set of positive integers J, the symbol M(J, :) denotes the rows of
M whose indexes are given by the elements of J and M(:, J) stands for the columns of M
whose indexes are given by the elements of J. The operator for transposition is (·)>. For
any set A, 1A(·) is the indicator function, which has the property that 1A(a) = 1 if a ∈ A
and 1A(a) = 0 otherwise. The cardinality of A is denoted |A|.

2.2. Problem Formulation and the Lasso Solution

Assume that the time series data y1, . . . , yT , or equivalently {yt}T
t=1, are available. For

explaining how the stability methods can be applied to the time series data, we resort to
the well-known VARX model [23]:

yt =
py

∑
i=1

Aiyt−i + Cvt + wt, (1)

where yt, wt ∈ RKy×1, Ai ∈ RKy×Ky for i ∈ {1, . . . , py}, C ∈ RKy×pv and vt ∈ Rpv×1. For
simplicity of the presentation, we suppose that the data have been padded, hence the
identity above holds true for all t ∈ {1, . . . , T}. Note that the model in (1) can be easily
extended such that to consider not only the observations vt, but also past measurements of
the exogenous variables, vt−1, vt−2, . . . The vectors {wt}T

t=1 are independent and identically
distributed, and they are drawn from a Ky-variate Gaussian distribution with zero mean
vector and covariance matrix σ2

ν I, where the value of σ2
ν is unknown.

The identity in (1) can be written more compactly as follows:

Y = HZ + W , (2)

where Y = [y1 · · · yT ] and H =
[

A1 · · · Apy C
]
.

With the convention that zt =
[
y>t−1 · · · y>t−py

v>t
]>

for all t ∈ {1, . . . , T}, we have Z =

[z1 · · · zT ]. Additionally, W = [w1 · · ·wT ]. Observe that Y ∈ RKy×T , H ∈ RKy×(Ky py+pv),
Z ∈ R(Ky py+pv)×T and W ∈ RKy×T .

In many practical situations, the matrix H is assumed to be sparse. Some of the reasons
for the presence of zeros in H are:

• In general, the order of the autoregressions is not known and py is taken to be an
upper bound for the unknown order. It is expected that the estimated order is smaller
than this upper bound.

• An important result in the analysis and forecasting of multivariate time series claims
that, for some a, b ∈ {1, . . . , Ky}, yb does not Granger-cause ya if and only if the entry
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indexed by (a, b) is zero for all matrix coefficients Ai, where i ∈ {1, . . . , py} [23]. We
note in passing that, there is an increasing interest in novel methods for the identifica-
tion of vector autoregressive models with Granger and stability constraints (see [24]
and the references therein). However, in the literature that is focused on this particu-
lar identification problem, the term ‘stability’ refers to the following condition that
should be satisfied by the matrix coefficients: The magnitudes of all the eigenvalues of
the matrix 

A1 A2 . . . Apy−1 Apy

I 0 . . . 0 0
0 I . . . 0 0
...

...
. . .

...
...

0 0 . . . I 0

 (3)

are strictly less than one [23].
• There might be exogenous variables in vt that do not influence some of the entries

of yt.

In our presentation, we consider the problem of selecting the ‘best’ predictors for the
first component of yt. This is mainly motivated by the real-life prediction problem that we
will discuss in Section 4. It follows from (2) that

Y(1, :) = H(1, :)Z + W(1, :).

For ease of exposition, let us dub y = Y(:, 1)> and h = H(:, 1)>. Note that the total
number of predictors is p = Ky · py + pv. As it is desirable for the estimated vector of
coefficients ĥ to be sparse, we apply the Lasso method. More precisely,

ĥλ = argmin
h
Lλ(h; y, Z), (4)

where

Lλ(h; y, Z) =
‖y− Z>h‖2

2
2 · size(y)

+ λ‖h‖1. (5)

It is obvious that size(y) = T, but we prefer to write size(y) instead of T because later
on we will employ the expression of Lλ(·; ·) when the response vector and the matrix of
predictors are not y and Z. Hence, in (5), we emphasize that the quantity in the denominator
of the first term is equal to the length of the response vector multiplied by two. To clarify
why the input arguments for Lλ(·; ·) are not necessarily y and Z we mention that, according
to [16], the Lasso procedure is applied to the entire data set as well as to subsamples of the
data set.

In [16], it is recommended to use the entire data set for selecting the value of λ in (5).
For a fixed integer q ∈ (0, p), the value of λ is varied until ĥλ has q non-zero entries, which
means that q predictors have been selected. The ratio θ = q/p is regarded as the average
selection probability and all the predictors for which the probability of selection is smaller
than θ are deemed to be irrelevant. Note that the value of λ selected in this way is then
used in connection with the subsampling procedures that are described below.

2.3. Subsampling

The major difficulty in connection with subsampling stems from the fact the entries of
the time series data are not independent. In order to address this issue, it was proposed
in [16] to obtain from the time series data a sequence of blocks that are ‘almost’ independent.
These blocks are obtained as follows: A partition of 2µt subsets of the set {1, . . . , T} is
defined such that each subset contains exactly aT elements. We suppose that T/(2aT) is an
integer. If this condition is not satisfied, then the expression bT/(2aT)c that involves the
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floor operator should be used. The subsets of the partition are O1, . . . , OµT and E1, . . . , EµT .
For j ∈ {1, . . . , µT},

Oj = {i : 2(j− 1)aT + 1 ≤ i ≤ (2j− 1)aT}, (6)

Ej = {i : (2j− 1)aT + 1 ≤ i ≤ 2jaT}.

Additionally, we define:

O =
µT⋃
j=1

Oj. (7)

It is helpful to employ a different notation for the odd blocks (which are the O-blocks)
and the even blocks (which are the E-blocks) because the data corresponding to the odd
blocks are used in estimation, whereas the data corresponding to the even blocks are
discarded. The key point is that any two odd blocks are separated by at least aT time points
and, because of this feature, the odd blocks are deemed to be independent, especially when
aT is large. Hence, the subsampling is performed only from the odd blocks and not from
the entire time series. In order to illustrate how the subsampling works, suppose that we
sample without replacement the sequence of blocks O′1, . . . , O′µT/2 from the set of µT odd
blocks. For ease of notation, we denote y(O′) the vector formed by the entries of y whose
indexes belong to the set

O′ =
µT/2⋃
j=1

O′j. (8)

Similarly, Z(:, O′) is the block of the matrix Z formed by the columns of Z whose
indexes belong to the set O′. Therefore, instead of estimating the vector of linear coefficients
by minimizing the cost function in (5), we minimize

Lλ(h; y(O′), Z(:, O′)). (9)

The main difference between (5) and (9) is that in the former we utilize all T data from
y, whereas in the latter we use only (µT/2)aT data from y. As it is evident that (µT/2)aT is
equal to the cardinality of O′, we prefer to employ the symbol |O′| when we refer to the
amount of data.

2.4. Stability-Based Selection

The outcome of the Lasso for the optimization problem in (9) provides an estimator
for the subset S ⊂ {1, . . . , p} that comprises the ‘signal’ variables. According to the
nomenclature from [15,16], the subset {1, . . . , p} \ S contains the ‘noise’ variables. To fix
the ideas, we give below the definition of the Lasso-based estimator for S:

Ŝ|O′ | =

{
i : ĥ(i) 6= 0, ĥ = argmin

h
Lλ

(
h; y(O′), Z(:, O′)

)}
. (10)

The presence of the symbol |O′| in Ŝ|O′ | indicates the amount of data involved
in estimation.

Relying on the idea of the complementary pairs from [15], we consider the subset
O′′ = O \O′ [see (7) and (8) for the definitions of O and O′]. It is straightforward to obtain
another estimator, Ŝ|O′′ |, for the subset S of ‘signal’ variables by replacing O′ with O′′ in (9)
and then applying Lasso for solving the optimization problem. Formally, the definition of
Ŝ|O′′ | can be written down by using O′′ instead of O′ in (10). Bearing in mind that we aim
to select the relevant predictors, we calculate the statistic
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1Ŝ|O′ |
(k) + 1Ŝ|O′′ |

(k) (11)

for each index k ∈ {1, . . . , p}. Obviously, the statistic above can take only the values 0, 1
and 2. Following the recipe from [15,16], we execute the subsampling not only once, but
B times. We will discuss later on how the value of B can be chosen. Most importantly, at
each subsampling, a different pair of sets (O′, O′′) is generated and the statistic in (11) is
computed for each predictor. Furthermore, for each k ∈ {1, . . . , p}, we calculate the sum
of the statistics (11) obtained for the kth predictor in all B subsamplings and divide the
result by 2B in order to obtain the estimator Π̂av

B (k). The possible values for Π̂av
B (k) are

0
2B

,
1

2B
,

2
2B

, . . . ,
2B
2B

. It allows us to find the block average selection estimator

Ŝav
φ =

{
k : Π̂av

B (k) ≥ φ
}

, (12)

where φ is a threshold that, in general, can take values in the interval (0.5, 0.9]. The value
of φ is chosen by resorting to theoretical results on stability selection that provide an upper
bound for the expected number of falsely selected predictors. This is the major advantage
of the use of stability in comparison with applying only the Lasso base procedure. The
main steps of the selection method presented in this section are shown in Algorithm 1. In
the next sections, we investigate the performance of the algorithm in experiments with
simulated data and air pollution data.

Algorithm 1 Stability selection with the base procedure Lasso (see [16] (Algorithm 1))

Input: y ∈ RT×1 [T measurements], Z ∈ Rp×T [p predictors],
aT [the cardinality for each odd block], q/p [average selection probability],
φ [threshold], B [number of pairs (O′, O′′)],
Λ = {λ1, . . . , λ100} [a sequence of penalty parameters]
Initialize: Π̂av

B (k) = 0, for all k ∈ {1, . . . , p}
Select the penalty parameter: For λ ∈ Λ, solve

ĥλ = argmin
h
Lλ(h; y, Z) [see (5)]

and then set
λq = argmin

λ∈Λ

{
‖ĥλ‖0 = q

}
for n = 1 to B do

Sample: From the odd blocks O1, . . . , OµT , sample without replacement the sequence
of blocks O′1, . . . , O′µT/2, construct O′ and set O′′ = O \O′ [see (7) and (8)]
Estimate:

Ŝ|O′ | =

{
i : ĥ(i) 6= 0, ĥ = argmin

h
Lλq

(
h; y(O′), Z(:, O′)

)}
[see (10)]

Ŝ|O′′ | =

{
i : ĥ(i) 6= 0, ĥ = argmin

h
Lλq

(
h; y(O′′), Z(:, O′′)

)}

Π̂av
B (k) = Π̂av

B (k) +
1

2B
· 1Ŝ|O′ |

(k) +
1

2B
· 1Ŝ|O′′ |

(k), for all k ∈ {1, ..., p}

end for
Output: Ŝav

φ =
{

k : Π̂av
B (k) ≥ φ

}
[see (12)]
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3. Experiments with Simulated Data
3.1. Artificial Data

We generate data sets according to the VARX model in (1). In our simulations, all
VARX models are guaranteed to be stable (see again the stability condition in (3)). The most
important attributes are:

• Parameters: (i) number of time series: Ky = 4; (ii) autoregressive order: py = 3;
(iii) standard deviation for the non-zero entries of the matrices {Ai} and for the entries
of the vectors {vt}: σ = 0.25.

• Matrices {Ai}: (i) We generate the matrices {Ãi}
py
i=1 whose entries are independent

outcomes from the Gaussian distribution N (0, σ2); (ii) let M ∈ RKy×Ky be a matrix
that has all entries equal to one. Some entries on the off-diagonal locations of M are
randomly selected and forced to be zero (the number of zero entries is restricted to be
less than 0.6 · K2

y); (iii) for 1 ≤ i ≤ py, the element-wise product of M and Ãi gives the
matrix Ai.

• Matrix C: (i) c11 = c12 = c13 = 1; (ii) all other entries are equal to zero.
• Vectors {vt}: (i) model for the first entry: zero-mean order-1 autoregressive process

with autocorrelation function ρ(τ) = (−0.9)|τ|, for τ ∈ Z; model for the second
entry: zero-mean order-1 autoregressive process with autocorrelation function ρ(τ) =
(−0.5)|τ|, for τ ∈ Z; model for all other entries: independent outcomes from the
Gaussian distribution N (0, σ2).

• Vectors {wt}: model: multivariate Gaussian distribution with zero-mean vector and
covariance matrix σ2

ν I, where σ2
ν = (ψσ)2 and ψ ∈ {0.1, 1, 10}.

• Signal-to-noise ratio (SNR): (i) formula: 10 log10
σ2

σ2
ν
= 10 log10

1
ψ2 ; (ii) values: −20 dB,

0 dB and 20 dB.

With these settings, we simulate 100 data sets for each value of SNR mentioned above.
For each data set, we have: (i) number of measurements: T = 10, 000; (ii) maximum
order of autoregressions (used in estimation): pmax

y = 4 (greater than the ‘true’ order py);
(iii) number of endogenous predictors: pmax

y · Ky = 4 · 4 = 16; (iv) number of exogenous
predictors: pv = 84; total number of predictors: p = 16 + 84 = 100.

The methodology utilized for producing the artificial data has a certain degree of
similarity with the one used for simulating the data in an experiment reported in [8]. There
are two differences between the approach in this work and the one in [8]. The first difference
stems from the fact that, in [8], all the odd blocks have the same cardinality and all the even
blocks have the same cardinality, but |O1| can be different from |E1|. The second difference
is that, in [8], after generating the blocks O1, . . . , OµT , only the data in y(O1) are used in
order to select the best predictors by employing a greedy algorithm and an IT criterion. The
same pair (greedy algorithm, IT criterion) is then used for selecting the predictors from the
data in y(O2) and the procedure continues until the data from each odd block is utilized in
the selection of the predictors. It is decided that a particular predictor can be included in
the final model only if it was selected in at least 80% of the data blocks y(O1), . . . , y(OµT ).

In the section below, we focus on the parameters for Algorithm 1. For the sake of
simplicity, we sometimes use the acronym BPA for Algorithm 1. This acronym is inspired
by [16] (Definition 1) and means Block Pair Average.

3.2. Settings for the Parameters of the Algorithm
3.2.1. Parameter aT [The Cardinality for Each Odd Block]

The value of aT is usually set to an integer multiple of the time series seasonality, and
set to

√
T or log T in the absence of seasonality [16]. As µT = T/(2aT), it is evident that

aT determines the number of odd blocks µT . When aT is larger, we have longer blocks
and, therefore, fewer odd blocks. However, the number of data involved in estimation
does not depend on aT because the sample size is given by |O′| = |O′′| = (µT/2)aT = T/4.
The possible influence of aT on the estimation results comes from the fact that the distance
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between any two consecutive odd blocks Oj and Oj+1, j ∈ {1, . . . , µT − 1} is larger when
aT increases and this potentially makes the blocks more independent. In our empirical
evaluations of the algorithm, we allow aT to vary over an extensive range of values:
aT ∈ {5, 10, 50, 100, 250, 500}.

3.2.2. Parameter q/p [Average Selection Probability]

The magnitude of q determines the penalty parameter λq; the lower the q parameter,
the harsher the Lasso penalty. The value q/p = 0.4 was set as default in [16], with q/p = 0.2
and q/p = 0.6 tested in their real-life data experiment. When q/p = 0.2, it might be too
conservative, while q/p = 0.6 is less conservative and easier to let predictors in for the
second screening controlled by φ. Hence, we want to explore the different values of
q/p ∈ {0.2, 0.4, 0.6}.

3.2.3. Parameter φ [Threshold]

We will pay close attention to the relationship between q and φ. For a lower φ-threshold, it
is easier for variables to be selected, while it will become harder when the φ-threshold is
higher. For example, only the most prominent and useful variables will be selected for a
threshold of 0.9. Therefore, it is expected that the final number of variables selected will
be smaller when we raise the φ-threshold. The value for φ is set to 0.8 in [16], while the
parameter values tested in our experiments are φ ∈ {0.5, 0.6, 0.7, 0.8, 0.9}.

3.2.4. Parameter B [Number of Pairs (O′, O′′)]

The computational complexity of Algorithm 1 is mainly given by (i) the cost for
running Lasso over all regularization parameters in the set Λ when the dictionary size is
T× p and (ii) the cost for executing Lasso 2B times for the fixed penalty parameter λq when
the dictionary size is (T/4)× p. More information about the computational complexity
for (i) and (ii) can be found in [2,12]. The number of iterations B is set to 50 in [16]. Since
more iterations make the stability-based selection method more computationally intensive,
we want to find out whether lowering B can retain the same performance of the algorithm.
Hence, B is tested for the values 5, 25, 50. When experimenting on B, we keep in mind that at
each iteration we should have a different pair (O′, O′′). Given that T is fixed, this condition
is mainly related to the value of aT . Note that even for the maximum value of aT employed
in our experiments (aT = 500), the total number of ways in which one can sample without
replacement µT/2 O′-blocks from µT odd blocks is large enough. Elementary calculations
show that µT = 10 when aT = 500 and the number of ways in which the O′-blocks can be

sampled from the O-blocks is
(

10
5

)
= 252, which is greater than 50.

3.3. Empirical Evaluation of the Effect of Various Settings
3.3.1. SNR Level

In the first experiment, we use the 100 data sets that we have generated for each
SNR-value and test how BPA performs under different noise levels. While the noise level
changes, the parameters of the algorithm are fixed to the following default values: aT = 100,
q/p = 0.4, φ = 0.8 and B = 50. The true positive rate (TPR) and the false positive rate
(FPR) are calculated and they are shown in Figure 1. In the figure, we see that TPR does not
change much, and it stays at a pretty high level when SNR varies. However, there are more
outliers and slightly lower TPR for higher SNR. The FPR drops as SNR increases, which is
expected because the stability method is less likely to detect false predictors when the data
are less noisy. The results suggest that BPA is quite robust to noise.

To explore further the cause of slightly lower TPR for higher SNR, we investigate the
selection of λq and the number of predictors selected (p∗) for each SNR level. In Figure 2,
we notice that the λq-values are generally very similar, for all levels of SNR. It is interesting
that for SNR = 20 dB there are more outliers and a broader range of λq-values than for
SNR = −20 dB.
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Figure 1. Boxplots for TPR (left panel) and FPR (right panel), for three different SNR levels.
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Figure 2. Boxplots for the values of λq, for three different SNR levels. The graph in the right panel is
obtained from the one in the left panel after removing the outlier that occurs at SNR = 0 dB.

Next, we investigate the effect of the threshold φ on the final number of predictors
selected. The results, which are shown in Figure 3, indicate that the number of the predictors
selected decreases significantly after applying the rule based on the threshold φ = 0.8 at
the last step of the algorithm. This confirms that the Lasso regularization controlled by q
(via λq) only serves as an instrument for the preliminary selection of the predictors [16] and
φ has a critical role in identifying the high selection probability predictors that are included
in the final model. We also notice in Figure 3 that there are fewer final predictors selected
for SNR = 20 dB than for the smaller SNR values, which results in both TPR and FPR being
lower for SNR = 20 dB in Figure 1.

We continue the analysis by considering various values for the parameters of the
algorithm (see again Section 3.2). For conciseness, we do not report the results obtained
for the parameter aT because our experimental findings show that aT does not have an
important influence on TPR and FPR. The other parameters have a stronger impact on the
outcome of the experiments.
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Figure 3. Boxplots for the number of the selected predictors (p∗) before and after applying the rule
that involves the threshold φ = 0.8. The results are presented for three different SNR levels. The
other parameters are fixed at aT = 100, q/p = 0.4, and B = 50. The solid black line represents the
total number of predictors: p = 100. We employ the definition from (12) for the particular case when
φ = 1/(2B) = 0.01 in order to denote |Ŝav

φ=1/(2B)| the number of predictors that are selected at least

once in the 50 iterations of the algorithm. The red boxes are for |Ŝav
φ=1/(2B)|. The effect of the first layer

of selection, which is performed by Lasso with the penalty parameter λq, consists in the fall of the
number of the chosen predictors from the level of the black line to the level of the red boxes. The blue
boxes are for |Ŝav

φ=0.8|, which represents the number of predictors that are chosen in the second layer
of predictor selection at least 80 times [80 = φ(2B)] in the course of the 50 iterations of the algorithm.
Hence, the effect of the second layer of selection is that the number of the predictors chosen falls from
the level of the red boxes to the level of the blue boxes.

3.3.2. Parameter q/p [Average Selection Probability]

In Figure 4, we observe that as q/p increases, the Lasso penalty becomes weaker
and more variables can pass through the selection criteria. Note that the second selection
criterion is based on the threshold φ, which is fixed at the value 0.8. Our results suggest
that keeping φ constant and loosening the first selection criterion by increasing q/p leads
to higher TPR and higher FPR. Interestingly, the graphs in the figure show a larger increase
in FPR than in TPR. The much higher FPR for q/p = 0.6 suggests that the loose Lasso
regularization has a considerable impact on the correct final selections. The influence of
φ = 0.8 (the second condition being quite harsh) can only be effective at filtering out the
less good variables and keeping the FPR relatively low when the variable cannot pass the
first criterion easily.

3.3.3. Parameter φ [Threshold]

In Figure 5, we see that as φ increases, the FPR drops together with a slight drop in
TPR. When φ ∈ {0.5, 0.6, 0.7}, the values of FPR are far too large. Therefore, φ should not
be less than 0.8. Setting φ = 0.9 is acceptable, but it may be too harsh and lowers TPR. We
conclude that φ = 0.8 is a good choice.

3.3.4. Parameter B [Number of Pairs (O′, O′′)]

In Figure 6, we observe that the results for B suggest no significant difference in
TPR/FPR between 25 and 50 iterations. This means that 25 iterations are sufficient to
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arrive at a good selection of the final predictors. Still, if we have the computing capacity at
50 iterations, it will help improve the FPR slightly. However, when we reduce the number
of iterations to 5, the FPR is clearly higher than in the cases of 25 and 50 iterations. Thus,
we should probably not use too few iterations.
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Figure 4. Boxplots for TPR and FPR obtained when q/p takes three different values and the other
parameters are fixed at aT = 100, φ = 0.8, and B = 50. Remark that we use a different color for each
SNR level.
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Figure 5. Boxplots for TPR and FPR obtained when φ takes five different values and the other
parameters are fixed at aT = 100, q/p = 0.4, and B = 50.
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Figure 6. Boxplots for TPR and FPR obtained when B takes three different values and the other
parameters are fixed at aT = 100, q/p = 0.4, and φ = 0.8.

3.3.5. A Variant of the BPA

We investigate the performance of a variant of BPA in which the Lasso selection is
performed on each of the data blocks y(O1), . . . , y(OµT ). Let Nk denote the number of
times the kth predictor is selected, where k ∈ {1, . . . , p}. It is obvious that 0 ≤ Nk ≤ µT .

We decide that the kth predictor should be included in the final model if
Nk
µT
≥ φ, where

φ = 0.8. Remark that in comparison with Algorithm 1, there is no random selection of
the O′-blocks and the small data blocks are not aggregated. In order to distinguish this
variant of the algorithm from the original one, we call it BPA-m. Another modification
in comparison with Algorithm 1 is that in the selection of λq only the data in y(O1) are
utilized. The reason for this change is that the use of all T = 10, 000 data for the selection of
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λq would give a small λq that cannot perform an effective regularization on data blocks of
length aT = 100. The original BPA does not have this issue because the small data blocks
are aggregated, hence the size of y(O′) as well as the size of y(O′′) is equal to T/4 = 2500.

The comparison of the results produced by BPA and BPA-m is presented in Figure 7,
which indicates that BPA performs much better than BPA-m in terms of TPR, but performs
slightly worse in terms of FPR. Therefore, BPA-m is too conservative compared to BPA. We
also notice that the TPR improvement from increasing SNR is very clear for BPA-m.
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0.75

1.00

−20dB 0dB 20dB
SNR

T
P

R

Algorithm
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BPA−m

0.00
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F
P

R

Algorithm
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Figure 7. Mean ± standard deviation for TPR and FPR obtained when the algorithms BPA and
BPA-m are employed. Three different SNR levels are considered. The other parameters are fixed at
aT = 100, q/p = 0.4, φ = 0.8, and B = 50.

4. Experiments with Real-Life Data
4.1. Air Pollution Data

In this section, we apply the BPA stability method to the Auckland air pollution data
set that was used in [5,8]. The problem that we address is the same as the one considered
in [5,8] and concerns the selection of the predictors. The main difference between our
approach and the methods used in the previous works comes from the fact that we do not
use greedy algorithms and IT criteria/cross-validation for selecting the predictors.

The Auckland air pollution data set comprises daily measurements of the concentra-
tions of particulate matter (PM), specifically PM2.5 and PM10 (in µg/m3) at four locations
in Auckland, New Zealand. Note that PM2.5 includes particles less than 2.5 µm in diameter;
PM10 includes particles less than 10 µm in diameter. Therefore, PM2.5 is a subset of PM10.
The sites where the data were measured are Patumahoe (PA), Penrose (PE), Takapuna (TA),
and Whangaparaoa (WH). In parentheses are written the acronyms that we use in this work
for the sites. The measurements were collected from 30 April 2008 to 30 June 2014.

For a measurement site, let θsite(1), θsite(2), . . . be the time series of log-transformed
daily concentrations of PM2.5. For example, θPA(1) is the log-transformed PM2.5 measure-
ment for Patumahoe, on the first day. Similarly, ξsite(1), ξsite(2), . . . are the log-transformed
values for the concentrations of PM10 measured at the specific site, during day 1, 2, . . .

We want to estimate the concentration of PM2.5 at a specific site when this concentra-
tion cannot be measured because of a malfunction of the sensors. To this end, we find a
linear model that describes the relationship between the log-transformed concentration of
PM2.5 on the current day (at a specific site) and the following variables: (i) past and present
log-transformed concentrations of PM10 for that specific site and (ii) past and present
log-transformed concentrations of PM2.5 for the other three sites.

Let n = 365 because there are 365 days during a normal year. For a certain site, we
take the response vector to be

ysite(t) = [θsite(t) θsite(t− 1) . . . θsite(t− n + 1)]>, (13)

where t ≥ n denotes an arbitrary day. For the same site, we use the notation Xsite(t) for
the matrix of predictors. The columns of the matrix are arranged into four blocks. The
representations for the response vector and the matrix of predictors for each site are shown
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in Figure 8a. Note that the response vector and the columns of the predictors matrix are
centered and standardized.

We consider two scenarios for constructing the four blocks of the matrix of predictors.

• Scenario A—Full set of predictors (FullSet): The first block contains the measurements
from last year of the log-transformed concentrations of PM10 for the site for which
we wish to estimate the concentration of PM2.5. The next three blocks contain the log-
transformed concentrations of PM2.5 for the other three sites that have been measured
during the last year. The predictors are presented in Figure 8b. The total number of
predictors is p = 4(n + 1) = 1464, thus p� n (high-dimensional case).

• Scenario B—Constrained set of predictors (ConSet): In this scenario, we reduce the
total number of predictors by using empirical knowledge (see [5]). The predictors are
presented in Figure 8c. Simple calculations show that the total number of predictors is
p = 4 · 17 = 68, thus p < n.

4.2. Performance Evaluation

The performance evaluation is performed by using the same methodology as in [5,8].
The procedure described below is applied for NTR = 100 runs. In each run, we use a data
segment of length 3n (three consecutive years of measurements). The first two years are
used for training (i.e., for selecting the predictors by applying BPA) and the third year is
used for testing. In the first run of this experiment, we take t0 to be 30 April 2008 and let t1
be the last day of the second year, so t1 = t0 + 2n− 1. It follows that the training response
vector is ysite(t1) and the training predictors matrix is XSC

site(t1), where (·)SC is used to
distinguish between scenario A and scenario B. After the BPA is employed for selecting
the predictors from the training predictors matrix, the corresponding linear coefficients
are computed by minimizing the sum of the squared residuals (least squares). The vector
of coefficients is further used together with the testing predictors matrix in the third year
XSC

site(t1 + n) in order to produce the estimate ŷsite(t1 + n). The same procedure is used in
the rth run, where r ∈ {2, . . . , NTR}, by replacing t1 with tr = t1 + (r− 1)8.

The normalized mean square error (NMSE) is computed by applying the following
formula for each site and for each scenario:

NMSESC
site =

∑NTR
r=1

∥∥exp(ysite(tr + n))− exp
(
ŷSC

site(tr + n)
)∥∥2

∑NTR
r=1 ‖exp(ysite(tr + n))‖2 , (14)

where applying exp(·) to the vector means that we exponentiate each entry of the vector in
the argument. Exponentiation is used to back-transform the log-transformed data to the
original scale.

4.3. Experimental Results

First we write down the values of the BPA parameters that are used in this experiment.
For instance, it is natural to take T = 365 because n = 365. Furthermore, we take aT =
3 · 7 = 21, which is a multiple integer of the seasonality. The factor 3 is selected for
the convenience of the implementation as we already know from the experiments with
simulated data that the value of aT does not have an important effect on the performance
of the algorithm. It follows that µT = bT/(2aT)c = b365/(2 · 21)c = 8. Therefore, there are
eight odd blocks in total, and when running the algorithm we sample without replacement
the blocks O′1, . . . , O′4. According to (8), |O′| = 4 · 21 = 84; it is also clear that |O′′| = |O′|.
The other BPA parameters are: q = b0.4 · pc, φ = 0.8 and B = 50. Their selection is based
on the results obtained with simulated data.
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Figure 8. Air pollution data—Response vector and the matrix of predictors for Scenario A (FullSet)
and Scenario B (ConSet). (a) The blue and purple boxes represent the blocks of predictors. The
notation [Θsite(t)]:1 stands for the first column of the matrix Θsite(t). A more detailed description
of the predictors is provided in the panels below. (b) Scenario A—Full set of predictors (FullSet):
The entries of the matrix in purple Θsite(t) are the log-transformed PM2.5 measurements collected
during the past n days, where n = 365. Similarly, the entries of the matrix in blue Ξsite(t) are the
log-transformed PM10 measurements collected during the past 365 days. (c) Scenario B—Constrained
set of predictors (ConSet): The entries of the matrix in purple Θsite(t) are the log-transformed PM2.5

measurements. When the estimation is made for the day t, the predictors contain recent measurements
(from days t, t − 1, . . . , t − 10) as well as measurements collected about six months ago (on days
t− 182, t− 183, t− 184) and about one year ago (on days t− 363, t− 364, t− 365). The entries of the
matrix in blue Ξsite(t) are the log-transformed PM10 measurements collected at the time points t to
t− 10, t− 182 to t− 184, and t− 363 to t− 365.

The values of NMSE computed by applying BPA are presented on the third row of
Table 1. It is evident that the ConSet scenario always leads to a smaller NMSE than the
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NMSE for the FullSet scenario. This is expected because in ConSet we use prior knowledge
to pre-select the useful predictors. To gain more insight, we comment briefly on the top
three most frequently selected predictors in NTR runs for the different sites, in each scenario.
We note that PM10 from the same site on the present day is always the top voted predictor
and is always selected in each of the NTR runs. The selection of this predictor can be easily
understood because PM2.5 is a subset of PM10, so the concentration of PM2.5 inevitably
correlates with the PM10 measurement on the same day, at the same site. Then, the PM2.5
measurements on the same day for the other sites are usually the second and third most
voted predictors. This is also expected because the PM2.5 concentration on the site that we
want to predict most likely correlates with the PM2.5 measurements recorded for the other
three sites on the same day. The only exception is for the ConSet scenario in Penrose, where
the third most voted predictor is the PM2.5 measurement from Takapuna one day before
the present day. This selection is reasonable because Penrose and Takapuna have some
similarities (see [5,8]). This analysis is only descriptive and does not suggest any causal
relationship between the predictors and the PM2.5 measurements.

On the fourth row of Table 1 are shown the results of comparison with the NMSE’s
computed in [8], where the same problem for the Auckland air pollution data set was solved
by using greedy algorithms and IT criteria/cross-validation. We mentioned in Section 1
that the greedy algorithms employed in [8] are MPA, OMP, RMP, FWA and CMP. In the
same section, we pointed out that 22 IT criteria have been used in conjunction with MPA.
As cross-validation was also used for MPA, it means that the total number of selection
rules for MPA was 23. Similarly, the total number of selection rules for the other four
greedy algorithms are: OMP–13, RMP–23, FWA–13 and CMP–13. Hence, the NMSE values
produced by BPA for each site and for each scenario are compared with the results yielded
by other 85 methods. Given the large number of NMSE’s that are considered, we compute
the deciles for assigning different levels of performance to them.

Table 1. The values of NMSE (in percentages), which are computed by applying the formula in (14),
are shown on the third row of the table. For computing the deciles that are reported on the fourth
row, for each site and for each scenario, we rank from lowest to highest 86 values of NMSE. One of
these values is the NMSE reported on the third row of the table and the other 85 are the NMSE values
obtained in [8] by employing various greedy algorithms and IT criteria/cross-validation. The best
ranked methods are those that are assigned to the decile D1 because they produce the smallest 10%
NMSEs. Similarly, the methods assigned to D2 yield the smallest 20% NMSEs, the methods assigned
to D3 yield the smallest 30% NMSEs, and so on.

Site Patumahoe Penrose Takapuna Whangaparaoa

Scenario FullSet ConSet FullSet ConSet FullSet ConSet FullSet ConSet

NMSE 5.61% 5.59% 3.75% 3.60% 6.05% 5.73% 3.17% 3.15%

Decile D2 D7 D1 D6 D2 D10 D1 D8

We can see in Table 1 that the performance of BPA is very good for the FullSet scenario,
where BPA is assigned either to D1 (top 10% methods) or to D2 (top 20% methods). This
supports the argument that BPA is suitable for the high-dimensional FullSet scenario. This
observation is perfectly in line with the theoretical grounds on which BPA was derived.
However, the ranking of BPA is modest for the ConSet scenario, where the number of the
available data is larger than the total number of the predictors.

The experimental results can be reproduced by using the Matlab code (accessed on 25 June
2023) available at https://www.stat.auckland.ac.nz/%7Ecgiu216/PUBLICATIONS.htm.

5. Conclusions, Limitations, and Future Research

In this work, we have analyzed the applicability of BPA to simulated and real-life time
series data sets. During the testing of the algorithm on artificial data with various noise

https://www.stat.auckland.ac.nz/%7Ecgiu216/PUBLICATIONS.htm
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levels, we have found that BPA is quite robust. Based on the experiments with simulated
data, where we have investigated various parameter settings for BPA, we concluded that
the parameters q/p and φ are the most influential on BPA’s performance. Parameter q/p
should be set at a medium level to allow predictors to pass through the first layer, whereas
φ should be set at a relatively high level for having an effective selection of the predictors.
We have used our findings from the simulated data experiment in the experiment with air
pollution data. BPA performed very well in the FullSet scenario (p� n) of this experiment
on real-life data, where it was compared with 85 methods that have been previously
evaluated in [8]. At the same time, the results for the ConSet scenario suggest that BPA
should not be used when n > p.

An area where the performance of BPA can be further investigated is to evaluate the
influence of the base selection procedure. In this work, we focused on Lasso because of
the popularity of Lasso in the signal processing community. It might also be interesting to
extend the application of BPA to other signal processing problems that are not related to
the classical VARX model.
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