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Abstract: This paper proposes the construction of a real-time simulation testing environment for
the electric propulsion systems of unmanned aerial vehicles (UAVs) using a real-time simulator and
KDECAN communication equipment. The proposed real-time simulation environment enables the
testing of flight controllers and control algorithms using real-time control communication commands
that are identical to those used during actual flight. The KDECAN protocol is analyzed and utilized
in the proposed real-time simulation environment for control communication. A reduced-size
lift–cruise UAV with eight lift motors (for takeoff) and one cruise motor (for cruising) is used as
the target hardware for real-time simulation. This is used to verify the construction of the real-time
simulation environment. The final goal of this work is to construct a real-time simulation environment
for the stable application of propeller-driven devices, and the findings confirm the independent
operation of the lift and cruise motors in the constructed testing environment. Additionally, the
real-time monitoring of the state of the electronic speed controllers is verified, suggesting that the
testing environment can be utilized as a verification tool for the control algorithms and system design
data of electric propulsion systems in actual devices in the future.

Keywords: real-time simulation; ESC (electronic speed controller); HILS (hardware-in-the-loop
simulation); UAV (unmanned aerial vehicle); electric propulsion system; KDECAN

1. Introduction

The aviation industry is rapidly changing, with the shift from traditional engine-based
aircraft to electric propulsion aircraft driven by advancements in electric technology and
efforts to adopt new, energy-efficient methods. Due to this transformation, the operation
of electric propulsion systems should be simulated in various scenarios to improve their
reliability and stability. Such simulations require high precision and reliability, which is
why hardware-in-the loop simulation (HILS) is used. A HILS system is an advanced system
that combines different hardware to enhance the electric propulsion systems of unmanned
vehicles and ensure their safe, efficient operation [1,2].

The electric propulsion system of an aircraft is highly complex and must operate
reliably for a long period [3]. In the design process of such a system, a limited ability to
predict and solve various problems that may occur in real-world environments increases
the likelihood that the electric propulsion system of the aircraft will fail to cope with
problems that may arise during flight [4]. Therefore, in the design and verification of the
electric propulsion systems of unmanned aerial vehicles (UAVs), a real-time high-fidelity
simulation test environment that can imitate real-world environments should be created to
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ensure system stability and reliability. Therefore, real-time simulation technologies, such
as HILS, should be utilized to construct simulation environments that resemble actual
flight environments, and the performance of electric propulsion systems should be verified
in real time [5,6]. This paper discusses the construction of a real-time simulation test
environment using the KDECAN communication protocol and contributes to the design
and verification of electric propulsion systems [7]. Aircraft stability and reliability can be
ensured by connecting various hardware components that constitute the electric propulsion
system of an actual UAV to simulation models, which enables the creation of a testing
and verification environment at component level. This established environment will be
effectively utilized in the development of flight systems or electric propulsion systems.

HILS is an essential technology for the development and validation of the electric
propulsion systems of aircraft. For example, Airbus has conducted initial safety tests for the
development of the Vahana, a tilt-wing aircraft for urban air mobility (UAM), using HILS
in a constructed environment in Silicon Valley [8]. Furthermore, companies considering the
development of various UAM aircraft should establish HILS environments based on real-
time simulation to improve system stability in actual operating environments [9]. The use
of HILS for the performance evaluation and optimization of the electric propulsion systems
of aircraft is being studied actively in various university laboratories. Additionally, the
optimization of the energy management systems of electric propulsion aircraft using HILS
is being explored. The results of these studies will play a crucial role in the development
and operation of electric propulsion aircraft. Specifically, the development of technology
that uses HILS to simulate the operation of electric propulsion systems under various
conditions, thereby enhancing system stability and reliability, will greatly aid in the future
development of the electric propulsion aircraft industry [10–12].

In the field of internal communication for UAVs, which has recently been actively
researched, uncomplicated application-layer vehicular computing and networking (UAVCAN)
is widely used as a communication network due to its high reliability, efficiency, and low
cost. UAVCAN is an open-source specialized communication protocol for microcontroller-
based devices that can be used in various robot systems, such as flight control systems.
UAVCAN is lightweight and provides functions such as speed, reliability, and scalability.
Recently, with the upgrade of UAVCAN and the ongoing research on communication
protocols, several communication protocols have been developed, such as DroneCAN and
OpenCyphal [13]. The selected communication protocol in this study is KDECAN, which
was developed by KDE Direct and is widely used in electronic speed controllers (ESCs).
Unlike communication protocols, UAV systems currently lack a system that can monitor
the operation status or malfunction of ESCs, which drive the motors of electric propulsion
aircraft, in real time. An integrated electric propulsion system that can reduce unnecessary
wire usage and perform real-time monitoring, control environment, and effective diagnosis
of malfunctions can be developed through the effective use of communication networks
such as KDECAN [14–17].

In this study, we propose the setup of a real-time simulation test environment using
controller area network (CAN) communication as an initial system setup to achieve the
ultimate goal of integrating an electric propulsion system, a monitoring system, and a fault
diagnosis system in a HILS environment. We manufacture a reduced-size lift–cruise UAV
model equipped with nine commercial motors (T-Motor) and nine UAS40UVC ESCs (KDE
Direct) that can communicate via KDECAN. We wire the power and communication lines,
simulate commands via MATLAB Simulink model, and establish a test environment that
drives the motors in real time while receiving real-time ESC information (voltage, current,
revolutions per minute [RPM], temperature, and flag signal). Through the real-time HILS
of the UAV electric propulsion system, we aim to simulate the operation of the electric
propulsion system in various situations like those occurring in actual environments and
develop a technology for building stable, reliable systems based on it. The numerical
data obtained through the combination of the actual system and the virtual model are
expected to be used for more accurate system modeling and effective control algorithm
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development. These research results will benefit the development of the electric propulsion
aircraft industry as well as the aviation industry as a whole.

2. Simulation Modeling and KDECAN Communication Packet Analysis for
Construction of Real-Time Simulation Test Environment

A conceptual diagram of the building of the proposed real-time simulation test en-
vironment using KDECAN communication is shown in Figure 1. The Flight Controller
(FC), which generates speed command signals for the motors in the actual aircraft, is imple-
mented through MATLAB Simulink modeling, and real-time communication is simulated
using a real-time simulator to drive the motors by sending commands to the ESCs in
a form that has real-time characteristics. A communication channel is added to receive
information about the ESC status while the motor is running, thus enabling the real-time
monitoring of various parameters, such as the speed, voltage, current, and temperature
of the ESC. Section 2.1 explains the construction of the model for real-time simulation,
command transmission, and status monitoring.
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simulator and KDECAN communication.

2.1. Real-Time Simulation Modeling Configuration

A real-time simulator is used to imitate control communication commands through
MATLAB Simulink modeling. Figure 2 depicts the entire simulation modeling block for
constructing the real-time simulation environment. In the MATLAB Simulink modeling,
control communication commands are transmitted through the frame ID corresponding
to each ESC ID to drive each motor and configure the ESC status feedback. The left side
of the configuration diagram contains the TX section, which is for sending commands;
the right side contains the RX section, which is for receiving the ESC status; the IO614
module section, which is at the top, verifies the communication status and configures
the communication attributes. The commander block, which is at the bottom, is used in
conjunction with the TX section to enable the operator to adjust the speed commands easily
using each throttle adjustment slider block, and a separate monitoring section is modeled to
monitor the ESC status received by the RX section. In addition, the data inspector function
is used to confirm the power consumption of each ESC and the overall power consumption
of all installed ESCs.

The target hardware for real-time simulation is a reduced-size lift–cruise UAV with
an electric propulsion system. The two power distribution units (PDU) that distribute
power to the nine ESCs and the CAN bus line from the controller are wired, as shown in
Figure 3. In an actual electric propulsion system, a middle terminal, such as a thrust PDU,
is required because of the long distance between each ESC and the controller. However, this
terminal is excluded from this experiment because the connection target is a reduced-size
model. In addition, as seen in Figure 3, the modeling configuration is designed to be
circular for communication redundancy, but the CAN bus line is arranged in a daisy chain
through each ESC, and termination resistors are installed. Each ESC ID ranges from 2 to
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10 (according to the KDECAN protocol, the starting number is 2). Simulink model that
generates the control communication commands (Figure 3) takes over the role of the Fligt
Controller during real-time simulation.
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2.2. Detailed Modeling of TX and RX Parts

The modeling of the TX part is detailed in Figure 4. It consists of nine TX command
generation models, which send commands to the nine ESC IDs. Each of the nine blocks
further divides the commands into two frame IDs: one for sending throttle commands for
motor control and one for sending signal commands to receive the ESC status data. For
example, the frame ID for sending throttle commands to ESC number 2 is ID02_Com, and
the signal command for requesting data is designated as ID02_Get_Data. This is designed
in the MATLAB ST code script for easy modification and addition of commands for other
IDs in the future. Additionally, the KDECAN protocol follows the big-endian format, where
the most significant bit is stored at the lowest memory address. Therefore, in the Simulink
model, which has little endian as the default format, the byte reversal function block is
used to change the endianness.

The detailed modeling configuration of the RX part is shown in Figure 5. A total of
nine blocks are modeled for the number of ESCs connected to this model. Like the TX
part, the RX part requests data through the frame ID assigned to each ESC via the address
(ADDR) variable, and a block is modeled to match the big-endian format. Five types of
data are received from the ESC: voltage, current, RPM, temperature, and flag (error signal).
Since each of these data is received in hex format, the modeling is configured by adjusting
the scale of each data value for easier monitoring. The voltage, current, and temperature
data are converted using Equations (1)–(3), respectively, to use them for data monitoring.
The following equations show an example of data conversion using arbitrary values:

Voltage Data = Received Data/Scale Factor (1)
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Example

- Received Data = Hex: 06 2D 00 00 00 00 00 00 = Dec: 1581
- Scale Factor = 100
- Voltage Data = 1581/100 = 15.81 V

Current Data = Received Data/Scale Factor (2)

Example

- Received Data = Hex: 06 2D 00 00 00 00 00 00 = Dec: 1581
- Scale Factor = 100
- Voltage Data = 1581/100 = 15.81 A

Temperature Data = Received Data (3)

Example

- Received Data = Hex: 1E 00 00 00 00 00 00 00 = Dec: 30
- Temperature Data = 30 ◦C
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The RPM data are obtained by analyzing the signal supplied to one of the three phases
of the motor from the ESC. This signal is a sine wave that corresponds to each cycle crossing
a motor pole. Dividing the frequency of this sine wave by the number of motor poles
yields the rotational frequency (in hertz), which is then multiplied by 60 to convert it to
RPM. Equation (4) provides an example of RPM data conversion using an arbitrary value
(22 motor poles), and Equation (5) explains the RPM data scale.

RPM Data = Received Data × Scale Factor (4)

Example

- Received Data = Hex: 01 DD 00 00 00 00 00 00 = Dec: 477
- Scale Factor = 60 × (2/22)
- RPM Data = 2061 RPM

Mechanical RPM = Electrical RPM (frequency) × 60 × (2/motor poles) (5)
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The signal indicating the error type is obtained from the flag data and distinguished
by assigning stall protection (1), over temperature (2), overload protection (3), over voltage
(4), low voltage (5), and voltage cutoff (6) to bits 0 to 5.

2.3. KDECAN Communication Packet Analysis and ID and Object Composition

The frame ID, object address, and data can be analyzed by referring to the documenta-
tion provided by KDE Direct regarding the KDECAN protocol. The basic structure of the
KDECAN protocol consists of a standard frame ID, which is composed of a 1-bit source,
5-bit ESC ID, and 5-bit object, as shown in Figure 6.
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The source bit denotes commands sent from the master to the ESC as 0 and data sent
from the ESC to the master as 1, as shown in Equations (6) and (7), respectively.

Master to ESC = bin: 0 (1-bit source) (6)

ESC to Master = bin: 1 (1-bit source) (7)

The ESC ID bit is determined by the assigned ESC ID, as shown in Equations (8)–(10).

ESC ID 01 = bin: 0 0 0 0 1 (5-bit ESC ID) (8)

ESC ID 02 = bin: 0 0 0 1 0 (5-bit ESC ID) (9)

ESC ID 03 = bin: 0 0 0 1 1 (5-bit ESC ID) (10)

The object bit defines various pieces of information associated with each assigned
address, allowing users to select and use the desired information. In this study, 11 is set
as the object address for requesting and receiving the five ESC status parameters (voltage,
current, RPM, temperature, and flag) in an 8-byte data format simultaneously. This is
expressed as Equation (11).

Object 11 = bin: 0 1 0 1 1 (5-bit object) (11)
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For example, if the master requests data for object 11 from ESC ID 02, the frame
ID will be assigned to each bit as follows: master to ESC = bin: 0 (1-bit source), ESC ID
02 = bin: 0 0 0 1 0 (5-bit ESC ID), object 11 = bin: 0 1 0 1 1 (5-bit object). Therefore, the frame
ID is expressed as Equation (12).

Frame ID = bin: 0 00010 01011 (11-bit frame ID, hex: 0 × 4B) (12)

In this paper, although a total of nine ESC IDs are used, the actual frame IDs assigned
for communication depend on various factors, such as the object used to send data and
whether the data are sent from the master to the ESC or from the ESC to the master.
Therefore, as shown in Table 1, the configuration of frame IDs for communication with
the nine ESCs consists of nine throttle command frame IDs, nine data request command
frame IDs, and nine data receive frame IDs, resulting in a total of 27 frame IDs written in
MATLAB ST code.

Table 1. Parameter setup for Frame IDs.

Part MATLAB ST Code for Frame IDs

TX
ID02_Com = 0 × 41;/ID02_Get_Data = 0 × 4B;
ID03_Com = 0 × 61;/ID03_Get_Data = 0 × 6B;
ID04_Com = 0 × 81;/ID04_Get_Data = 0 × 8B;

ID05_Com = 0 × A1;/ID05_Get_Data = 0 × AB;
ID06_Com = 0 × C1;/ID06_Get_Data = 0 × CB;
ID07_Com = 0 × E1;/ID07_Get_Data = 0 × EB;

ID08_Com = 0 × 101;/ID08_Get_Data = 0 × 10B;
ID09_Com = 0 × 121;/ID09_Get_Data = 0 × 12B;
ID10_Com = 0 × 141;/ID10_Get_Data = 0 × 14B;

RX
ESC_ID02 = 0 × 44B;
ESC_ID03 = 0 × 46B;
ESC_ID04 = 0 × 48B;
ESC_ID05 = 0 × 4AB;
ESC_ID06 = 0 × 4CB;
ESC_ID07 = 0 × 4EB;
ESC_ID08 = 0 × 50B;
ESC_ID09 = 0 × 52B;
ESC_ID10 = 0 × 54B;

3. Construction of Real-Time Simulation Test Environment Experiment

The reduced-size UAV model was developed for the real-time simulation testing of a
lift–cruise UAV. The model had an aluminum profile and was equipped with an electric
propulsion system. It consisted of eight lift motors and one cruise motor, all powered by
T-Motor’s MN4014 KV400. The ESCs were KDE’s UAS40UVC, and two Mauch power
distribution boards (PDBs) were installed in the center for power distribution. The model
was driven by control communication commands using a Speedgoat Baseline S real-time
target machine; these commands were implemented using MATLAB Simulink modeling
and real-time simulation. Therefore, the control communication commands were simulated
in real time, and the monitoring values reflected the real-time status of the hardware.

The establishment of the real-time simulation environment was verified through the
following process. First, the communication packets during the exchange of control commu-
nication commands between one master and one ESC were analyzed and confirmed. Then,
the independent control of each motor with the nine ESCs was verified using the control
communication commands. Finally, the monitoring quality of the desired information
during the operation of the nine motors through the ESCs was checked.
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3.1. Setup of Real-Time Simulation Environment

The real-time simulator equipment and PC were set up in an experimental environ-
ment, as shown in Figure 7, which includes the specific communication packet being
checked using one ESC and one motor. The packet analysis of the control communica-
tion commands was performed using an oscilloscope with a CAN analyzer and a high-
bandwidth probe. The transmission time of a single communication packet was checked,
and the required communication speed was calculated. This was done to determine the
modeling sampling time for the real-time simulation. The MATLAB version was 2021b,
and the specifications of the real-time simulator are shown in Table 2.
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Figure 7. Real-time simulation environment setup for test communication.

Table 2. Specifications of real-time simulator.

Real-Time Simulator Specification

Baseline S [18]

CPU (default): Intel Celeron (2 GHz, four cores)

CPU (extended-temperature option): Intel Atom (1.91 GHz, four cores)

Operating system: Simulink Real-Time

Supported MATLAB Versions: 2016 or newer

Memory (default): 4 GB DDR3 RAM

Serial ports: 2 × RS232 (for baud rates of up to 115.2 Kbps)

Figure 8 shows the target hardware driven by control communication commands
during the real-time simulation. It is a reduced-size version of a lift–cruise UAV and
configured with nine ESCs, nine motors, and two PDBs as an electric propulsion system
with only motors attached (without propeller load). The numbers in Figure 8 are the ESC
and motor IDs; the starting number in the KDECAN protocol is 2, so the IDs were specified
accordingly. The motors with IDs 2 to 9 are the lift motors, which operate during takeoff,
and motor ID 10 is the cruise motor, which operates during cruising. Each of the nine
ESCs receives and transmits control communication commands through the CAN bus line
daisy chain. The specifications of the ESCs, motors, and PDBs are shown in Tables 3–5,
respectively.
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Table 3. Specifications of ESC.

ESC Parameter Value

UAS40UVC [19]

Voltage range (V) 14.8–60.9

Maximum continuous current (A) 40

Maximum continuous power (W) 2070

Maximum temperature (◦C) 95

Weight (g) 80

Rated voltage (V) 22.2

Rated current (A) 25.7

Table 4. Specifications of motor.

Motor Parameter Value

MN4014 KV400 [20]

Configuration 18N24P

Internal resistance (mΩ) 67

Motor dimension (mm) 44.7

Stator diameter (mm) 40

Weight (g) 150

ESC size (mm) 36.5 × 71.5

Table 5. Specifications of PDB.

PDB Parameter Value

Mauch 2× 200A PDB [21]

Input voltage (V) 60 (2×4 14S LiPo)

Input current (A) 2×200

Power supply for flight controller 5.3 V/3 A

Weight (g) 110

Out channel 8

Size (mm) 75× 49× 27
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3.2. Measurement and Analysis of KDECAN Signals

First, we examined a communication packet between an ESC and a motor. Using
measurement equipment, we confirmed that the contents of the packet were structured as
shown in Figure 9 and then compared it with the KDECAN protocol document.
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KDECAN communication packets are generally transmitted via CAN buses. Each
packet typically consists of a start bit, a destination ID, a transmitter ID, the data, cyclic
redundancy check (CRC), and an end bit. The start bit indicates that communication has
begun; the destination ID is used to identify the data, including the information exchanged
between the controller and the target device (ESC); the CRC is used to protect the integrity
of the packet. The KDECAN protocol consists of commands and responses. The controller
sends commands, and the target device (ESC) receives them and sends a corresponding
response. These commands and responses are transmitted as data within KDECAN com-
munication packets, and analyzing these packets enables effective communication between
the controller and the target device (ESC). This allows the controller to monitor and control
the state of the target device (ESC), and the target device (ESC) can provide necessary
information to the controller. Data types and CRC algorithms can be verified by referring
to STM32 AN4187, as it was used the internal CRC peripheral of the STM32 product family.

After the packet configuration was verified, the frame ID and data exchanged between
the master and each ESC during communication were confirmed using the measured raw
data from the measurement equipment. The operation between the master and ESC ID 2
was confirmed. The frame ID value was defined as follows using Equation (12):

• Frame ID @master→ ESC ID 02

- Throttle command = hex: 41
- Request ESC voltage = hex: 42
- Request ESC current = hex: 43
- Request motor RPM = hex: 44

• Frame ID @ESC ID→master

- ESC voltage = hex: 442
- ESC current = hex: 443
- Motor RPM = hex: 444

Initially, communication was performed by assigning separate frame IDs to each
requested information to obtain the desired data for communication verification. However,
ultimately, the frame ID was modified to use object 11 to receive all necessary data (voltage,
current, RPM, temperature, and flag signal) in one packet’s internal data simultaneously.

The speed command of each motor was transmitted in the form of a remote-control
pulse-width modulation (RC-PWM) signal, where the pulse-width represents the ratio
of the speed throttle. Typically, an RC-PWM signal has a pulse-width of 1000–2000 µs.
Therefore, at the minimum speed throttle, a pulse-width of 1000 µs was generated for
controlling the motor speed. The ESC used in the experiment was calibrated so that the
idle state of the motor (0% throttle) was achieved with a 1100 µs pulse-width signal; that
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is, the motor started running at greater pulse widths. Figures 10–12 show the raw data
obtained by observing the communication data using the oscilloscope at RC-PWM signal
pulse widths of 1100, 1175, and 1200 µs, respectively. The current and rpm information
corresponding to each pulse-width could be confirmed as data values in the response
signal, with a DC input voltage of 24 V.
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Because multiple ESCs needed to be operated, the communication speed was appropri-
ately adjusted to optimize the real-time simulation environment considering the amount of
communication required for smooth control and monitoring. Figures 10–12 show the data
packet information for simple communication testing at 125 Kbps. The maximum baud
rate that could be used was 1 Mbps. When the communication packets were measured at
the maximum baud rate (1 Mbps), 350 µs was required to send and receive one ESC ID and
control communication command, as shown in Figure 13. Therefore, the total time required
for the communication control of all nine motors and ESCs was at least 9× 350 µs = 3.15 ms.
The sampling time for the entire real-time simulation should be at least 3.3 ms to ensure
suitable communication modeling with some margin. The overall communication load
ratio was also monitored in real time during the simulation test to ensure communication
stability.

Through these experiments and waveform measurements, the control communication
commands driving the ESCs were verified, and real-time data from each of the nine motors
in the lift–cruise UAV electric propulsion system were monitored while they were being
driven, as shown in Figure 14. The bottom graphs in Figure 14 show the real-time power
consumption being shown by the monitoring system using the data inspector feature while
the electric propulsion system was operating. In the monitoring system model, the state of
each ESC (voltage, current, RPM, temperature, and flag signal) and power consumption
were designed to be seen easily. The nine display blocks on the right display the data values
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of the status of each ESC. The nine display blocks on the left allow the user to check the
power consumption over time.
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4. Conclusions

Due to population growth and the overcrowding of ground transportation systems
around the world, aerial mobility has emerged as a new alternative to address transporta-
tion and environmental issues. In light of this, electric propulsion systems are being actively
studied. Various testing environments are needed to verify the stability of such systems.
Therefore, this study proposes the establishment of a real-time simulation test environment
for the electric propulsion systems of UAVs with a lift–cruise configuration. The real-time
simulation environment was designed to operate a UAV’s electric propulsion system based
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on the KDECAN communication protocol, which is one of the communication protocols
used within these aircraft, and to enable state monitoring. Control and communication
commands were created through modeling in MATLAB Simulink, and the status of each
ESC, which drove the motors, was monitored in real time. Thus, a real-time simulation en-
vironment that integrates hardware and simulation, rather than a simple digital simulation,
was constructed. A reduced-size lift–cruise UAV electric propulsion system was created.
Its communication wiring and power distribution were similar to those of an actual system,
enabling experiments to be conducted in an environment similar to that of an actual electric
propulsion system. This can serve as a foundation for the implementation of distributed
electric propulsion technology, which has recently gained attention in the aviation field as
a next-generation aircraft. Distributed electric propulsion systems divide a small number
of large propulsion units into multiple small propulsion units distributed throughout the
aircraft. Such systems reduce the risk of catastrophic failures and offer advantages in
terms of noise reduction and efficiency. Additionally, integrating the propulsion units with
the aircraft’s shape allows the aircraft to achieve its maximum performance. Due to the
placement of multiple motors in distributed electric propulsion systems, the importance
of control and communication commands is elevated. Therefore, the establishment of a
real-time simulation environment for control and communication commands, as studied in
this paper, can serve as a crucial testing environment for distributed electric propulsion
systems.

In the real-time simulation test environment, the reliability of the electric propulsion
system was confirmed by comparing the data measured by the monitoring system with
the actual data. In addition, the control communication commands for operating the
electric propulsion system were implemented through analysis and measurement of the
communication packets.

We constructed a real-time simulation environment for the electric propulsion systems
of UAVs and derived related research and development results. Using this simulation
environment, we analyzed the construction of a simulation environment where various
situations that may occur during UAV flight can be simulated. We measured changes in
signal data, such as voltage, current, RPM, and temperature, in real time according to
changes in the operating conditions of the electric propulsion system. We also established a
foundation for deriving various measures to improve system stability and performance.
Ultimately, we presented a technological basis for identifying and addressing various
potential problems in real-world environments. Such technological advances can provide
alternative solutions in the field of air mobility. Specifically, the results of this study will help
enhance UAV safety and reliability and play a significant role in addressing transportation
and environmental sustainability.
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