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Abstract: This paper examines the flocking control issue of the Cucker–Smale model in the pres-
ence of denial-of-service (DoS) attacks and communication delays. In the setting of DoS attacks,
the attacker only obstructs the information communication between agents during the activation
phases, while it concentrates on supplying its own energy during the dormancy phases. Furthermore,
the communication delays are assumed to be time-varying and heterogeneous. Firstly, a general
control input scheme that defends against DoS network attacks and communication delays is con-
structed. Secondly, on the basis of the presented control input and the properties of graph theory,
the flocking control issue is equivalently transformed into a products convergence issue of infinite
sub-stochastic matrices. Finally, an algebraic condition is obtained to formulate all the agents that
asymptotically achieve the flocking behavior. Moreover, the obtained theoretical results are verified
by a numerical example.

Keywords: Cucker–Smale model; flocking control; denial-of-service attacks; communication delays

1. Introduction

In the past few decades, an increasing number of scholars have begun to apply the
laws of the biological world to science and technology, and attention has been directed
to the collective control behavior of multi-agent systems (MASs), which is motivated
by the collective behaviors of nature, such as bird migration, predation by wolves, ant
colonies etc. These collective behaviors have attracted great attention on account of their
outstanding practicability, potential value, and versatility in industrial applications and
engineering. Hence, these collective behaviors are fundamental in being established by
workable mathematical models for the purposes of further discussions and applications.

Flocking is an emblematic, collective behavior that has received extensive attention and
has been applied in several scientific disciplines, such as multi-robot systems [1], the forma-
tion of unmanned aerial vehicles [2,3], and the opinion dynamics of social networks [4,5].
The flocking model has several principal evolution and optimization stages. Vicsek [6]
created a mathematical model of flocking behavior, which has been a great help for follow-
up research. Subsequently, Cucker and Smale [7] put forward the Cucker–Smale (C–S)
model to estimate the flocking behavior of natural networks, specifically for the flocking of
birds and the swarming of locusts. In this C–S model, the intimate relationship between
individuals is quantified by a weight function that is related to distance. Based on the
theory of biological evolution, Darwin [8] claimed that the intimacy between individuals is
related to density. The distance between members of a population is a crucial indication
of population density. Specifically, increasing the population density is often as a result
of the interaction distance between individuals decreasing. Meanwhile, a prominent char-
acteristic of the flocking behavior model is to quantify population intimacy by using a
weight function that takes distance into account. It is worth noting that this makes the C–S
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model more in line with the natural laws in the biological world. In order to study these
collective behaviors more deeply and to apply them to the engineering field, the C–S model
has been extensively investigated by scholars [9–12]. The literature [13] has proposed a
stochastic flocking strategy that is utilized under randomly switching network topologies.
Further, the work of [14] explored the collective behavior determined via the C–S model
in a random environment. One study, by [15], addressed the flocking under hierarchical
leadership topologies. In addition, the flocking control issue for a multi-agent network
with lossy links was discussed in [16].

Since wireless communication in multi-agent networks is of a broadcasting type
in nature, it is vulnerable to a variety of destructive attacks. Denial-of-service (DoS)
attacks present one of the most universal and destructive forms in which the information
transmissions of a system are obstructed, and where communication channels are interfered
with and data packets are lossed. It is especially impossible to completely defend against
DoS attacks for all channels of MASs; this is because the information transmission between
individuals in a multi-agent system is relatively independent. DoS attacks pose a serious
threat to the security control of a system as they lead to system instability or even complete
collapse. Consequently, the control issue of MASs under DoS attacks has witnessed a
growing interest in the past few years [17,18]. The work of [19] studied the impulsive
controllers in cyber-physical multi-agent systems when subjected to a general type of DoS
signals. Considering the security control problem of a class of network systems in the
presence of DoS network attacks, a novel resilient triggering protocol was demonstrated
in [20]. The consensus issue regarding MASs in presence of DoS attacks was investigated
in [21]. This paper [22] mainly studied the network attack problem of power systems,
including various detectable (e.g., false data injection, denial-of-service) and stealth (replay,
bias injection) attacks. The parametric uncertainty of a multi-area load frequency control
system was discussed in [23]. As we know, flocking control that does not take DoS attacks
into consideration has many published results [13–16]. Up to now, in the literature, there
have been relatively few valuable results that consider the flocking control about multi-
agent collective behavior when under DoS attacks. It is unknown whether these control
strategies are effective when the system is attacked. In light of this, proposing a unique-state
update mechanism for the C–S model’s flocking behavior under DoS attacks is intriguing,
and it is this fact that is the primary driving force behind this work.

We have studied the flocking control in [24], which is based on DoS network attacks,
before. As for this present work, we analyze a similar problem but in the presence of
communication delays. In fact, there is a delay in multi-agent communication, information
interactions between agents cannot be propagated infinitely, and they are receipted after
a short time delay because of the constrained transmission speed. Therefore, it is also
natural to admit that individuals receive and process information after delays. A small
delay could have an impact on the system enforcement and stability. Meanwhile, delays in
information transmission and processing are acknowledged to exist in engineer systems as
in robotics and spacecrafts [25,26]. Due to these practical issues, scholars have obtained a
large number of research results for the collective behaviors between agents with various
delays. Considering the second-order discrete-time MASs, the consensus behavior of this
was discussed in [27]. Further, the work of [28] studied the leader-following consensus for
MASs under input time delays. The work of [29] discussed the consensus tracking problem
with state time delays, as well as developed an effective strategy. In addition, the consensus
issue of discrete-time MASs with interactions delays was designed in [30]. Reference [31]
investigated a distributed dynamic tracking control strategy for the communication delays
of MASs. Through considering packet loss and communication delay problems, tracking
consistency regulation was developed in [32]. The containment control of first-order MASs
are subject to communication delays, and this problem was solved in [33]. Further, for
high-order MASs, the work of [34] discussed the containment control under fixed time
delays. The work of [35] proposed fully distributed stated update protocols to ensure the
solvability of the containment control issues of MASs. It can be seen that the research on the
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collective behaviors of MASs in the case of delays has achieved many valuable results, but
these results mainly focused on consensus control, tracking control, and contain control. It
is remarkable that there are few results regarding flocking control in the presence of delays.
Generally, agents cannot immediately respond to the received information in practical
engineering, and they are limited by the finite speeds of information transmission and
spreading. That is to say, there are time delays in the process of receiving and process-
ing information by agents. Therefore, there is important theoretical value and practical
significance in experimenting with the flocking control issue under time delays.

The above existing pieces of literature inspire us to explore the flocking control issues of
MASs under DoS attacks and communication delays. Such an endeavor can reveal, in detail,
not only the inner rules of collective behavior, but it can also provide a theoretical basis for
communication delay and network attack issues in practical engineering applications. The
following is a summary of the major contributions.

(1) The weight function model proposed in this paper is more general; it only needs to be
positive in its decreasing functions with positive lower bounds, and it does not need
specific function forms. Different from the most existing results [36–41] that are only
suitable for a weight function with strict specific forms, our model is more versatile in
engineering application scenarios.

(2) Most of the available published works [9,10,12,14–16] on the flocking control of
the C–S model only use an ideal simplified model that ignores the effects of DoS
attacks and communication delays, which are inevitable in communication devices
that operate between agents. This paper takes both into account, which can help
us to study flocking behaviors in nature and can help us to apply it to engineering
applications.

(3) The topology structure of the network is complicated and time-varying, which com-
plicates the feasibility and stability investigation of the C–S model. To address this
problem, we transformed the realization of the flocking behavior of the C–S model
into a convergence issue of the error system. An effective approach regarding the
products of sub-stochastic matrices is original, as well as producing an analysis of the
errors and achieving a model of flocking behavior. All the individuals finally realized
the flocking behavior, and the expression of the convergence rate for each agent is
given.

The remainder of this paper is broken down into the following sections to allow for
a complete analysis of this significant issue. The theoretical foundations and some brief
concepts about digraph theory are introduced in Section 2. Section 3 is concerned with the
Cucker–Smale model and the control protocol. In addition, the DoS model time-varying
and heterogeneous delays models are also developed in this section. Section 4 presents the
main findings of the research, focusing on the three key themes regarding the convergence
of agent velocities and positions. Further, the sufficient conditions for developing flocking
behavior and the proofs for this are shown in this section. Subsequently, a numerical
simulation is shown in Section 5 to illustrate the proposed approach. Finally, Section 6
includes the final observations.

2. Mathematical Preliminaries
2.1. Notations

Let Rp, Rp×p denote the p-dimensional real column vectors and the p× p real matrices.
1p means a column vector with p ones, and Ip presents an p-dimensional identity matrix. A
diagonal matrix with the diagonal elements d1, . . . , dn is denoted by diag{d1, d2, d3, . . . , dn}.
Let ‖·‖ be the Euclidean norm, and |·| represents the absolute value of a number. The
matrix A = [aij] ∈ Rp×q is nonnegative while aij ≥ 0, i, j = 1 · · · n. According to the
relative properties of graph theory, the infinite norm of matrix A is defined by ‖A‖∞ =
max ∑n

j=1
∣∣aij
∣∣, i = 1, 2, . . . , n}. Let A(1 : r, 1 : s) represent a block matrix that includes

the first r rows and the first s columns of this matrix. The sum of the ith row for matrix



Electronics 2023, 12, 3000 4 of 19

A is expressed as Λi(A) = ∑
p
j=1 aij. If its row sum satisfies Λi[A] = 1, it is called a

row-stochastic matrix. Furthermore, it is sub-stochastic if Λi[A] ≤ 1.

2.2. Signed Digraph

Signed digraphs effectively describe the communication and information interactions
between individuals. When considering a signed digraph G = {V , E }, it consists of
the vertices V and edges E . In particular, V = {g1, g2, · · · , gn} denotes the vertices set,
and E ⊆ V × V presents the edge set. For the arbitrary vertexes gi and gj, the edge(

gi, gj
)
∈ E is presented if and only if gj receives information from vertex gi. We excluded

self-loops in this paper, i.e., (gi, gi) /∈ E . In addition, the neighbor set of the node gi is
described as Ni =

{
gj ∈ V |

(
gj, gi

)
∈ E

}
. In accordance with this, the adjacency matrix

is denoted as A =
[
aij
]

n×n, where aij 6= 0, if and only if (gi, gj) ∈ E , otherwise aij = 0.
In addition, the Laplacian matrix is manifested as L =

(
lij
)

n×n, where lij = −aij, i 6= j
and lii = ∑j∈Ni

∣∣aij
∣∣, i = 1 . . . n. In addition, based on the theoretical analysis of the degree

matrix, the degree matrix of graph G is relevant to the Laplacian matrix and adjacency
matrix. The expression is D = L + A . Let Pgi→gj denote a directed path from gi to gj,
which is represented by a sequence of finite non-null edges

Pgi→gj = (gi, gr1), (gr1 , gr2), (gr2 , gr3), · · · , (grz−1 , gj),

where gi, gr1 , · · · , grz−1 , gj are distinct nodes. It is worth noting that the distance from gi1
to giz (denoted by dgi1

→dgiz
) is equal to the number of edges in the shortest path from gi1

to giz .

Remark 1. In this study, we use the assumption that the system consists of n followers and one
leader. For each node gs ∈ V , s = 1 . . . n + 1, if it has no neighbors set, it is generally referred to as
the leader, otherwise it is the follower. The leader transmits information to the followers through
the communication channels, but does not receive any information in return. In this paper, it is
acknowledged that networks have a forest topology with roots at the leader. It is admitted that each
arbitrary follower has at least one direct channel from the leader.

2.3. Periodic DoS Attacks Model

The security control of MASs are often substantially threatened by network attacks,
among which DoS is a representative type. DoS attacks always lead to communication
interruption, packet loss, etc. In most previous studies (e.g., [42,43]), the probability of
occurrence for these problems occurs according to a specific probability distribution. This
is relatively easy to detect for defenders, who reduce the difficulty of defense. In general, it
is hence undeniable that it is impossible for an attacker to interrupt the system regularly. In
contrast, attackers are random and difficult to detect in practical engineering. Successive
attacks not only consume a lot of energy, but are also easily detected by defenders. In light
of this, reference [44] developed an universal assault model that makes no assumptions
about the underlying attack technique and in which the attacker’s actions are only limited
by the frequency and duration of DoS attacks. Consequently, there is no doubt that the
adversaries are random and have restricted energy when a DoS jamming attack is launched
against the system. Therefore, it is reasonable to consider that the adversaries have limited
energy and are random when launching DoS jamming attacks. In general, adversaries
always want to attack more network channels with less attack energy by using advanced
jamming techniques. The time sequences of DoS attacks is shown in Figure 1.
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time0
kT k kT + 1kT + 1 1k kT + ++

offT
offT offT

( )t

Figure 1. Time sequences of DoS attacks.

Based on the above analysis combined with the work in [44], we believe that the
DoS attack model is arbitrary and is only restricted by the frequency of occurrence and
duration of DoS attacks (which contain active stages and a dormant stages). The jammers
attack a limited number of links in the network with restricted energy during the activation
stage, and energy is stored in preparation for the next attack period in the dormant period.
Therefore, it is reasonable to admit that the DoS model satisfied the following assumption.

DoS attacks mainly affect the timeliness of information transmission, thereby causing
the signal to be interrupted. Generally, the attackers intermittently prevent the communica-
tion channels to save energy. Let lT and Tl

on, l ∈ N separately present the time attackers

launching the networks and the total time the attackers lasted. Furthermore, S(t) = 1, Td
∆
=

[lT, lT + Tl
on) presents DoS attacks in active stages, and S(t) = 0, Tn

∆
= [lT + Tl

on, (l + 1)T)
denotes the DoS attacks in dormant phases, l ∈ N. A time series block diagram of the
periodic DoS attack model is shown in Figure 2. The DoS attack model can be shown as

S(t) =


1 t ∈ [lT, lT + Tl

on),

0 t ∈ [lT + Tl
on, (l + 1)T).

(1)

agent i1agent i− 1agent i+

l

onlT T+

( )S t

t

0,1,2,3,l =

lT

DoS j

1DoS j +

( 1)l T+

l

onT 1l

onT +

1( 1) l

onl T T ++ +

Figure 2. Schematic and Time sequences of DoS attacks.

2.4. Description of Time-Varying and Heterogeneous Delays

There is a delay in the information interactions between individuals in the biological
world, such as bird migration, bee colony foraging, schooling of fishes, etc. It is widely
shared that there are delays in information communication between agents. In this work, a
kind of time-varying and heterogeneous delay model is constructed, which presents ωij(t),
where t denotes the delay interval t ∈ N, and ωij means the delay between agents gi, gj.
This model describes the fact that the information transmission delay for arbitrary two
agents is not fixed and that the delay interval between agents is different.

Assumption 1. The agents (UAV, robotics, etc.) interact with each through information transfer,
and delays exist in the information transmission and processing stages. By taking into account the
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validity for the transmission of information, it is assumed that ωij(t) ≤ hmax, where hmax presents
the higher stages of delays. In addition, the delays between agents are strictly positive and symmetric,
i.e., ωij(t) = ωji(t) > 0.

Remark 2. We address the flocking control of a C–S model with time-varying and heterogeneous
delays in both velocities and positions, which is distinct from the results that have previously been
found [45–48]. Most existing results usually assume that the delay is a constant. Conversely, the
communication delays between various agents frequently vary in the majority of engineering circum-
stances. Consequently, the presented delay model in this work is an expansion and generalization of
previous findings, which is more reasonable and valuable. Therefore, fixed delays and homogeneous
delays can both be effectively controlled using the strategy outlined in this work.

We utilized a multi-agent network system to illustrate the delay model in detail.
Consider an original digraph with one leader (g0), and four followers g1, g2, g3, g4 with
seven edges, as shown in Figure 3a. Let the time delay be confined to two, that is, hmax = 2.
When considering the consistency of information transmission between agents, two series
of virtual nodes need to be added for each follower, which is presented as g(1)i and g(2)i ,
i = 1, 2, 3, 4. Thus, the vertex order is shown as follows:[

g0, g1, g2, g3, g4, g(1)1 , g(1)2 , g(1)3 , g(1)4 , g(2)1 , g(2)2 , g(2)3 , g(2)4

]
.

This paper holds the view that the information received indirectly by the agents has
time-varying and heterogeneous delays. Without a loss of generality, it is remarkable
that the time delay of the five edges among followers (e3 to e7) at time tτ are respectively
random [1, 0, 2, 2, 1] , as shown in Figure 3b. It can be seen that the links in the original
network topology diagram still exist in the new diagram, which is represented by the blue
dotted line. There are three kinds of delays, that is, 0, 1, and 2. Among them, 0 means that
there is no delay, such as the link between agent g3 and g2. 1 or 2 respectively indicate that
the delay between the followers is one or two time intervals, such as the channels from g2
to g1 and g4 to g2.

(a) (b)

Original graph

1e
2e

3e

4e
5e

6e

3e

7e

6e

The new adjacency graph with delays

2e

10e

11e8e

9e

14e

13e

4e

1e

7e

(2)

4g

15e

(1)

4g

5e

12e

(1)

3g

1g

1g

0g

(1)

1g

(2)

1g

3g

(2)

3g

4g

2g
(1)

2g

(2)

2g
2g

3g 4g

0g

Figure 3. Topology Network with one leader and four followers with time-varying and heteroge-
neous delays.

3. Problem Formulation

As in [16], we consider the implementation of the flocking behavior model based
on the discrete-time MASs. The flocking behavior is manifested as the state of all agents
synchronizing to the leader, the specific performance is that all agents move with the same
velocity, and the final position converges to a convex hull with an upper bound.

When considering a system with n+ 1 agents, set V = {g1, g2, · · · , gn, gn+1}, in which
gn+1 denotes the leader, and g1, g2, · · · , gn are the followers. Without a loss of generality,
let xi(tτ) and vi(tτ) denote the agent’s position and velocity, respectively, where τ is the
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updated time-step size. Therefore, the discrete time dynamic system for any agent gi ∈ V
is explored as

xi(t + 1) = xi(t) + τvi(t),

vi(t + 1) = vi(t) + τui(t),
(2)

where ui(t) represents the acceleration of the agents, and which is also the control law
that needs to be designed. Γ = {tτ|t ∈ N} depicts the set containing all discrete instants,
where τ > 0. We admit that the time instants have bounds, that is, τ ∈ [τ̌, τ̂]. In the next
description, xi(tτ), vi(tτ) are conveniently simplified to xi(t), vi(t).

On the basis of the above preparations, the distributed control protocol is presented as

ui(t) = ∑
gj∈Ni

κij
(∥∥xi(t)− xj(t)

∥∥)(vj(t)− vi(t)
)
. (3)

The weight κij
(∥∥xi(t)− xj(t)

∥∥) quantifies the information interactions between agents
and presents the communication rate. Specifically, the degree of intimacy between indi-
viduals decreases as the distance increases. The intimacy of individuals in multi-agents
networks is represented by a weight function. Therefore, it is reasonable that the weight
function κij(·) decreases continuously with the distance

∥∥xi − xj
∥∥, where the rate of decay

is l.
As previously noted, the attackers interrupt some or all of the C–S model links during the

active time, and they halt all operations during the dormant period. The network topology is
also time-varying as a result of this. Use of a time-varying structurally balanced signed digraph
is hence appropriate. Therefore, it is appropriate to utilize G (t) = (V , E (t)) to represent
the new topology. The node set V = {g1, g2, · · · , gn+1} includes one leader (i.e., gn+1) and
n followers. E (t) ⊆ E includes these directed edges that successfully transmit information
between individuals. Considering that some links may be subject to DoS attacks, the new set
for agent gi is defined as: ˜Ni(t) = {gj

∣∣gj ∈ Ni , (gj, gi) is unattacked at time t}.
According to the C–S model with leadership, the leader simply transmits information

and does not receive it, that is, the leader is not affected by other agents. Therefore, the
adjacency matrix of the C–S model is presented as follows:

A =


a11 . . . a1n a1,n+1
...

. . .
...

...
an1 . . . ann an,n+1
0 . . . 0 an+1,n+1

.

Remark 3. Through depending on Darwin’s theory of biological evolution, interpersonal coop-
eration increases with population density. Clearly, the closer proximity of people contributes
significantly to the rise in population density. These occurrences give the construction and study
of the weight function in this paper a theoretical foundation. The distance between agents is an
important factor affecting inter-individual communication. In this paper, the weight function we
considered was related to distance, which can more specifically quantify the communication between
individuals.

As mentioned in Remark 3, the weight function quantifies the communication between
agents through a distance-related function. The distance between agents should not only
be infinite, but should also avoid collisions. Therefore, there is no doubt that it is reasonable
to assume that the weight function is bounded.

Assumption 2. In this work, we admitted that the agent’s weight function ϕ : R+ → R, ϕ ≥ 0 is
a continuous bounded function. Meanwhile, it is non-negative and monotonically non-increasing,
that is, the weight function satisfies the following inequality: (ϕ(`1)− ϕ(`2))(`2 − `1) ≥ 0,
where 0 ≤ ϕl ≤ ϕ(`1)− ϕ(`2) ≤ ϕu, `2, `1 ≥ 0, where ϕl and ϕu represent the maximum and
minimum bounds, respectively, i.e., aij(t) ∈ (ϕl , ϕu).
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In the control strategy Equation (3), all the information received from neighboring
nodes was used for the state update of each node in each iteration. Regarding the DoS
attacks, part or all of the communication channels were denied. Therefore, the design of the
controller was designed separately according to whether it was attacked or not. In addition,
the communication between individuals is limited by the transmission distance and requires
a certain interval. In addition, time intervals are required for individuals to receive and
process information. Therefore, there are delays during the information interactions in a
multi-agent network system, which is represented by ωij(t) in the controller.

Based on the aforementioned analysis, the reconstructed controller of a C–S model (2)
under DoS attacks (1) and time-varying communication delays is presented as follows:

ui(t) =



∑
gj∈Ni

κij
(∥∥xj(t−ωij(t))− xi(t)

∥∥)× (gj(t−ωij(t))− gi(t)
)
, t ∈ Tn,

∑
gj∈ ˜Ni(t)

κij
(∥∥xj(t−ωij(t))− xi(t)

∥∥)× (gj(t−ωij(t))− gi(t)
)
, t ∈ Td, (4)

where ωij(t) denotes the communication delays of channel (gj, gi) at time instant t for
agents gj and gi. While t ∈ Tn, all communication channels are effective. If in a system
under DoS attacks, i.e., t ∈ Td, the information interactions of the network are based on
unattacked channels.

Remark 4. Together with Equation (4), for arbitrary agent gi, it is worth pointing out that there
is no delay on itself. Further, the time-varying and heterogeneous delay information comes from
other neighbor agents, i.e., gj ∈ Ni. This model is more realistic, that is, the agent knows its own
information, but that the information coming from other agents is delayed. However, the analysis is
quite complex and changes, thus it will be set out in detail below.

With the use of these analyses and descriptions, we defined the flocking behavior in
the C–S model.

Definition 1. By employing the time-varying signed digraph G (t) and states update strategy
(4), the flocking behavior of the C–S model (2) in the presence of DoS attacks and communication
interactions delays is accomplished if the following condition is satisfied.

lim
t→∞

∥∥vi(t)− vj(t)
∥∥ = 0,

lim
t→∞

∥∥xi(t)− xj(t)
∥∥ < ∞.

(5)

The first condition depicts the alignment rule that all agents eventually synchronize
with the same velocity. The second condition is the cohesion rule, that is, the distance
between all followers with the leader, and this should be stored within a certain range
rather than as an infinite distance. All agents converge to a convex hull with an upper
bound. That is, these two conditions guarantee that the flocking behavior for the C–S model
(2) will be achieved.

4. Main Results

This section mainly verifies the two conditions of flocking behavior (5) theoretically.
We transformed the realization of the flocking behavior into a convergence issue of the
agents’ position and velocity error system. Then, the convergence issue of the agents’
velocity and position errors is analyzed and discussed through the properties of the signed
graph and sub-stochastic matrix mechanisms. At the same time, we established a control
strategy that quantified the communication distances between individuals. Further, we
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arrived at an algebraic condition that implemented the flocking behavior, one which relays
the initial states, topological structure, and weight functions of the agents.

Let A (t) = [aij(t)] denote the adjacency matrix of digraph G (t) for a C–S model when
subjected to DoS attacks at time t with time delay ωij(t). This yields the following:

aij(t) =


κij
(∣∣xj

(
t−ωij(t)

)
− xi(t)

∣∣), if t ∈ Tn,

κij
(∣∣xj

(
t−ωij(t)

)
− xi(t)

∣∣), if t ∈ Td, gj ∈ ˜Ni,

0, t ∈ Td, gj ∈ Ni\ ˜Ni(t).

(6)

Considering the information interactions time delay between agents, we defined
some nonnegative matrices A0(t), A1(t), . . . , Ahmax (t) to present the time-delayed commu-
nication. We considered that there is a communication channel between agents gj and
gi, i.e., (gj, gi) ∈ E , and the delay is expressed as ωij(t) = t′, t′ ∈ {0, 1, . . . , hmax}. The
adjacency matrix that contains the delay information is manifested as [At′(t)]ij = aij(t) and
[As(t)]ij = 0, s 6= t′. Further, if (gj, gi) /∈ E , then [As(t)]ij = 0 for any s ∈ {0, 1, . . . , hmax}.
Thus, we have A0(t) +A1(t) + · · ·+Ahmax (t) = A (t).

In this work, we designed a set of n + 1 agents, which consisted of one single leader
(i.e., gn+1) and n followers (i.e., g1 . . . gn ). Let ex(t) denote the agents’ position error with
the velocity error ev(t). Accordingly, the error vectors are designed as

ex(t) = [ex1(t), ex2(t), . . . , exn(t)]
T , (7a)

ev(t) = [ev1(t), ev2(t), . . . , evn(t)]
T , (7b)

where exi (t) = xi(t)− xn+1(t), evi (t) = vi(t)− vn+1(t), i = 1 . . . n, xn+1(t), vn+1(t) are the
leader’s position and velocity.

For the agent gj combined with the system of equations, i.e., Equation (2), Equation (4),
and Equation (6), the following is yielded:

vi(t + 1)− vn+1(t + 1) = vi(t + 1)− vn+1(t) + τ ∑
gj∈Ni

aij(t)

×
[(

vj(t−ωij(t))− vn+1(t)
)
− (vi(t)− vn+1(t))

]
.

(8)

For the arbitrary followers j = 1 . . . n, we can further calculate the velocity errors
through Equation (8). Thus, we have

vi(t + 1)− vn+1(t + 1) = vi(t + 1)− vn+1(t)
+τ ∑

gj∈Ni

aij(t)
[(

vj(t−ωij(t))− vn+1(t)
)]
− τ ∑

gj∈Ni

aij(t)(vi(t)− vn+1(t)). (9)

In this paper, it is admitted that there are delays when the agent receives information
from other neighbor agents, but there is no delay in the transmission of itself. For a multi-
agent system containing a leader and multiple followers, in general, the leader does not
receive information from any followers. The leader only sends information to followers,
and the information does not contain delays. For the leader j = n + 1, Equation (2) can be
reconstituted as

vi(t + 1)− vn+1(t + 1) = vi(t + 1)− vn+1(t)− τ ∑
gj∈Ni

aij(t)(vi(t)− vn+1(t)). (10)
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When combining Equation (9) and Equation (10) with the matrix D(t), A (t), the error
vectors regarding the agents’ velocity and position, i.e., Equation (7), are formulated as

ex(t + 1) = ex(t) + τev(t),

ev(t + 1) = (In − τD(t)− τB(t))ev(t) + τ
hmax

∑
s=0

As(t)ev(t− s),
(11)

where D(t) = diag{Λ1[A (t)], . . . , Λn[A (t)]}, B(t) = diag{a1,n+1(t), . . . , an,n+1(t)},
As(t) = aij(t).

Based on Definition 1, the implementation of the flocking behavior of the C–S model (2)
is comparable to the resolution of the error system’s (11) convergence. In order to analyze
the communication delays between individuals, we further constructed error vectors with
delays as per the below:

ξ(t) = [eτ
v(t), eτ

v(t− 1), . . . , eτ
v(t− hmax)]

T .

Then, System (11) can be rewritten as

ex(t + 1) = ex(t) + τev(t), (12a)

ξ(t + 1) = Φ(t)ξ(t), (12b)

where

Φ(t) =


Φ0(t) τA1(t) · · · τAhmax−1(t) τAhmax (t)

In 0 · · · 0n×n 0n×n
0n×n In · · · 0n×n 0n×n

...
...

. . .
...

...
0n×n 0n×n · · · In 0n×n


with Φ0(t) = In − τD(t)− τB(t) + τA0(t), Φj(t) = τAj(t), j = 1 · · · hmax.

In accordance with the discussion of the C–S model (2) and the Equation (11), we
provided an original lemma on matrix Φ(t), which contains several paramount characters
in the infinite norm of the matrices. This lemma helps us to analyze the convergence of the
error system (12) theoretically.

Lemma 1. For the velocity errors subsystem (12b), Φ(t) is a sub-stochastic matrix if the following
inequality (13) exists:

τ̂ ≤ 1
|Nmax|ϕu

, (13)

where |Nmax| = max{|Ni|, |i = 1, . . . , n, }, |Ni | presents the cardinality of the set Ni.

Proof. Based on Equation (12), we first verified that matrix [Φ(t)] is non-negative via
the sub-stochastic matrix theory. The diagonal elements are [Φ(t)]ii = 1− τ ∑

gj∈Ni

∣∣aij(t)
∣∣.

When combined with Condition (13), we have [Φ(t)]ii ≥ 1− τ̂|Ni|ϕu ≥ 1− τ̂|Nmax|ϕu. It
is obvious that [Φ(t)]ii ≥ 0 when it is through the upper bound of τ. This means that Φ(t)
is a nonnegative matrix in which [Φ(t)]ii > 0, i = 1, . . . , n.

In addition, the row sums of matrix Φ(t) satisfy the following:

Λi[Φ(t)]ii < 1, if ai,n+1(t) > 0, i ∈ {1, . . . , n}, (14a)

Λi[Φ(t)]ii = 1, if ai,n+1(t) = 0, i ∈ {1, . . . , n}, (14b)

Λi[Φ(t)]ii = 1, i = n + 1, . . . , nh. (14c)

Furthermore, we obtained the maximum row sum of matrix Φ(t), which satisfied that
Φ(t) ≤ 1.
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Therefore, through combining Equation (14) with the properties of infinite norms, it
is evidenced that 0 ≤ ‖Φ(t)‖∞ ≤ 1. Consequently, we can conclude that the [Φ(t)]ij is a
sub-stochastic matrix through the definition of the sub-stochastic matrix that is detailed
in [16].

By employing Φ(t), a new matrix Φ̂(t) is performed, i.e.,

Φ̂(t) =
(

Φ(t) b(t)
0nh×1 1

)
,

where b(k) = [b1(t), b2(k), . . . , bnh(k)]
T with bi(t) = 1−Λi[Φ(t)], i = 1, 2, . . . , nh. A new

digraph Ĝ (t) = (Ê (t), V̂ ) is formulated. We verified some important properties of topolog-
ical graph G (t) through a theorem based on matrix theory. Next, a lemma based on matrix
theory was used to verify some important properties of topological graph Ĝ (t).

Lemma 2. If the signed digraph G has a spanning tree rooted at the leader and inequality (13) is
satisfied, then the following inequalities can be demonstrated:

‖ex(t + 1)‖∞ ≤ ‖ex(t)‖∞ + τ‖ev(t)‖∞, (15a)

‖ξ(t + 1)‖∞ ≤ ‖ξ(t)‖∞. (15b)

Proof. An important theorem in matrix theory about the norm of infinity allows us to
prove the following inequalities. It is hence undeniable that ‖A + B‖∞ ≤ ‖A‖∞ + ‖B‖∞,
where A, B signify the real matrices.

Through combining Equation (2), it is deduced that

‖ex(t + 1)‖∞ =‖(ex(t) + τev(t))‖∞

≤‖ex(t)‖∞ + τ‖ev(t)‖∞.

By Lemma 1, it is known that 0 ≤ ‖Φ(t)‖∞ ≤ 1. Thus

‖ξ(t + 1)‖∞ = ‖Φ(t)ξ(t)‖∞ ≤ ‖ξ(t)‖∞.

Lemma 1 gives several crucial properties about the agent’s velocity and position errors.
Next, on account of the convergence of infinite sub-stochastic matrix products, we provide
a theoretical convergence result regarding the agent’s velocity error in Theorem 1.

Conveniently, we divided all time instants tτ into a series of continuous, nonempty,
uniformly bounded time intervals [T0, TPτ), [TPτ, T2Pτ), . . . , [TαPτ, TαP+Pτ), . . . , α ∈ N.
The network topology is time-varying because of the communication delays among agents.
Considering the heterogeneous and time-varying delay model proposed in this technical
notes, we define the longest distance P from the single leader nh + 1 to arbitrary followers
1, 2, . . . nh in graph Ĝ (t) as

P = max{d(gnh+1, gj) | j = 1, 2, . . . , nh}.

Theorem 1. When considering the C–S model (2) under DoS (1), as well as the time-varying and
heterogeneous delays ωij(t) (where the update-step size τ satisfies (13)), it is supposed that the
interaction topology Ĝ (t) contains a spanning tree at the leader. For each interval t ∈ [αPτ, αPτ +
Pτ), there exists

‖ξ(TαP+P)‖∞ ≤ (1− (τϕl)
ϑ̄P)‖ξ(TαP)‖∞, (16)

where ϑ̄ = maxl∈Nϑ̄
(l+1)T
lT , ϑ̄

(l+1)T
lT defines the time number of DoS attacks in [lT, (l + 1)T).
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Proof. Since Ĝ (t) comprises a spanning tree rooted at the leader, for each node giz ∈ (g1, · · · gn),
there exists a directed path from gn+1 to giz , i.e.,

(
gn+1, gi1

)
,
(

gi1 , gi2
)
, . . . ,

(
giz−1 , giz

)
in G ,

where z ∈ (1, 2, · · · n), (gi1 , gi2 , . . . , giz) are the finite distinct nodes and the path length is z.
Let ∏r

t=1 At = Ar Ar−1 · · · A1 present the left products of the matrices. According to
matrix theory, the following equation can be obtained:

Φ[(TαP+P−1) · · · (TαP)]
=Φ(TαP+P−1)Φ(TαP+P−2) · · ·Φ(TαP+P−z)Φ(TαP+P−z−1) · · ·Φ(TαP).

(17)

Thus, we separate matrix Φ[(TαP+P−1) · · · (TαP)] into two submatrices; namely,
Φ(TαP+P−1) · · ·Φ(TαP+P−z) and Φ(TαP+P−z−1) · · ·Φ(TαP). Further, we figured out the
sum of the szth row of this matrix on account of the infinite matrix products.

For arbitrary agent gs1 of system (2), if there is an edge from the leader to this agent,
i.e., (gn+1, gs1) ∈ E . then the information transfer between agents (gn+1, gs1) is represented
by a weight value and is included in the adjacency matrix A.

as1,n+1(TαP+P−z) ≥ ϕl > 0.

Moreover, the s1th row sum of matrix Φ[(TαP+P−z)] is calculated as

Λs1{Φ[(TαP+P−z)]} = 1− τ
∣∣as1,n+1(TαP+P−z)

∣∣ ≤ 1− τ̌ϕl . (18)

Assume that there is an edge between agents gs1 and gs2 , i.e., (gs1 , gs2) ∈ E , we
thus have

[Φ(TαP+P−z+1)]s1s2
≥ τ̌ϕl > 0.

Further, the s2th row sum of [Φ(TαP+P−z+1)Φ(TαP+P−z)] is computed as

Λs2{[Φ(TαP+P−z+1)Φ(TαP+P−z)]} =
nh
∑

i=1,i 6=s1

[Φ(TαP+P−z+1)]s2iΛi{[Φ(TαP+P−z)]}

+[Φ(TαP+P−z+1)]s2s1
Λs1{[Φ(TαP+P−z)]} ≤ 1− (τ̌ϕl)

2.
(19)

By appraising (gs2 , gs3), (gs3 , gs4) · · ·
(

gs(z−1) , gsz

)
in a similar way as (gs1 , gs2), we

further resolve the srth row sum of matrix [Φ(TαP+P−z+s)Φ(TαP+P−z)], which yields

Λsr{[Φ(TαP+P−1−z+r) · · ·Φ(TαP+P−z)]} ≤ 1− (τ̌ϕl)
r, r = 3, 4 . . . z. (20)

Moreover, we discuss matrix Φ(TαP+P−z−1) · · ·Φ(TαP). When relying on the strength
of conclusion in Lemma 1, it is worth remarking that [Φ(t)]ij] is a sub-stochastic matrix. It
is hence undeniable that [Φ(t)]ij] ≤ 1.

When using the property about sub-stochastic matrices again, which is analyzed in
work [49], we have

Λi{Φ(TαP+1)Φ(TαP)} = ∑nh
j=1[Φ(TαP+1)]ijΛj[Φ(TαP)] ≤ 1.

where i = 1 . . . nh. Consequently, [Φ(TαP+P+1)Φ(TαP)] is a sub-stochastic matrix as well.
Similarly, it is obvious that Φ(TαP+P−z−1) · · ·Φ(TαP) is a sub-stochastic matrix; thus,

we have
Λi{Φ(TαP+P−z−1) · · ·Φ(TαP)} ≤ 1, i = 1, . . . , nh.

Therefore, we obtain

Λsz{Φ(TαP+P−1) · · ·Φ(TαP)} ≤ Λiz{Φ(TαP+P−1) · · ·Φ(TαP+P−z)} ≤ 1− (τ̌ϕl)
ϑ̄P. (21)
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For arbitrary iz, iz ∈ 1 . . . n, by developing the properties of the infinite norm with
Equation (21), we can obtain

‖Φ(TαP+P−1) · · ·Φ(TαP)‖∞ ≤ 1− (τ̌ϕl)
ϑ̄P. (22)

To summarize, the inequality Equation (16) is approved on the basis of Equation (22).

‖ξ(TαP+P)‖∞ ≤ ‖Φ(TαP+P−1) · · ·Φ(TαP)‖∞‖ξ(TαP)‖∞

≤
(

1− (τ̌ϕl)
ϑ̄P
)
‖ξ(TαP)‖∞.

(23)

This completes the proof.

Theorem 1 provides a favorable property of the agents’ velocity error. Thus, the
algebraic conditions for realizing the flocking behavior can be given.

Theorem 2. When considering the C–S model (2) subjects to DoS (1), as well as the time-varying
and heterogeneous delays ωij(t), the update step size τ satisfies Equation (13) and the weight
function satisfies Assumption 2 . If the interaction topology G (t) has a spanning tree rooted at
the leader, then the flocking behavior of the C–S model (2) under DoS attacks, as well as of the
time-varying and heterogeneous delays, is achieved. This means that

lim
t→∞
‖ev(t)‖∞ = 0, (24a)

lim
t→∞
‖ex(t)‖∞ ≤ ζ, (24b)

where
ζ = ‖ex(0)‖∞ +

τ̂P
(τ̌ϕl)ϑ̄P

‖ev(0)‖∞. (25)

Based on Theorem 1 and Equation (23), the convergence rate for each agent by the C–S
model (2) is established as

η = 1− (τ̌ϕl)
ϑ̄P. (26)

Equation (24a) and Equation (24b) are the conditions for the individuals to realize
flocking behavior. Equation (24a) says that the velocity error tends to zero over time.
This means that the velocities of all individuals eventually converge to a uniform state.
Equation (24b) indicates that the distance error between individuals has an upper bound
value. That is to say, all individuals converge to the convex hull formed by the leader. The
upper bound value is shown as in Equation (25). Equation (26) is the convergence rate for
each agent.

Proof. In accordance with the constraints of time step τ by the discrete C–S model, the
longest distance from the leader to the followers P, and the lower boundary value of the
weight function ϕl , it is concluded that the rate satisfies 0 < η < 1. Further, it is obvious
that lim

α→∞
ηα+1 = 0.

This then yields

lim
k→∞
‖ξ(t)‖∞ = lim

α→∞
‖ξ(TαP+P)‖∞

≤ lim
α→∞

(
1− (τ̌ϕl)

ϑ̄P
)α+1

‖ξ(0)‖∞ = 0.
(27)

Equation (27) implies that ‖ξ(t)‖∞ will converge exponentially to zero as time
passes on.
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Furthermore, we obtain

lim
k→∞
‖ev(t)‖∞ = lim

k→∞
‖ξ(t)‖∞

≤ lim
α→∞

(
1− (τ̌ϕl)

ϑ̄P
)α+1

‖ξ(0)‖∞ = 0.
(28)

Based on Equation (28), we know that ev(t) will converge exponentially to zero with
α→ ∞.

Then, in accordance with Equation (23), Lemma 1, and Theorem 1, the position errors
of Equation (15a) are estimated as

lim
t→∞
‖ex(t)‖∞ = lim

α→∞
‖ex(TαP+P)‖∞

≤ ‖ex(0)‖∞ + Pτ̂ lim
α→∞

α

∑
i=0
‖ev(TiP)‖∞.

Combined with the result lim
α→∞

ηα+1 = 0, we thus obtain

‖ev(TiP)‖∞ ≤
(

1− (τ̌ϕl)
ϑ̄P
)i
‖ev(0)‖∞, i = 0 . . . α.

It is concluded that sequence {[‖ev(TiP)‖∞]}α
i=0 is bounded with the ratio 1− (τ̌ϕl)

ϑ̄P.
Further, we obtain

lim
α→∞

α

∑
i=0
‖ev(TiP)‖∞ ≤

1

(τ̌ϕl)
ϑ̄P
‖ev(0)‖∞.

Consequently,
lim
t→∞
‖ex(t)‖∞ = lim

α→∞
‖ex(TαP+P)‖∞ ≤ ζ.

This completes the proof.

Remark 5. The C–S model defines the weight function as based on absolute distance and Euclidean
distance, which is based on the research of biological theory. It can be seen from Equation (3)
that the weight function is related to the distance. In addition, this weight function is a positive
and decreasing function with nonzero upper and lower bounds. It can be seen from Equation (25)
and Equation (26) that the lower bound of the weight function will affect the convergence rate of
the agent and the upper bound value of the relative distance error. Specifically, the smaller the
lower bound value of the weight function, the faster the convergence rate of the C–S model for the
flocking behavior.

5. Numerical Simulations

To demonstrate the effectiveness of our theoretical findings, we will offer a supporting
example in this section. Consider a leader–follower C–S model with twenty agents where
g20 is the leader and g1 . . . g19 present the followers, as shown in Figure 4. The DoS attacks
could interrupt the agents’ communication channels while they transfer information. We
acknowledge that the link rather than the agent itself is the target of the attack. Therefore,
the number of links in the topological network may decrease after a DoS attack, but the
number of agents remains constant. During the active phase of the DoS model, we assume
that three randomly chosen links in the topology network G(t) will be attacked. The
time-varying and heterogeneous communication delays ωij(t) among agents are randomly
selected in [0.2, 0.4, 0.6]. The initial positions are randomly selected from [0, 1]× [0, 3] and
the velocity is chosen from [0, 1]× [0, 1]. The weight functions are

κij
(∥∥xi(t)− xj(t)

∥∥) = 1

1 + 0.3 ∗
∥∥xi − xj

∥∥2 + 1.5. (29)
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19g
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2g 15g

16g 1g 20g 10g

17g 7g 13g
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8g 6g 14g

9g 5g 11g 12g

Figure 4. Topology Network G with one leader and nineteen followers.

According to the boundary value of the weight function and the cardinality of the set
Ni, we have ϕl = 1.5, ϕu = 2.5, Nmax = 4. Based on the condition (13), the time update step
τ is chosen as 0.2. As shown in Figure 5, all agents converge asymptotically from their initial
states to their stable states. Particularly, Figure 5a shows that whole agents move in the
same directions in the boundary area. The red line represents the position and movement
information of the leader, and the blue line represents the followers. It can be seen that
the positions of all followers converge to a convex hull centered on the leader. Figure 5b
signifies that all followers converge asymptotically to the uniform velocity. The red line
represents the speed of the leader, and the blue line represents the speed of the follower. It
can be seen from the figure that all the followers are at the same speed as the leader from
the initial random initialization state. The process of all agents implementing the flocking
behavior is shown in Figure 6. These four subgraphs show that the agents gradually tend to
consistent states from the initial random states when the result of the number of iterations
increases. In Figure 6, the red dot represents the position of the individual, the horizontal
axis represents the position in the x direction, and the vertical axis represents the position in
the y direction. The direction and length of the arrow indicate the direction and magnitude
of the individual’s velocity. As the number of iterations increases, the individual changes
from the initial random state to the swarming behavior, the direction of the speed tends to
be the same, and the magnitude of the speed also tends to be the same. These numerical
simulation results verified the correctness of the theoretical discussion presented in this
paper. It can be concluded that the C–S model (2) under DoS attacks (1) and delays can
formulate the flocking behaviors through the controller (4).
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(a) Position trajectories
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(b) Velocity trajectories

Figure 5. Decomposed motion trajectories of 20 agents. The upper and lower sub-figures denote
the position and velocity evolution of all agents in the x-axis and y-axis, respectively. The red curve
means the leader and the blue curve means the followers.
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Figure 6. The 2D flocking behavior with 20 agents.

In this paper, it is accepted that there exists delays between the agents and the leader.
We consider a system with 15 agents, which includes a leader and 14 followers, as shown
in Figure 7. In addition, we verified that the existence of time delays between the leader
and the follower was also feasible in the simulation, as shown in Figure 8. It is presented
that all agents have the same velocity as the leader, as shown in Figure 8a. Furthermore,
the distance between the agents were controlled within a bounded value, which achieve a
cohesion with other agents during the movement, as shown in Figure 8b. The movement
process of all agents is shown in Figure 9—from the initial random state to the flocking
behavior at the end.
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15g

Figure 7. Topology Network G with one leader and fourteen followers.
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(a) Position trajectories
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(b) Velocity trajectories

Figure 8. Decomposed motion trajectories of 15 agents. The upper and lower sub-figures denote
the position and velocity evolution of all agents in the x-axis and y-axis, respectively. The red curve
means the leader and the blue curve means the followers.
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Figure 9. The 2D flocking behavior with 15 agents.

6. Conclusions

In this work, the flocking of the Cucker–Smale model was examined in the presence
of time-varying and heterogeneous delays, and DoS attacks. Compared with the existing
results on the C–S model, the weight function in this paper does not need a specific form;
it only needs to satisfy any positive weights that decrease in function with a non-zero
lower bound. The feasibility and stability analysis of the original system is changed
into a matrix convergence issue by creating error vectors for the agents’ position and
velocity. Furthermore, this convergence problem was examined by using the infinite
product properties of sub-stochastic matrices. Additionally, a sufficient condition that was
associated with the initial states, the topological structure, and the upper bound of time
delays was devised in order to achieve flocking behavior. It is worth mentioning that the
least convergence rate ζ and the upper bound η of the final state difference between the
leader and the followers are given. Moreover, it was examined how DoS assaults and
time-delayed communications affect the convergence rate and the final distance between
agents. A simulation example was finally used to illustrate a theoretical result. In the future,
we will further analyze the cooperation and competition relationship between individuals,
as well as study the flocking control, which includes positive and negative weights.
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