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Abstract: The existing expert weight determination method for multi-attribute decision making
based on the Pythagorean fuzzy number approach does not make sufficient use of the hesitation
involved with the decision information, which may cause biased weight assignment. Therefore, to
address the issue of unknown expert weights and attribute evaluation based on Pythagorean fuzzy
numbers in multi-attribute group decision-making problems, a weight determination method is
proposed that improves the treatment of hesitation in Pythagorean fuzzy sets. Firstly, the proximity
of experts and similarity of the modified ones are determined according to the evaluation matrix.
Then, the expert weights are integrated from the aspects of proximity and corrected similarity to
obtain an assembled comprehensive evaluation matrix. Finally, the alternatives are ranked using
the PF-TOPSIS method. The results of expert weight analysis and data verification demonstrate
that the proposed method fully utilizes expert decision-making information, leading to a significant
improvement in the rationality and accuracy of multi-attribute group decision-making problems.

Keywords: group decision-making; Pythagorean fuzzy number; Pythagorean fuzzy set; TOPSIS
method; objective weight of experts

1. Introduction

Multi-criteria group decision-making (MCGDM) is a branch of operations research
that is widely used in decision-making processes to determine the optimal solution by
evaluating alternative options across multiple conflicting criteria [1–3].

In MCGDM, the weights assigned to experts play a crucial role, particularly during the
data aggregation stage. Different expert weights can result in varying evaluation outcomes
from the same individual decision matrix. Subjective determination of expert weights
can compromise the rigor and scientificity of decision-making. To address this, various
methods have been developed for objectively determining expert weights. These methods
can be classified into two categories: methods for determining the weights of individual
experts and group experts, and methods for determining the weights of individual experts
in relation to other experts.

Expert weights are crucial in MCGDM, particularly during the data aggregation stage,
as different weights assigned to experts can lead to varied evaluation results from the
same individual decision matrix. Subjectively determining expert weights in the MCGDM
process undermines the rigor and scientificity of decision-making. Consequently, several
methods have been developed to objectively determine expert weights. These methods can
be classified into two categories: methods for determining weights of individual experts
and group experts, and methods for determining the weights of individual experts in
relation to other experts.

(1) Method for calculating individual expert and group expert weights: This category
involves fusing the decision-making information provided by each expert into an average
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decision-making matrix, known as the ideal decision-making matrix. Subsequently, the
similarity between each expert’s decision-making matrix and the ideal matrix is used to
evaluate and determine the weight of each expert. For example, Yue [4] uses the idea of
technique for order preference by similarity to an ideal solution (TOPSIS) to determine the
weight, which first establishes an ideal group decision matrix, that is, the mean of the group
decision matrix, and secondly determines the expert weight by the similarity between the
individual decision matrix and the ideal decision matrix. Zhang and Xu [5] established an
optimal model based on consensus maximization to determine the weights of experts by
measuring the degree of consensus between individuals and groups. Yue [6] proposed a
new group decision matrix method for normalized projection measures that establishes
the relationship between each alternative decision and its ideal decision on this basis and
then determines the expert weight. Tsao [7] determined the respective projections of the
evaluation values of each scheme on the positive ideal and negative ideal solutions in the
ambiguous environment of interval intuition, proposed the projection-based comparison
index and comprehensive comparison index as the benchmark values for comparison, and
increased the percentage value of the comprehensive impact to obtain the ranking results.
Li [8] calculated the expert weight by establishing a gray correlation model between each
expert weight and the average expert weight. Du [9] proposed an interval number matrix
weighted bidirectional projection formula to better measure the similarity relationship
between matrices and then proposed an expert weight determination method based on
weighted bidirectional projection.

(2) Method for calculating the weights of individual experts and other experts: This
category directly assesses and determines the weights by considering the proximity or
similarity between each individual expert and other experts. Meng [10] uses the size of the
distance to calculate the expert weight, first finding the distance between each expert and
the other experts; the larger the distance, the smaller the expert weight, and on the contrary,
if the distance is smaller, the expert weight is larger. Wan [11] calculated the weight of
experts by the similarity method, first calculating the similarity between each expert and
other experts; the greater the similarity, the greater the weight, and the smaller the similarity,
the smaller the weight. Meng [12] proposed a one-way projection method between matrices
and calculated the similarity from the projection values of experts and other experts, then
finally calculated the weight through the similarity. Pang [13] calculated the weights by
using the sticking progress of the expert decision-making matrix and the consistency of the
ranking scheme. Lin [14] added hesitation information to calculate the weight of experts
on the basis of determining the similarity between experts and other experts.

In the two aforementioned types of weight calculation methods, the relationship
between individual experts and group experts or between individual experts and other
experts is considered, leading to certain limitations in the calculation of expert weights. To
address these limitations, this paper proposes a comprehensive approach that integrates
both methods and takes into account the relationship among experts. By doing so, it avoids
assigning extreme weights to individual experts and adjusts the importance ratio of the
two methods based on specific requirements. This approach enhances the scientificity and
rationality of the subsequent ranking results.

Yager [15,16] proposed the Pythagorean fuzzy set (PFS) in 2013, which limits the sum
of the membership and non-membership squares to be less than or equal to one, enabling
the generalization of the intuitionistic fuzzy numbers and providing a new method for
processing uncertain information. In recent years, research on Pythagorean fuzzy sets has
gained significant attention in various fields such as decision-making, medical diagnosis,
and pattern recognition [17].

In 2014, Zhang [18] proposed a new TOPSIS decision-making method based on the
work of Yager [15] and effectively solved the multi-objective decision-making problem with
the Pythagorean fuzzy information. Zhang [19] proposed a decision-making method based
on similarity measurements in the Pythagorean fuzzy environment. In 2015, Peng [20]
introduced the division and subtraction operations of the Pythagorean fuzzy number (PFN)
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approach and proposed a multi-criterion group decision method by defining the similarity.
Gou [21] proposed the PFN fuzzy function and studied its basic properties, such as the
continuity, derivability, and differentiability. Peng [22,23] defined the distance formula for
PFSs and then derived a similarity calculation method based on the distance formula. These
works laid the theoretical foundation for further expanding the widespread application of
Pythagorean fuzzy sets [22,24].

By analyzing the relevant literature [4,9–12,14,23,24], we have identified certain limi-
tations in the existing research on weight determination based on similarity. One specific
issue is the inadequate consideration of the variations in uncertainties (hesitation) among
individual experts’ evaluations when calculating expert weights using the ideal solution.
This limitation can result in biased weight assignments. To address this concern, we propose
an improved approach that incorporates the concept of hesitation correction into the weight
determination process. We suggest considering the degree of support, degree of opposition,
and degree of hesitation (or uncertainty) when evaluating a scheme’s satisfaction of a
particular attribute [15,16]. This approach allows for a more comprehensive representation
of experts’ evaluations and takes into account their uncertainties. In our investigation, we
observed situations where two experts evaluated a scheme with different degrees of hesita-
tion but the same degree of membership. Despite the significant difference in hesitations,
the weights assigned to the experts using the existing method did not adequately reflect
this variation. This discrepancy indicates that the obtained weights may not accurately
reflect reality, thereby affecting the credibility of the evaluation results [4,9–12,14,15,18].

The novel contributions of this paper are summarized as follows:

• Proposal of a method to determine weights in the MCGDM problem using Pythagorean
fuzzy sets and the Pythagorean fuzzy number approach.

• Incorporation of hesitation into the evaluation of attributes, considering the influence
of uncertainty on weights.

• Consideration of the proximity of experts and utilization of a modified similarity
measure based on the evaluated matrix.

• Integration of expert weights using proximity and corrected similarity to obtain an
assembled comprehensive evaluation matrix.

• Application of the PF-TOPSIS method for ranking the alternatives [23].

These contributions demonstrate the rationality and accuracy of the proposed method.

2. Knowledge of Pythagorean Fuzzy Sets
2.1. Fundamentals of Pythagorean Fuzzy Sets

Definition 1 ([15,16]). Let X be a nonempty set. The PFS of X is denoted by

ξ =
{
< x, ξ(uξ(x), λξ(x)) >| x ∈ X

}
(1)

where two maps, uξ : X → [0, 1] and λξ : X → [0, 1] , are defined as membership functions and
non-membership functions on X, respectively. For each x ∈ X, it is considered and satisfied that
0 ≤ u2

ξ(x) + λ2
ξ(x) ≤ 1. Moreover, πξ(x) represents x’s hesitation with respect to ξ , where

πξ(x) =
√

1− u2
ξ(x)− λ2

ξ(x).

Definition 2 ([19]). Given a PFS of ξi = (uξi , λξi )(i = 1, 2, 3, . . . , n), where each xi has a corre-
sponding weight value δ = (δ1δ2 · · · δn), satisfying ∑n

i=1 δi = 1, we can define the Pythagorean
fuzzy weighted average (PFWA) operator and the Pythagorean fuzzy weighted geometry (PFWG)
operator as Equations (2) and (3), respectively:

PFWAδ(ξ1, ξ2, . . . , ξn) = δ1ξ1 ⊕ δ2ξ2 ⊕ · · · ⊕ δnξn

=

(√
1−

n
∏
i=1

(
1−

(
uξ1

)2
)δi

,
n
∏
i=1

(
λξi

)δi

)
,

(2)
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PFWGδ(ξ1, ξ2, . . . , ξn) = δ1ξ1 ⊗ δ2ξ2 ⊗ · · · ⊗ δnξn

=

(
n
∏
i=1

(
uξ1

)δi ,

√
1−

n
∏
i=1

(
1−

(
λξi

)2
)δi

)
.

(3)

Definition 3 ([23]). Given any two PFNs ξ1 = (uξ1 , λξ1) and ξ2 = (uξ2 , λξ2), the normalized
Euclidean distance between ξ1 and ξ2 can be defined as follows:

d(ξ1, ξ2) =

√(
u2

ξ1
− u2

ξ2

)2
+
(

λ2
ξ1
− λ2

ξ2

)2
+
(

π2
ξ1
− π2

ξ2

)2
. (4)

2.2. Describe the Question and Problem of the Previous Method

By analyzing the specialized literature [4,9–12,14,23], we found some shortcomings in
the existing theoretical research on determining weights based on similarity. For example,
in the calculation of expert weights using the ideal solution, the influence of the differences
in uncertainty (hesitation) of the evaluation information from individual experts is not
fully considered. This, in turn, leads to biased weight assignment [23]. For a given scheme
Ai and attribute Gj, the intuitionistic fuzzy number a = (ua, λa) is used. ua represents
the degree to which scheme Ai satisfies attribute Gj (degree of support), λa represents
the degree to which scheme Ai does not satisfy attribute Gj (degree of opposition), and
πA(x) indicates the degree to which scheme Ai exhibits hesitation or uncertainty with
respect to attribute Gj (degree of hesitation, degree of uncertainty) [15,16]. Suppose that
ten people vote for a certain proposal as follows: five people in favor, three people against,
and two abstentions. Hence, the degree of support ua = 0.5, the degree of opposition
λa = 0.3, and the degree of hesitation πa(x) = 0.2 [18]. When the degree of membership is
the same but the hesitation differs significantly, for instance, when a scheme is evaluated
by two experts, ε1 and ε2, the following values are given: ξ1 = (u1, λ1) = (0.01, 0.4358),
π1 = 0.9, ξ2 = (u2, λ2) = (0.01, 0.979), and π2 = 0.2. The ideal solution (mean) for
the evaluation information is ξ = (0.01, 0.7658), π = 0.643. The distance between the
evaluation information and the ideal solution is d1 = 0.561, d2 = 0.527 [10,23]. The
weight assignment method used is based on both the individual expert and group expert
calculation methods. The weights assigned to the two experts, ε1, ε2, are w1 = 0.509,
w2 = 0.492, respectively. It can be observed that 0.509 is greater than 0.492. As the
hesitation itself represents the uncertainty of an expert, it is evident that the hesitations of
the two experts are significantly different. The degree of hesitation indicates the magnitude
of uncertainty within an expert’s evaluation [5]. However, despite the notable difference
in hesitation, the obtained weights for the two experts are not significantly different. This
discrepancy suggests that the weight obtained through this method does not accurately
reflect reality, thereby impacting the credibility of the evaluation results [4,9–12,14,15,18].

3. Method for Determination of Expert Weights Considering Hesitation

For the MCGDM problem containing PFN, there are l alternatives, A1,A2, · · · ,Al ,
each of which has m attributes C1, C2, · · · , Cm withWj as the weight of attribute Cj, and
∑m

j=1Wj = 1. Let n experts ε = {ε1, ε2, . . . , εn} participate in decision-making; δi is the
weight of expert εi, and ∑n

i=1 δi = 1. Let expert εk(k = 1, 2, 3, . . . , n) is the evaluation matrix

for attribute Cj(j = 1, 2, 3, . . . , m) under scheme Ai(i = 1, 2, 3, . . . , l) with X (k) = (x(k)ij )
l∗m

,

where x(k)ij =
(

u(k)
ij , λ

(k)
ij , π

(k)
ij

)
is the property of expert εk for scenario Ai with respect to
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attribute Cj. Therefore, the MCGDM problem can be expressed in the form of the following
matrix [9]:

X (k) =

C1 C2 · · · Cm

A1
A2

...
Al



(
u(k)

11 , λ
(k)
11 , π

(k)
11

) (
u(k)

12 , λ
(k)
12 , π

(k)
12

)
· · ·

(
u(k)

1m , λ
(k)
1m , π

(k)
1m

)(
u(k)

21 , λ
(k)
21 , π

(k)
21

) (
u(k)

22 , λ
(k)
22 , π

(k)
22

)
· · ·

(
u(k)

2m , λ
(k)
2m , π

(k)
2m

)
...

...
. . .

...
(u(k)

l1 , λ
(k)
l1 , π

(k)
l1

) (
u(k)

l2 , λ
(k)
l2 , π

(k)
l2

)
· · ·

(
u(k)

lm , λ
(k)
lm , π

(k)
lm

)

.

The method for determining weights in the decision process is explained stepwise below:
Step 1: Establish a decision matrix, X (k) = (x(k)ij )

l∗n
=
(

u(k)
ij , λ

(k)
ij , π

(k)
ij

)
l∗m

, for
each expert.

Step 2: Determine the average decision matrix X (ideal matrix). In the Pythagorean
fuzzy decision matrix (PFDM) process, the personal decision matrices of all the experts are
aggregated into an ideal matrix. In this aggregation, the ratings provided by the experts are
evaluated based on their proximity to the average rating. If an expert’s rating is closer to
the average, it is considered a better rating, whereas a rating further away from the average
is considered worse. By aggregating the individual decision matrices into an ideal matrix,
a comprehensive evaluation is obtained for the decision-making process [11,23].

X = (xij)l∗n
is calculated using Equation (2), where expert εk is weighted

δk(k = 1, 2, 3, . . . , n), and δ1 = δ2 = · · · = δk =
1
n .

Step 3: Determine the similarity matrix [14]. The distance d
(k)

ij

(
x(k)ij , xij

)
between expert

εk and X is calculated by using Equation (4), and then all the distances are aggregated
into a distance matrix D

(k)
= (d

(k)

ij )l∗n
. Finally, the similarity matrix S

(k)
= (s(k))l∗n of each

expert and X are obtained by using Equation (5).

s(k)ij =
√

2− d
(k)
ij

(
x(k)ij , xij

)
=
√

2−

√(
(u(k)

ij )
2
− (µij)

2
)2

+

(
(λ

(k)
ij )

2
− (λij)

2
)2

+

(
(π

(k)
ij )

2
− (πij)

2
)2

. (5)

Step 4: Fix the similarity matrix. After obtaining the hesitation information about
expert εk as stated in step 1 and similarity matrix as stated in step 3, the similarity is
corrected by using Equation (6), and the hesitation correction coefficient θ of expert εk to Ai
under attribute Cj is recorded.

θ
(k)
ij = cos

Π(π
(k)
ij )

2

2
, (0 ≤ π

(k)
ij ≤ 1) (6)

where π
(k)
ij is the hesitation of the current expert εk toAi in attribute Cj, and Π = 3.14159 . . ..

This function is chosen in this article as it satisfies the requirements of the following
concepts considered:

(1) The selected hesitation value satisfies the given conditions.
(2) If the degree of hesitation is 0, no correction is needed (the weight determined by the

similarity degree remains unchanged), and when the hesitation value is 1, the weight
correction is 0 (the weight determined by the similarity degree is 0).

(3) The effect of correction becomes more pronounced as the hesitation increases, resulting
in a steeper slope.

The corrected similarity s∗(k)ij can be expressed by Equation (7).

s∗(k)ij = θ
(k)
ij × s(k)ij = cos

Π(π
(k)
ij )

2

2
× s(k)ij (7)
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Step 5: Determine the proximity matrix of each individual to other individuals. In
group decision-making, the number of selected experts is typically limited to ten or fewer.
If an evaluated individual’s assessment is unreasonable, it can have a significant impact on
the group decision-making process. Therefore, when calculating the weight, it is important
to consider the proximity between the individual in question and other individuals, which
reflects the similarity of attribute evaluation information among experts. The greater the
proximity, the higher the weight that should be assigned to the expert [25,26].

Relative to expert εk, the mean value of the evaluated information of the remaining
experts after excluding expert εk is x̃(k)ij , and the distance between expert εk and the rest of

the expert evaluation information is d
(

e(k)ij , ẽk
ij

)
. The proximity p(k)ij , which can be calculated

using Equation (4), is expressed by Equation (8) as follows:

p(k)ij =
√

2− d
(

e(k)ij , ẽk
ij

)
(8)

The larger the value of p(k)ij , the closer the information given by expert εk to the
information given by all other experts. Therefore, the weight of expert εk under attribute Cj
should also be greater.

Step 6: Determine the weight of experts [25]. Combining the proximity given by

Equation (8) and similarity given by Equation (7), we control the combined weight δ
(k)
j of

expert εk under attribute Cj with the help of a parameter, i.e,

δ
(k)
j = ηs∗(k)ij + (1− η)p(k)ij (9)

By changing the value of parameter η in Equation (9), the combined weights of experts
can be determined evenly according to the similarity and proximity. In particular, when
η = 0, δ

(k)
j depends only on proximity p(k)ij . When η = 1, only similarity s∗(k)ij is dependent.

In order to comprehensively consider the proximity and similarity of experts, η = 0.5
is preferred.

Normalization of the combined weight δ
(k)
j yields the weight of the expert under

attribute Cj as expressed by Equation (10).

δ
(k)
j = δ

(k)
j /

n

∑
k=1

δ
(k)
j (j ∈ m, k ∈ n) (10)

4. Group Decision-Making Methods

To effectively address the aforementioned MCGDM problem with PFN, we employ
the TOPSIS method to facilitate group decision-making.

The decision-making process of the PF-TOPSIS method considering hesitation is as
follows [23]:

Step 1: Determine the aggregate PFDM X = (xij)l∗n
. In the decision-making pro-

cess, the individual opinions of all experts need to be combined into one collective opin-
ion. Combine Equation (10) δ

(k)
j with Equation (2) to calculate X = (xij)l∗n

, where

xij =
(
uAi

(
Cj
)
, λAi

(
Cj
)
, πAi

(
Cj
))

, i = 1, 2, . . . , l, j = 1, 2, . . . , m.

X =

C1 C2 · · · Cm
A1
A2

...
Al


(
uA1(C1), λA1(C1), πA1(C1)

) (
uA1(C2), λA1(C2), πA1(C2)

)
· · ·

(
uA1(Cm), λA1(Cm), πA1(Cm)

)(
uA2(C1), λA2(C1), πA2(C1)

) (
uA2(C2), λA2(C2), πA2(C2)

)
· · ·

(
uA2(Cm), λA2(Cm), πA2(Cm)

)
...

...
. . .

...(
uAl (C1), λAl (C1), πAl (C1)

) (
uAl (C2), λAl (C2), πAl (C2)

)
· · ·

(
uAl (Cm), λAl (Cm), πAl (Cm)

)
.

(11)
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Step 2: Determine the aggregation-weighting PFDM X ′ =
(
x′ ij
)

l×m. Combining Equa-
tion (11) X = (xij)l∗n

with the attribute weight matrixW and then using the multiplication op-

erator [18] Equation (12) yieldsX ′ =
(

x′ ij
)

l×m, where x′ ij =
(
uAiw

(
Cj
)
, λAiw

(
Cj
)

, πAiw
(
Cj
))

.

x′ ij = xij ⊗ wj

=
(

uAi

(
Cj
)
· uW

(
Cj
)
,
√

λ2
Ai

(
Cj
)
+ λ2

W
(
Cj
)
− λ2

Ai

(
Cj
)
· λ2
W
(
Cj
))

πAiW
(
Cj
)
=
√

1− uAi

(
Cj
)
· uW

(
Cj
)
− λ2

Ai

(
Cj
)
− λ2

W
(
Cj
)
+ λ2

Ai

(
Cj
)
· λ2
W
(
Cj
)
.

(12)

Aggregation-weighted PFDM X ′ =
(

x′ ij
)

l×m:

X ′ =

C1 C2 · · · Cm

A1
A2

...
Al



(
uA1W(C1), λA1W(C1)

, πA1W(C1)

) (
uA1W(C2), λA1W(C2)

, πA1W(C2)

)
· · ·

(
uA1W(Cm), λA1W(Cm)

, πA1W(Cm)

)
(

uA2W(C1), λA2W(C1)
, πA2W(C1)

) (
uA2W(C2), λA2W(C2)

, πA2W(C2)

)
· · ·

(
uA2W(Cm), λA2W(Cm)

, πA2W(Cm)

)
...

...
. . .

...(
uAlW(C1), λAlW(C1)

, πAlW(C1)

) (
uAlW(C2), λAlW(C2)

, πAlW(C2)

)
· · ·

(
uAlW(Cm), λAlW(Cm)

, πAlW(Cm)

)


.

(13)

Step 3: Determine the positive and negative ideal solutions. Let J1 and J2 be revenue-
type attributes and cost-type attributes, respectively. The Pythagorean fuzzy positive
ideal solution (PFPIS) A+ and Pythagorean fuzzy negative ideal solution (PFNIS) A− are
defined as:

A+ =
{〈

Cj, uA+w, λA+w
〉
| Cj ∈ C, j = 1, 2, . . . , m

}
, (14)

A− =
{〈

Cj, uA−W , λA−W
〉
| Cj ∈ C, j = 1, 2, . . . , m

}
, (15)

moreover,

µA+W
(
Cj
)
=

 max
1≤i≤l

uAiW
(
Cj
)

if Cj ∈ J1

min
1≤i≤l

uAiW
(
Cj
)

if Cj ∈ J2
, λA+W

(
Cj
)
=

min
1≤i≤l

λAiW
(
Cj
)

if Cj ∈ J1,

max
1≤i≤l

λAiW
(
Cj
)

if Cj ∈ J2,
(16)

µA−W
(
Cj
)
=

 min
1≤i≤l

uAiW
(
Cj
)

if Cj ∈ J1

max
1≤i≤l

uAiW
(
Cj
)

if Cj ∈ J2
, λA−W

(
Cj
)
=

max
1≤i≤l

λAiW
(
Cj
)

if Cj ∈ J1,

min
1≤i≤l

λAiW
(
Cj
)

if Cj ∈ J2.
(17)

Step 4: Determine the distance between the positive and negative ideal solutions and
the alternatives. PFPIS A+ is usually absent in real-life decision problems, where A+ /∈ A;
otherwise, it would be the ultimate suitable choice for MCGDM problems. Conversely,
PFNISA− is the worst choice to solve the MCGDM problem, whereA− /∈ A. Therefore, we
continue to determine the distance of each alternative from PFPIS and PFNIS by defining
a distance metric. To achieve this, the normalized Euclidean distance between PFSs is
defined [22] as follows:

D
(
Ai,A+

)
=

√√√√√√ 1
2m

m

∑
j=1


(

u2
Aiw
(
Cj
)
− µ2

A+w

(
Cj
))2

+
(

λ2
Aiw
(
Cj
)
− λ2

A+w

(
Cj
))2

+
(

π2
Aiw
(
Cj
)
− π2

A+w

(
Cj
))2
] (18)
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D(Ai,A−) =

√√√√√√ 1
2m

m
∑

j=1


(

u2
Aiw
(
Cj
)
− u2

A−w

(
Cj
))2

+
(

λ2
Aiw
(
Cj
)
− λ2

A−w

(
Cj
))2

+
(

π2
Aiw
(
Cj
)
− π2

A−w

(
Cj
))2
]

i = 1, 2, 3, . . . , l.

(19)

Step 5: Determine the composite evaluation index of the alternatives. Obviously,
the closer option Ai is to A+ and the farther away it is from A−, the greater the value
of its composite evaluation index ρ(Ai), and thus option Ai is a better choice than other
options [25,26], where ρ(Ai) ≤ 0(i = 1, 2, . . . , l).

ρ(Ai) =
D(Ai ,A−)

Dmax(Ai ,A−)
− D(Ai ,A+)

Dmin(Ai ,A+)
, i = 1, 2, . . . , l,

A∗ := {Ai : (i : ρ(Ai) = max1≤k≤lρ(Ak))}.
(20)

5. Case Study

To verify the rationality and effectiveness of the proposed method for determining
expert weights by considering the degree of hesitation in group decision-making, a case
study is conducted in two parts: expert weight determination and group decision-making.

5.1. Determination of Expert Weights
5.1.1. Case Description

In Section 5.1, we discuss the determination of expert weights, building upon the
theoretical foundation established in Section 3, specifically in the section titled ‘Method
for determination of expert weights considering hesitation’. It is important to note that a
comprehensive theoretical description of the expert weight determination has already been
provided in Section 3. Therefore, in Section 5.1, we aim to provide a concise overview and
highlight the key aspects of the expert weight determination method. This approach allows
us to avoid redundancy and ensure a clear and focused discussion. By referring back to the
theoretical framework established in Section 3, readers can gain a deeper understanding of
the subsequent analysis and results presented in this section.

The National Academy of Science of Pakistan is dedicated to the national youth
education and is the largest educational network in Pakistan. In order to meet the growing
educational needs in Faisalabad, they decided to establish a university campus there to
provide quality education and a good learning environment for students. After a visit
to the city and a pre-assessment, they planned to choose one of five alternative sites
Ai(i = 1, 2, . . . , 5) as the best place to build a university campus. In order to address this
decision-making issue, the owners of the educational institutions formed a committee of
three experts, including a legal expert, ε1, an investment expert, ε2, and a population expert,
ε3, to evaluate the alternative locations based on the following four attributes:

C1: Policy and theoretical perspective;
C2: Convenience and livability of teachers and students;
C3: Construction cost;
C4: Economic development of the region.

5.1.2. Determination of Expert Weights

Weight determination consists of the following steps:
Step 1: Establish the decision matrices X (1),X (2),X (3) of legal expert ε1, investment

expert ε2, and population expert ε3, respectively, as Tables 1–3:
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Table 1. Pythagorean Fuzzy Decision Matrix X (1).

C1 C2 C3 C4

A1 0.3162, 0.3000, 0.9000 0.5000, 0.6000, 0.6200 0.7000, 0.3500, 0.6200 0.6000, 0.5000, 0.6200

A2 0.2753, 0.3100, 0.9100 0.2000, 0.8000, 0.5700 0.6000, 0.5000, 0.6200 0.1000, 0.9000, 0.4200

A3 0.3434, 0.3000, 0.8900 0.4500, 0.7000, 0.5500 0.4500, 0.7000, 0.5500 0.4000, 0.7500, 0.5300

A4 0.2636, 0.2900, 0.9200 0.2000, 0.8000, 0.5700 0.4500, 0.7000, 0.5500 0.2000, 0.8000, 0.5700

A5 0.2742, 0.2800, 0.9200 0.8000, 0.2500, 0.5500 0.9000, 0.2000, 0.3900 0.1000, 0.9000, 0.4200

Table 2. Pythagorean Fuzzy Decision Matrix X (2).

C1 C2 C3 C4

A1 0.7533, 0.6500, 0.1000 0.8000, 0.2500, 0.5500 0.9000, 0.2000, 0.3900 0.4000, 0.7500, 0.5300

A2 0.7794, 0.6200, 0.0900 0.5000, 0.6000, 0.6200 0.4000, 0.7500, 0.5300 0.9000, 0.2000, 0.3900

A3 0.7893, 0.6100, 0.0700 0.1000, 0.9000, 0.4200 0.6000, 0.5000, 0.6200 0.6000, 0.5000, 0.6200

A4 0.7432, 0.6600, 0.1100 0.2000, 0.8000, 0.5700 0.4000, 0.7500, 0.5300 1.0000, 0.0000, 0.0000

A5 0.7589, 0.6400, 0.1200 0.4000, 0.7500, 0.5300 0.4000, 0.7500, 0.5300 0.8000, 0.2500, 0.5500

Table 3. Pythagorean Fuzzy Decision Matrix X (3).

C1 C2 C3 C4

A1 0.6196, 0.4400, 0.6500 0.2000, 0.8000, 0.5700 0.6000, 0.5000, 0.6200 0.2000, 0.8000, 0.5700

A2 0.6657, 0.4000, 0.6300 0.2000, 0.8000, 0.5700 0.2000, 0.8000, 0.5700 0.4500, 0.7000, 0.5500

A3 0.6155, 0.4600, 0.6400 0.9000, 0.2000, 0.3900 0.9000, 0.2000, 0.3900 0.7000, 0.3500, 0.6200

A4 0.6427, 0.4500, 0.6200 0.2000, 0.8000, 0.5700 1.0000, 0.0000, 0.0000 0.7000, 0.3500, 0.6200

A5 0.5861, 0.4700, 0.6600 0.4500, 0.7000, 0.5500 0.9000, 0.2000, 0.3900 0.8000, 0.2500, 0.5500

Step 2: Determine the average decision matrix X = (xij)l∗n
of legal expert ε1, invest-

ment expert ε2, and population expert ε3 using Equation (2) as Table 4:

Table 4. Mean Aggregation of Pythagorean Fuzzy Decision Matrix X .

C1 C2 C3 C4

A1 0.6154, 0.4411, 0.6533 0.6020, 0.4932, 0.6279 0.7773, 0.3271, 0.5374 0.4448, 0.6694, 0.5950

A2 0.6428, 0.4252, 0.6371 0.3403, 0.7268, 0.5965 0.4448, 0.6694, 0.5950 0.6846, 0.5013, 0.5292

A3 0.6394, 0.4383, 0.6317 0.6846, 0.5013, 0.5292 0.7352, 0.4121, 0.5381 0.5919, 0.5082, 0.6256

A4 0.6121, 0.4416, 0.6559 0.2000, 0.8000, 0.5657 0.9741, 0.0374, 0.2231 0.9767, 0.0304, 0.2125

A5 0.6032, 0.4383, 0.6664 0.6145, 0.5082, 0.6035 0.8296, 0.3107, 0.4640 0.7040, 0.3832, 0.5980

Step 3: Determine the similarity matrix. Using Equation (4), the distance d
(k)

ij

(
x(k)ij , xij

)
between expert εk and ideal solution X is calculated and integrated into the distance matrix
D

(k)
= (d

(k)

ij )l∗n
, and then the similarity matrix S

(k)
= (s(k))l∗n of each expert and ideal

solution X are obtained by the similarity given by Equation (5). The similarity matrices
S
(1)

, S
(2)

, and S
(3)

of ε1, ε2, and ε3, respectively, are as Tables 5–7:
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Table 5. Similarity Matrix S
(1)

.

C1 C2 C3 C4

A1 0.9290 1.2520 1.2650 1.1560

A2 0.8672 1.2760 1.1560 0.6840

A3 0.9147 1.0560 0.9484 1.0390

A4 0.8864 1.4090 0.4871 0.2645

A5 0.9061 1.0810 1.2660 0.5725

Table 6. Similarity Matrix S
(2)

.

C1 C2 C3 C4

A1 0.9030 1.0700 1.1580 1.2730

A2 0.9269 1.1970 1.2730 0.9929

A3 0.9309 0.6840 1.1950 1.4000

A4 0.9001 1.4090 0.4190 1.3500

A5 0.8880 1.0310 0.7068 1.2380

Table 7. Similarity Matrix S
(3)

.

C1 C2 C3 C4

A1 1.4070 0.8983 1.1160 1.1640

A2 1.3770 1.2760 1.1640 1.0560

A3 1.3770 0.9929 1.0850 1.2190

A4 1.3540 1.4090 1.3430 0.8268

A5 1.3780 1.1170 1.2660 1.2380

Step 4: Determine the similarity correction matrix. Using Equation (7) to correct
the similarity, the similarity correction matrices S

∗(1)
, S
∗(2)

, and S
∗(3)

of ε1, ε2, and ε3. In
this study, we present the results of our analysis, which are summarized in Tables 8–10.
Specifically, Figure 1 corresponds to Table 8, Figure 2 corresponds to Table 9, and Figure 3
corresponds to Table 10:

Table 8. Similarity Correction Matrix S
∗(1)

.

C1 C2 C3 C4

A1 0.2732 1.0310 1.0410 0.9519

A2 0.2314 1.1130 0.9519 0.6579

A3 0.2935 0.9390 0.8434 0.9392

A4 0.2118 1.2300 0.4331 0.2308

A5 0.2165 0.9613 1.2300 0.5507
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Table 9. Similarity Correction Matrix S
∗(2)

.

C1 C2 C3 C4

A1 0.9029 0.9519 1.1250 1.1510

A2 0.9268 0.9854 1.1510 0.9647

A3 0.9308 0.6579 0.9838 1.1520

A4 0.9000 1.2300 0.3788 1.3500

A5 0.8878 0.9323 0.6392 1.1010

Table 10. Similarity Correction Matrix S
∗(3)

.

C1 C2 C3 C4

A1 1.1090 0.7839 0.9183 1.0160

A2 1.1180 1.1130 1.0160 0.9390

A3 1.1020 0.9647 1.0540 1.0040

A4 1.1150 1.2300 1.3430 0.6806

A5 1.0680 0.9935 1.2300 1.1010
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Step 5: Determine the proximity matrix of an individual to other individuals. The
proximity matrices P(1), P(2), and P(3) of ε1, ε2, and ε3, respectively, are calculated using
Equation (8) as Tables 11–13:

Table 11. Proximity Matrix P(1).

C1 C2 C3 C4

A1 0.6918 1.1860 1.2020 0.9709

A2 0.6383 1.2140 0.9709 0.5114

A3 0.6783 0.9338 0.8172 0.9288

A4 0.6281 1.4090 0.4450 0.2264

A5 0.6454 0.7629 1.1580 0.4292

Table 12. Proximity Matrix P(2).

C1 C2 C3 C4

A1 0.6760 0.7682 0.9417 1.2140

A2 0.6960 1.0580 1.2140 0.4937

A3 0.6770 0.5114 1.1090 1.3940

A4 0.6837 1.4090 0.3784 0.5517

A5 0.6368 0.9151 0.5700 1.1190

Table 13. Proximity Matrix P(3).

C1 C2 C3 C4

A1 1.4040 0.7539 1.0130 1.0640

A2 1.3570 1.2140 1.0640 0.9338

A3 1.3590 0.4937 0.7691 1.0760

A4 1.3230 1.4090 0.3987 0.7829

A5 1.3610 1.0190 1.1580 1.1190

Step 6: Determine the weights of experts. Using Equation (10), we derive the normal-
ized weight matrix δ of experts ε1, ε2, and ε3, as Table 14:

Table 14. Normalized Weight Matrix for Experts δ.

C1 C2 C3 C4

ε1 0.1087 0.3489 0.3138 0.2415

ε2 0.4030 0.3147 0.2984 0.4147

ε3 0.4883 0.3364 0.3878 0.3437

5.2. Analysis of Expert Weights

In this section, we analyze the effectiveness of the proposed weight determination
method from various perspectives, including similarity, similarity-corrected expert weight,
and that in the literature. Through this analysis, we aim to evaluate the performance and
reliability of the proposed method in determining the weights of experts.

5.2.1. Similarity Analysis

In order to facilitate data analysis, we extracted the evaluation information about
experts ε1 and ε2 on alternative attribute C1, as presented in Table 15.
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Table 15. Comparison of C1 evaluation information about experts 1 and 2.

ε1: C1 ε2: C2

0.3162, 0.3000, 0.9000 0.7533, 0.6500, 0.1000

0.2753, 0.3100, 0.9100 0.7794, 0.6200, 0.0900

0.3434, 0.3000, 0.8900 0.7893, 0.6100, 0.0700

0.2636, 0.2900, 0.9200 0.7432, 0.6600, 0.1100

0.2742, 0.2800, 0.9200 0.7589, 0.6400, 0.1200

It is seen from Table 15 that there is a clear difference between the degrees of hesitation
of the two experts.

From the comparison of the distance between the evaluation information of the candi-
date attribute C1 and the ideal solution (mean) of experts ε1 and ε2 as presented in Table 16,
we can find some existing problems, and the distances between the two are similar. If the
traditional similarity-based weight assignment method is followed, then similar weights
will be assigned to the two experts, ε1 and ε2. However, the evaluation of alternative
attribute C1 by the two experts will have a large hesitation difference, which is obviously
unreasonable. Therefore, we need to recalculate the weights by using similarity correction.

Table 16. Comparison of C1 Distances for Experts 1 and 2 with Mean Matrix.

ε1:d ε2:d

0.4852 0.5112

0.5470 0.4873

0.4995 0.4833

0.5279 0.5141

0.5081 0.5262

The similarities of attribute C1 of experts 1 and 2 before corrections are presented in
Table 17.

Table 17. Corrected C1 Similarities for Experts 1 and 2.

ε1:s ε2:s

0.9290 0.9030

0.8672 0.9269

0.9147 0.9309

0.8864 0.9001

0.9061 0.8880

The similarities of experts ε1 and ε2 to variant attribute C1 after the excerpt are
presented in Table 18.

From Table 18, it can be found that expert ε1 has a large degree of hesitation towards
alternative attribute C1, and their uncertainty is high, thus resulting in a higher correction
effect. However, expert ε2 has less hesitation towards alternative attribute C1, and their
uncertainty is low, thus resulting in a smaller correction effect. It is also verified that the
proposed method can effectively avoid the misjudgment situation faced by the traditional
similarity-based method when the distance is similar.
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Table 18. C1 Similarities of Experts 1 and 2 After Correction.

ε1:S* ε2:S*

0.2732 0.9029

0.2314 0.9268

0.2935 0.9308

0.2118 0.9000

0.2165 0.8878

5.2.2. Analysis of Expert Weight with Similarity Correction

The weights of experts ε1 and ε2 on alternative attribute C1 are given in Table 19.

Table 19. C1 Weights of Experts 1 and 2.

C1

ε1 0.1087

ε2 0.4030

Based on the similarity analysis, if we do not correct the similarity of the two experts
for the attribute C1, we may assign similar weights to them based on their proximity
to the ideal solution, assuming they have similar levels of expertise in that attribute.
However, this approach overlooks the differences in hesitation within their evaluation
information, leading to inaccurate weight assignment. To address this issue, we incorporate
the corresponding hesitation in their evaluation information to correct the similarity and
recalculate the weights. After making amendment, Table 19 shows that the weights of
experts ε1 and ε2 on alternative attribute C1 are 0.1087 and 0.403, respectively, which better
reflect the degree of uncertainty and expertise that exist in their evaluation information.

5.2.3. Comparative Analysis of Literature

In order to verify the effectiveness of the proposed method, we compare and analyze
the weight assignment method presented in [14,23]. The obtained specific results are as
follows: δ = [0.3252, 0.3754, 0.2544] in [23], δ = [0.2991, 0.3778, 0.3231] in [14], and the same

in this paper is δ =

0.1087, 0.3489, 0.3138, 0.2415
0.4030, 0.3147, 0.2984, 0.4147
0.4883, 0.3364, 0.3878, 0.3437

.

Among them, the subjective weight assignment method was used in [23], which does
not fully consider the decision-making information in the expert evaluation matrix, making
the use of decision-making information insufficient. In contrast, both the method used
in [14] and that proposed in this paper are objective weight assignment methods, which
are more objective and scientific in the concept of weight assignment. The method in [14]
considers hesitation in the expert evaluation matrix, but its correction effect on the weight
assignment is linear, while the same in this paper is nonlinear, which is more in line with
the physical expression of hesitant attitudes of people in real life. Furthermore, in the
decision-making process, each expert may be specialized in some specific attributes only.
So, each expert should be given different weight values for different attributes [25]. In [14],
the weights of different experts under different attributes were not distinguished, but they
are distinguished in the method proposed in this paper. Proximity is not considered in the
method presented in [14], as the number of experts involved in the group decision-making
is limited. When some individual evaluations deviate from the normal range, it interferes
with group decision-making. Therefore, in order to allocate the weights more reasonably, it
is necessary to incorporate the proximity index (proximity) of individual experts to other
experts during the weight calculation. In conclusion, building upon previous research, this
paper extends the expert weight determination method by incorporating similarity and



Electronics 2023, 12, 3001 16 of 21

proximity based on Pythagorean fuzzy sets, while also introducing hesitation correction
into the similarity formula. The proposed methodology not only addresses the limitations
of previous similarity-based approaches but also ensures that the expert weights are more
objective and reasonable. As a result, the method proposed in this paper is superior in
determining the weights of experts and aligns better with the practical needs of decision-
making processes.

5.3. Group Decision-Making

Step 1: Determine the aggregate PFDM, X = (xij)l∗n
. The expert weights δ

(k)
j and

Equation (2) obtain X = (xij)l∗n
as Table 20:

Table 20. Aggregated Pythagorean Fuzzy Decision Matrix X (k).

C1 C2 C3 C4

A1 0.6658, 0.4939, 0.5592 0.5943, 0.5018, 0.6285 0.7650, 0.3401, 0.5469 0.4200, 0.6953, 0.5832

A2 0.6993, 0.4642, 0.5436 0.3343, 0.7308, 0.5952 0.4333, 0.6771, 0.5948 0.7324, 0.4424, 0.5175

A3 0.6873, 0.4920, 0.5344 0.6878, 0.4971, 0.5290 0.7562, 0.3895, 0.5258 0.6065, 0.4879, 0.6278

A4 0.6684, 0.5006, 0.5501 0.2000, 0.8000, 0.5657 0.9836, 0.0231, 0.1788 0.9884, 0.0145, 0.1509

A5 0.6547, 0.5031, 0.5641 0.6211, 0.4995, 0.6039 0.8390, 0.2967, 0.4561 0.7351, 0.3407, 0.5862

Step 2: Determine the aggregation-weighted PFDM, X ′ =
(

x′ ij
)

l×m as Table 21.
According to Table 20 and Equation (12), X ′ =

(
x′ ij
)

l×m can be calculated, wherein the
attribute weight matrixW is given as follows:

W{C1,C2,C3,C4} =


(0.8412, 0.3457, 0.4158)
(0.7871, 0.3545, 0.5048)
(0.7871, 0.3545, 0.5048)
(0.7563, 0.3800, 0.5326)


T

Table 21. Aggregation-Weighted Pythagorean Fuzzy Decision Matrix.

C1 C2 C3 C4

A1 0.5601, 0.5782, 0.5933 0.4677, 0.5881, 0.6598 0.6021, 0.4762, 0.6408 0.3177, 0.7470, 0.5840

A2 0.5882, 0.5561, 0.5871 0.2631, 0.7698, 0.5815 0.3410, 0.7256, 0.5976 0.5539, 0.5585, 0.6175

A3 0.5781, 0.5768, 0.5772 0.5414, 0.5846, 0.6043 0.5952, 0.5082, 0.6224 0.4587, 0.5899, 0.6645

A4 0.5622, 0.5832, 0.5863 0.1574, 0.8278, 0.5385 0.7742, 0.3552, 0.5239 0.7476, 0.3802, 0.5446

A5 0.5507, 0.5851, 0.5952 0.4889, 0.5863, 0.6459 0.6604, 0.4502, 0.6010 0.5559, 0.4937, 0.6688

Step 3: Determine the positive and negative ideal solutions. In this case, the revenue
type attribute is J1 = {C1, C2, C4} and the cost type attribute is J2 = {C3}. According to the
Equations (14)–(17), the positive ideal solution A+ and negative ideal solution A− can be
obtained as follows:

A+ = {(0.5582,0.5561,0.5871), (0.5414,0.5846,0.6043),
(0.3410,0.7256,0.5976), (0.7476,0.3802,0.5466)

}
.

A− = {(0.5507,0.5851,0.5952), (0.1574,0.8278,0.5385),
(0.7742,0.3552,0.5239), (0.3177,0.7470,0.5840)

}
.
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Step 4: Determine the distance between the positive and negative ideal solutions
and the alternatives. Using Equations (18) and (19), we can obtain the following from A+

and A−:
D
(
Ai,A+

)
= {0.2618, 0.1630, 0.1982, 0.2734, 0.1971},

D
(
Ai,A−

)
= {0.1799, 0.2552, 0.2103, 0.2188, 0.2157}.

Step 5: According to Equation (20), the composite evaluation index of alternatives
ρ(Ai) can be obtained as follows:

ρ(Ai) = {−0.9014, 0,−0.3922,−0.8206,−0.3645}.

The optimal solution is A2 � A5 � A3 � A4 � A1. Therefore, the alternative in this
data is the most suitable location for a university campus in Fezrabad.

5.4. Verification of Theoretical Carrying Capacity

The following tests the adaptability of the ideas in this article through extreme con-
ditions: add an expert ε4 who does not know much about the field and has a consistently
high level of hesitation in their judgments.

Evaluation matrix for ε4 in Table 22:

Table 22. Pythagorean Fuzzy Decision Matrix X (4).

C1 C2 C3 C4

A1 0.0995, 0.1000, 0.9900 0.2114, 0.1200, 0.9700 0.4145, 0.1900, 0.8900 0.0995, 0.1000, 0.9900

A2 0.1720, 0.1000, 0.9800 0.0883, 0.1100, 0.9900 0.4093, 0.1500, 0.9000 0.4231, 0.1700, 0.8900

A3 0.3903, 0.1400, 0.9100 0.4055, 0.1600, 0.9000 0.2480, 0.1300, 0.9600 0.3356, 0.1500, 0.9300

A4 0.2681, 0.1600, 0.9500 0.2883, 0.1200, 0.9500 0.0995, 0.1000, 0.9900 0.2883, 0.1200, 0.9500

A5 0.2530, 0.1200, 0.9600 0.3438, 0.1300, 0.9300 0.3474, 0.1200, 0.9300 0.3969, 0.1200, 0.9100

Weight matrix after adding ε4:
Sort the results after the addition of ε4 as A2 � A5 � A3 � A4 � A1. Since expert ε4

does not know much about the field, his/her hesitation in the evaluation of information
is high. According to the concept of this article, expert ε4 is given a smaller weight so as
to not affect the sorted final result. It can be seen from the results presented in Table 23
that the weight of ε4 is given a small value due to its overall hesitation, and its evaluation
information does not adversely affect the original ranking results, which fully verifies the
validity of the weight assignment and the rationality of the decision-making process of the
proposed method.

Table 23. Normalized Weight Matrix for Experts δ.

C1 C2 C3 C4

ε1 0.1394 0.3283 0.3056 0.2250

ε2 0.3412 0.3017 0.2714 0.3889

ε3 0.4582 0.3075 0.3624 0.3209

ε4 0.0612 0.0624 0.0605 0.0651

5.5. Validation of Methodology Using Real Expert Data from Reference [23]

In this section, we validate the effectiveness and applicability of our proposed method
by incorporating real expert data. The inclusion of real expert data allows us to further
assess the performance and reliability of our approach in real-world scenarios.
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We obtained the real expert data from the referenced source (Literature [23]), which
provides a comprehensive dataset collected from domain experts in the field. The data
consist of expert evaluations, ratings, or opinions related to the decision-making problem
addressed in this study.

The National Academy of Science of Pakistan is dedicated to the national youth
education and is the largest educational network in Pakistan. In order to meet the growing
educational needs in Faisalabad, they decided to establish a university campus there to
provide quality education and a good learning environment for students. After a visit
to the city and a pre-assessment, they planned to choose one of five alternative sites
Ai(i = 1, 2, . . . , 5) as the best place to build a university campus. In order to address this
decision-making issue, the owners of the educational institutions formed a committee of
three experts, including a legal expert, ε1, an investment expert, ε2 and a population expert,
ε3, to evaluate the alternative locations based on the following four attributes:

C1: Policy and theoretical perspective;
C2: Convenience and livability of teachers and students;
C3: Construction cost;
C4: Economic development of the region.
Pedro Ernesto Hospital in Rio de Janeiro, Brazil is a well-reputed hospital, focused and

dedicated to providing healthcare facilities in the region. It consists of number of surgical
and clinical departments and is considered a reference center for computer tomography, nu-
clear medicine, and hemodialysis. The hospital is planning to purchase healthcare technol-
ogy. After a pre-analysis of the resource availability and financial condition of the hospital,
five technologies, A1 (magnetic resonance image), A2 (single-positron emission computer
tomography), A3 (video laparoscope), A4 (mamograph), and A5 (cardio-angiograph), are
identified as feasible alternatives for purchasing, and all are recognized as well-known
procedures. The committee of professional experts consisted of two medical doctors, ε1
and ε2, and an equipment acquisition expert, ε3, who evaluated the feasible alternatives
with respect to the following four criteria:

C1: Benefit population;
C2: Dependence on maintenance;
C3: Professional and community demand;
C4: Important for improving patients’ health;
C5: Expected advantages in health outcomes.
The ranking results obtained using the methodology proposed in this paper and the

methodology from reference [23] are presented in Tables 24 and 25. From Table 25, it
can be observed that the ranking results obtained using the proposed methodology are
consistent with those obtained using the methodology from reference [23]. The similarity
in the ranking results indicates the rationality and effectiveness of our proposed method.
It also demonstrates the applicability of our methodology across different datasets and
confirms the reliability of the ranking results obtained through our approach.

Table 24. Comparing Ranking Results with Reference [23].

Method Ranking Results

Reference [23] A3 � A2 � A5 � A1 � A4

In this paper A3 � A2 � A1 � A4 � A5

Table 25. Comparing Ranking Results with Reference [23].

Method Ranking Results

Reference [23] A3 � A4 � A5 � A1 � A2

In this paper A3 � A4 � A5 � A1 � A2
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Furthermore, based on the analysis of Table 24, it can be observed that due to the objec-
tive determination of decision-makers’ weights in our method compared to the subjective
determination used in the prior methodology from reference [23], it is normal to observe
slight differences in the ranking results, particularly in cases A1, A4, and A5. However,
these differences serve as indirect validation of the effectiveness of our proposed method.
The slight variations highlight the robustness and adaptability of our methodology in
handling different decision-making scenarios. Consequently, our weighting method, based
on the improved hesitation of Pythagorean fuzzy sets, is considered more rational and
effective, building upon the demonstrated effectiveness of our method in these cases.

In conclusion, the findings support the validity and applicability of our methodology
and highlight its advantages over existing approaches, as discussed above. The consistent
ranking results between our method and the methodology from reference [23], along
with the slightly divergent results in specific cases, reinforce the strength of our objective
approach to determine decision-makers’ weights. The proposed weighting method, based
on the improved hesitation of Pythagorean fuzzy sets, offers a more rational and effective
solution for decision-making processes.

6. Summary

Aiming at the MCGDM problem of multi-attribute group decision-making with un-
known expert weights and attribute evaluation information being PFN, a method for
determining the weight of experts after comprehensively considering the similarity and
proximity of the evaluation information after correction is proposed. The results of expert
weight analysis and theoretical carrying capacity verification, as well as the validation of
our methodology using real expert data from reference [23], collectively demonstrate the
effectiveness and reliability of our proposed approach:

• The proposed method takes into account the similarity degree and the corrected
similarity, which effectively reflects the difference between the degree of uncertainty
and professionalism of experts in the evaluation information.

• The inclusion of similarity and corrected similarity improves the rationality and
accuracy of the final decision-making process.

However, this article also has some limitations. Firstly, the proposed method still
relies on decision-making information, which may lead to inaccuracies in determining
expert weights when the decision-making information is not reliable. Secondly, the dataset
used in this experiment is small, and further investigation is needed to validate the ap-
plicability of the method on larger datasets in real-world scenarios. In conclusion, the
weight determination method based on the improved hesitation of Pythagorean fuzzy sets
presented in this paper offers a novel solution to the multi-attribute group decision-making
problem, demonstrating high accuracy and practicality. However, there is still room for
future research and expansion in this field [27,28].
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