i:;l?é electronics

Article

An Optimal Network-Aware Scheduling Technique for
Distributed Deep Learning in Distributed HPC Platforms

Sangkwon Lee 10, Syed Asif Raza Shah 2-3(0, Woojin Seok **, Jeonghoon Moon 3, Kihyeon Kim 3
and Syed Hasnain Raza Shah !

check for
updates

Citation: Lee, S.; Raza Shah, S.A.;
Seok, W.; Moon, J.; Kim, K.; Raza
Shah, S.H. An Optimal
Network-Aware Scheduling
Technique for Distributed Deep
Learning in Distributed HPC
Platforms. Electronics 2023, 12, 3021.
https://doi.org/10.3390/
electronics12143021

Academic Editor: Dimitris

Kanellopoulos

Received: 9 May 2023
Revised: 23 June 2023
Accepted: 27 June 2023
Published: 10 July 2023

Copyright: © 2023 by the authors.
Licensee MDPI, Basel, Switzerland.
This article is an open access article
distributed under the terms and
conditions of the Creative Commons
Attribution (CC BY) license (https://

creativecommons.org/licenses /by /
4.0/).

Science and Technology Information Science, University of Science and Technology,

Daejeon 34113, Republic of Korea; sglee@kisti.re.kr (S.L.); hasnain@kisti.re kr (S.H.R.S.)

2 Department of Computer Science, CRAIB, Sukkur IBA University, Sukkur 65200, Pakistan;
asif.shah@iba-suk.edu.pk

KREONET, Korea Institute of Science and Technology Information, Daejeon 34141, Republic of Korea;
jhmoon@kisti.re kr (J.M.); kkh1258@kisti.re.kr (K.K.)

Center for Quantum Communication, Korea Institute of Science and Technology Information,
Daejeon 34141, Republic of Korea

* Correspondence: wjseok@kisti.re.kr

Abstract: Deep learning is a growing technique used to solve complex artificial intelligence (AI)
problems. Large-scale deep learning has become a significant issue as a result of the expansion
of datasets and the complexity of deep learning models. For training large-scale models, the
cloud can be used as a distributed HPC (high-performance computing) tool with benefits in cost
and flexibility. However, one of the major performance barriers in distributed deep learning in a
distributed HPC environment is the network. The performance is often limited by heavy traffic like
many stochastic gradient descent transfers for distributed communication. There are many network
studies in distributed deep learning to solve these problems, but most research only focuses on
improving communication performance and applying new methods or algorithms like overlapping
parameter synchronization to minimize communication delay rather than considering the actual
network. In this paper, we are focusing on the actual network, especially in a distributed HPC
environment. In such an environment, if cluster nodes are assigned to different zones/regions
which means a set of an appropriate number of distributed HPC nodes when performing distributed
deep learning tasks, performance degradation due to network delay may occur. The proposed
network optimization algorithm ensures that distributed work is placed in the same zone as much
as possible to reduce network delay. Furthermore, scoring using network monitoring tools like loss,
delay, and throughput is applied to select the optimal node within the zone. Our proposal has been
validated on the Kubernetes platform, an open source orchestrator for the automatic management
and deployment of micro-services. The performance of distributed deep learning is improved
through the proposed scheduler.

Keywords: cloud computing; scheduling; container technology; distributed computing; network
monitoring; deep learning; distributed HPC; Al

1. Introduction

Deep learning is used to solve complex Al problems. Nowadays, a variety of ap-
plications, such as computer vision, natural language processing, etc., are using deep
learning [1]. However, the time required for learning has increased significantly as the
dataset has become larger than before, and it requires more complex models. Recently, there
has been a surge of research on distributed deep learning for these reasons. Distributed
machine/deep learning is an effective way to shorten the increased time for learning. This
method utilizes multiple nodes to speed up computing. The computation of training deep
learning models has long outgrown the capabilities of a single high-end machine, leading

Electronics 2023, 12, 3021. https://doi.org/10.3390/ electronics12143021

https://www.mdpi.com/journal/electronics

https://doi.org/10.3390/electronics12143021
https://doi.org/10.3390/electronics12143021
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/electronics
https://www.mdpi.com
https://orcid.org/0009-0007-0276-0192
https://orcid.org/0000-0001-6471-6380
https://doi.org/10.3390/electronics12143021
https://www.mdpi.com/journal/electronics
https://www.mdpi.com/article/10.3390/electronics12143021?type=check_update&version=1

Electronics 2023, 12, 3021

20f18

to distributed training being standard [2]. There are two major methods of distributed
training. One is the server—client method using a parameter server [3,4], and the other is an
all-reduce method using an MPI interface [5].

The architecture of the parameter server method consists of one or more parameter
servers and a number of worker nodes. This method transmits parameter values obtained
through calculations at multiple nodes to the parameter server to perform a gradient
update. This process is shown in Figure 1; each connection from worker node 1 to M
allocates training data through a minibatch process. The worker node works to find the
gradient and sends the result to the parameter server. The parameter server multiplies
the learning rate by the parameter value and adds it to the previous gradient value to
create an updated gradient value. On the other hand, the all-reduce method is another
way to mutually transfer parameter values between worker nodes without a server
playing a central role. Figure 2 shows the all-reduce process on four worker nodes. As
shown in the figure, in the first iteration, each worker n node sends an N — 1 segment
to its next node. After the communication, the reduction operation is performed. The
second iteration is the same; the only difference is it sends N — 2 segments. In the third
iteration, after sending N — 3 segments to the next node, the n segment of each n node
passes through all nodes and has a complete segment result. The method repeats this
process to complete the remaining segments. The parameter server method is easy to
implement, but it has problems such as the concentration of the network load on the
server and low accuracy, whereas the all-reduce method is difficult to implement. Both
methods have strengths and weaknesses.

Parameter Server

Gradient Integration &
Parameter Updating
8' = 0" + L x veM

Gradient v Upload

Parameter 8" Download

Worker 1
Gradient

Worker 2
Gradient

Worker 3
Gradient

Worker M
Gradient

Computing
ve!

Computing
vt

Computing
ve?

Computing
veM

MiniBatch data

Data

Figure 1. Architecture of parameter server framework [3].

Although distributed machine/deep learning uses multiple nodes, it usually has
limited computing resources because it only utilizes the resources of one data center. As an
alternative, distributed HPC (High Performance Computing) makes it possible to utilize
multiple data centers. In this way, large-scale shared resources become available, and
expansion of computing resources becomes easy as needed. In the past few years, a
number of efforts have already been undertaken for distributed HPC platforms such as PRP
(Pacific Research Platform), NRP (National Research Platform), and APRP (Asia Pacific
Research Platform) [6]. These platforms are structured for the purpose of research data
transfer between different countries, institutes, and universities. An example architecture
of distributed HPC platform (APRP proposed project) is shown in Figure 3. The distributed
HPC platform introduced above uses ScienceDMZ-based high-speed network. ScienceDMZ
is a network infrastructure that serves as a highway for high-speed transmission of scientific

Electronics 2023, 12, 3021

30f18

data [7]. A firewall-based network can cause the performance degradation in high-speed
networks such as from 10 to 100 Gbps, so ScienceDMZ architecture can bypass such issues
by implementing the simplest ACL (Access Control List) method on switches/routers.
ScienceDMZ uses a DTN (Data Transfer Node) which is a specialized server for data
transmission. DTN is equipped with a high-performance hardware resource like network
card or CPU and is specially tuned for optimal performance. In APRP, distributed HPC
is created by configuring a cluster with multiple DTNs. Using the multipurpose research
platform, the researchers in Asian countries with low computing power can conduct
research and utilize the platform for distributed machine/deep learning.

I:l communicated segment . final results

Worker 1 | Worker 1)
112] 3] 4 1|1 2| 3] 4
[Worker 2) f

11 2] 3| 4

f [Worker 3 1
1] 21 3] 4 11 2] 3] 4
[Worker 4) [Worker 4 }

Iteration 1 Iteration 2 Iteration 3

Figure 2. All-reduce algorithm for distributed deep learning [5].

oy = Bandvidth)
@ES’? Finie Distributed HPC >

- Bioinformatics
=
shn ™
Using Distributed
HP Computing —
c ﬁislaﬁ
[sukkur Univ./ |

* CPU/GPU/Storage

/Kob Distributed Prowdmg
Computing
KISTI/KREONET Dis lnh ited ScienceDMZ
\\ Computing (Big Data Transfer)
* CPU/GPU/Storage
* ID-ferderation/Cross-trust

PERN |
© ID-ferderation/Cross-trust g
f ©10G ~ 100G Network Distributed *1G ~ 10G Network
[AUSTRALIA Stora, AlScience
(Usecase

‘i H u('

Big Data Super Highway

| Nevas / 7
\N\ww? (APAN/TEIN) >

User Case 1 User Case 2

@9@3 GE X

Deep
Learning / Big Data BgD | Analysis/ Archiving /
Machine Transfe Computing Sharing
Learning

Bioinformatics

Enhnn(ed

Algm thm

Figure 3. Architecture of distributed HPC platform [8].

Since these methods inevitably use multiple data centers and nodes, the network
affects performance. In recent machine learning, as the size of data increases and com-
plex algorithms are used, the number and size of parameters to be transmitted increase
accordingly. As a result, performance benefits become limited by communication-heavy
parameter synchronization step [9]. Furthermore, the computing power of computational
units like GPUs grows faster than the growth of network performance. Now, network

Electronics 2023, 12, 3021

40f18

performance is distributed through a training bottleneck [10]. In order to solve these
problems, a lot of research has been conducted, such as a synchronization algorithm that
can efficiently transmit parameter data and use as little bandwidth as possible. Through
the approach of the analog encoding/decoding method, ML applications can be quickly
performed at the wireless edge of low bandwidth [11]. To accelerate DNN training, BytePS
proposes summation service and splits a DNN optimizer into gradient summation and
parameter update [12]. Another paper proposes an ML job feature-based job schedul-
ing for ML clusters running data and model parallelism ML jobs [13]. However, these
studies are focused on communication methods and algorithms rather than considering
actual networks. The algorithm we propose does not increase communication efficiency
in distributed machine learning, but rather selects nodes with high network performance
during machine learning works in the cloud. In this paper, we consider real networks,
especially distributed HPC. When assigning a distributed machine/deep learning task in a
cloud where nodes are deployed in multiple countries or regions, performance degradation
occurs due to network delay if the nodes are deployed far apart.

To prevent this problem, this paper introduces a zone-based optimal network al-
gorithm. The zones are assumed as regions or countries in this paper. If a distributed
machine/deep learning task is placed, then a suitable zone with required CPU or GPU
resources is selected, and all nodes are allocated the same zone as much as possible. In
addition, when selecting as many nodes as needed in a zone, scores were given to network
resources and elected according to priority. Network resources are measured using a
network monitoring tool called perfSONAR [14], and the measured results can be gathered
and viewed at a glance through a monitoring dashboard called MaDDash (Monitoring and
Debugging Dashboard) [15]. The optimal node is selected by scoring with bandwidth, loss,
and delay data between nodes provided in MaDDash. Through the proposed scheduler,
the performance of distributed machine/deep learning can be improved.

This paper is organized as follows. Section 2 provides information about related work.
Section 3 introduces the proposed solution, an optimal network algorithm. Section 4 sets
the experiment testbed. We conduct experiments and present results. Finally, we conclude
with Section 5.

2. Background and Related Works
2.1. Container Orchestration

Distributed HPC discussed in the paper utilizes container orchestration which is the
process of managing and coordinating a large number of software containers across multiple
servers to ensure that they are working together efficiently. A container is a lightweight and
portable way to package and run software applications. Containers make it easier to move
applications between different environments and ensure that they run consistently across
different platforms. They enable developers to build and deploy software quickly and easily,
without having to worry about dependencies or compatibility issues. However, managing a
large number of containers can be challenging, especially when they are distributed across
multiple servers. This is where container orchestration comes in. In simpler terms, container
orchestration involves managing a large number of containers that are running on multiple
servers, ensuring that they are all working together seamlessly and efficiently. Container or-
chestration platforms provide tools for automating tasks such as deployment and monitoring
of containers, making it easier to manage large, complex container-based applications. These
platforms use advanced algorithms to distribute container workloads across multiple servers
to optimize resource utilization and ensure high availability of the application.

Some of the most popular container orchestration platforms include Kubernetes,
Docker Swarm, and Apache Mesos. These platforms provide features such as container
scheduling, automatic scaling, load balancing, service discovery, and fault tolerance. Over-
all, container orchestration simplifies the management of container-based application,
making it easier for developers to focus on writing code and delivering value to their users,
while ensuring that the applications are running smoothly and reliably.

Electronics 2023, 12, 3021

50f18

Kubernetes is an open-source platform for managing and automating the deployment,
scaling, and management of containerized applications. Kubernetes provides a platform for
running containerized applications across a cluster of machines. It automates many of the
tasks involved in managing containers, such as deployment, scaling, and monitoring. Some
of the key features of Kubernetes include automatic scaling of containers to meet demand,
load balancing of traffic between containers, automatic rolling updates and rollbacks of con-
tainers, and automatic placement of containers on available resources. Overall, Kubernetes
makes it easier to manage and automate the deployment and management of containerized
applications, allowing developers to focus on writing code and delivering value to their
users, while ensuring that their applications are running smoothly and reliably.

In the paper, we utilize Kubeflow to perform distributed machine/deep learning.
Kubeflow is a tool for building, training, and deploying machine learning models on
Kubernetes, which is a platform for managing containerized applications. Machine learning
involves training models on large datasets to make predictions or take actions based on
new data. Kubeflow makes it easier to do this by providing a set of tools and services
that enable developers and data scientists to build, train, and deploy machine learning
models on Kubernetes. Kubeflow leverages the scalability and flexibility of Kubernetes to
enable distributed training of machine learning models. This means that large models can
be trained quickly and easily, without worrying about the underlying infrastructure.

2.2. Distributed HPC

The aforementioned distributed HPC is described in detail. HPC is a technology that
configures multiple computing nodes into clusters to achieve high performance. The three
factors that affect the performance of HPC are compute, network, and storage. To reduce
the impact of the network, clusters are usually organized in one data center. However,
some HPCs are configured with distributed computing nodes for other reasons, such
as cost reasons or data transmission purposes. These HPCs are called distributed HPC.
Projects such as PRP, NRP, and APRP are examples. These projects are originally focused on
building an environment where scientific data can be transmitted and shared at high speed.
Nodes in these clusters are physically separated but use high-bandwidth 10-100 Gbps
networks and utilize network monitoring tools such as perfSONAR to compensate for
network performance issues.

In PRP, Kubernetes, a container orchestration platform, is installed on the nodes of
the cluster, and distributed HPC is used under the name of Nautilus [16]. Nautilus is a dis-
tributed HPC platform and collaboration between major research institutions in the United
States aimed at providing researchers with access to advanced computational resources.
Nautilus is designed to provide reliable access to large-scale data storage and processing
capabilities, allowing them to analyze complex datasets and run simulations and other
computational models. The platform includes a variety of computing resources, including
high-speed networking, large-scale data storage, and high-performance computing clusters.
One of the key features of Nautilus is its scalability, which allow researchers to easily
scale their computational workloads up or down as needed. The platform is an important
resource for researchers in a wide range of fields, including physics, biology, chemistry,
and engineering, providing them with the computational capabilities.

Like this project, container-based cloud technologies such as Docker and Kubernetes
are being used a lot these days, so they are becoming important. Recently, cloud orchestra-
tion platforms such as Kubernetes have been configured and used so that these research
data can be used for computational tasks such as Al Nautilus used by PRP is one such ex-
ample. In Korea, a platform called R&E (Research and Education) Together was developed
by benchmarking PRP and Nautilus. The R&E Together infrastructure consists of a big data
transmission system and an Al orchestration system. Figure 4 shows the infrastructure of
R&E Together. The DTNs used in the infrastructure were built using the servers of each
research institute and university in Korea, and they are used to provide an Al research

Electronics 2023, 12, 3021

6 of 18

environment. This distributed HPC project was expanded and developed into APRP, a
pan-national distributed HPC connecting Asian countries such as Pakistan and Malaysia.

-

[JY“

IEH'
)

| Al Platform Integrated I Al Argorithm
SW Utilization

Transmission Performance

Optimization (DTNIechno[ogy)

- L

I I TN I E I DTN
1 server2 1 server3

== [2=

* il |

gy]
GPL Al Programing
Computing Jupyter Notebook

Figure 4. R&E Together research infrastructure diagram [7].

2.3. Distributed Machine/Deep Learning

Machine learning can be performed using distributed HPC to reduce training time
by increasing computing performance. In this case, the process of exchanging parameter
values between nodes and communication is essential, so the network can affect the learning
performance. For this reason, there are many studies to improve network efficiency. A brief
description of related studies is as follows. As distributed machine/deep learning is utilized,
the resources required that must be considered include CPU, GPU, Disk 1/O, and Network
I/0. However, existing Deep Learning (DL) schedulers focus on only GPU allocation.

The following are related studies. Optimus [17] is an efficient dynamic resource
scheduler for deep learning clusters. It predicts model convergence and estimates training
performance for efficient scheduling. In distributed machine/deep learning, when a
server is overloaded with traffic from multiple nodes, it shows the result of performance
degradation. So, this scheduler predicts the appropriate number of servers according to
the ratio of worker nodes so that traffic can be distributed. Tiresias [18] is a GPU cluster
manager for distributed deep learning. The key idea is utilizing a two-dimensional metrics
framework that aims to minimize job completion time (JCT) when a DL job’s execution
time is unpredictable.

However, considering only GPU resources has the following limitations. The problem
is that it can take a long time to complete because it has to wait when certain resources are
shortage. Muri [19], a multi-resource cluster interleaving of DL workloads, can help this
problem. Scheduling based on Blossom algorithm for multi-resource multi-job packing
reduces JCT by maximizing interleaving efficiency. However, multi-resource interleaving
has different effects on different jobs, which could cause a fairness problem.

But there is no study on how much bottleneck exists [20]. This study tests a real
network. The scale factor was calculated by taking the actual network bandwidth Tn when
n node was added and the network bandwidth NT when n nodes are used. This value
is close to 100%, so if the actual bandwidth of the node is high, all performance can be
brought without considering the network. On the other hand, in a low-speed network of
10 Gbps or less, the network must be optimized to achieve full performance.

Large data centers use high-speed networks such as 40/100 Gbps Ethernet to alleviate
the communication delay, but many researchers and small data centers are still using
consumer-level GPUs connected by low-bandwidth networks such as 1 Gbps Ethernet [21].
These factors make distributed machine/deep learning networks running on distributed
HPC more important.

3. Proposed Solution

Our proposed solution aims to optimize the performance of distributed deep learning
workflows in a distributed HPC environment by considering the actual network. Our pro-

Electronics 2023, 12, 3021

7 of 18

posed algorithm focuses on selecting the appropriate nodes in Kubernetes based on their
availability in different zones and their available resources such as CPUs, GPUs, and memory.
Our proposed optimized scheduling mechanism will ensure that the distributed work is
placed in the same zone as much as possible to minimize network delay. Additionally, it uses
network monitoring tools to score and select the optimal node within the zone.

The proposed solution has been validated on the Kubernetes platform, an open-
source orchestrator for the automatic management and deployment of microservices. The
proposed optimal scheduler has improved the performance of distributed deep learning
workflows in the distributed HPC environment. In this section, we discuss the proposed
network monitoring architecture for distributed HPC platform and an optimal network-
aware scheduling algorithm.

3.1. Monitoring Architecture for Distributed HPC Platform

As illustrated in Figure 5, let us suppose that there is a distributed high-performance
computing (HPC) platform operating across multiple countries including the United States,
South Korea, Pakistan, Australia, and Malaysia. This platform consists of worker nodes
that are deployed in all of these countries, while the master node is located in South Korea
and connected to a high-speed network. For such types of distributed HPC scenarios, we
proposed a comprehensive network monitoring architecture that is helpful for scheduling
the distributed deep learning pods on Kubernetes cluster in an efficient way. In order
to achieve the high performance across the distributed HPC platform, all of the worker
nodes should be configured as specialized Data Transfer Nodes (DTNs) along with the Sci-
enceDMZ architecture. To further optimize the network’s performance, we have developed
a perfSONAR network monitoring system for our platform. Specifically, we have deployed
the MaDDash monitoring system and installed perfSONAR testpoints on all worker nodes.
This enabled us to effectively monitor the network’s performance in real-time and ensure
that the platform is operating at optimal levels.

Workers

((E(or(i Master

T @
N

Australia

Figure 5. An example of distributed HPC platform among countries.

Overall, this distributed HPC platform represents a complex and highly advanced tech-
nological infrastructure, but with our proposed network monitoring system in place, we can
ensure that it operates efficiently and is helpful to the network-aware scheduling algorithm.

The overall network monitoring architecture for distributed HPC platform can be
represented as in Figure 6, where a zone has a number of Kubernetes worker nodes which
received tasks from the Kubernetes master node and executed them in pods. All Kubernetes
worker nodes have perfSONAR testpoints containers running. The perfSONAR testpoints
container includes measurement tools such as iperf, ping, nuttcp, and traceroute and runs

Electronics 2023, 12, 3021

tests according to the scheduler daemon. Network performance data obtained by test is
sent to the MaDDash server. The MaDDash server archives the data, and it can be checked
at a glance as shown in Figure 7. These graph values support an interface so that they can
. Our proposed network-aware scheduling algorithm
uses REST APIs to get network performance data from the MaDDash server. The scheduler
selects the optimal node(s) through scoring based on the network performance result and
delivers the selected node list to the Kubernetes master server (described in Section 3.2).
Based on this, the Kubernetes Master can perform distribute machine learning tasks by

also be obtained through REST APIs

selecting nodes with low network latency/loss and high available bandwidth.

Archiving Network

Performance Data

ZONE \

Wrapper Scheduler

perfSONAR

MaDDash Server

Kubernetes Master

<:| K Kubernetes Worker
=

N

REST API, Get Network

Performance Data

Optimal Node Select,
Assign Job

Figure 6. Monitoring Architecture for Distributed HPC Platform.

Node 1
Node 2
Node 3
Node 4
Node 5
Node 6
Node 7
Node 8
Node 9
Node 10
Node 11
Node 12
Node 13
Node 14

Node 23
Node 24
Node 25
Node 26 [}
Node 27
Node 28
Node 29
Node 30
Node 31
Node 32
Node 33
Node 34 Il I I BN B
Node 35 [I I I O IS
Node 36

Figure 7. An Example of DTN Nodes Report on MaDDash. (Green: loss rate is <0.001%; yellow: loss

rate is >0.001%; pink: loss rate is >0.1%).

WO DDO=ONMITLOMN~DDD—NMT WO
- o~ o~ [a M aY) N NN NN N D NN
v 0w] U LT} LD TV T VA VR I VI)
VWUV VOV TUOV VUV TV T TV TTTVTTTTTT
0000]] e} 0000000000
ZZZZ z 22 2= 2222222222

Electronics 2023, 12, 3021

90f18

3.2. An Optimal Network-Aware Scheduling Technique

In this section, we explain optimal network aware scheduling technique. As men-
tioned in the previous chapter, we utilize Kubernetes and Kubeflow platform to perform
distributed machine/deep learning. If distributed machine/deep learning is performed on
Kubernetes, a suitable node is selected through the node selection process. Node selection
in Kubernetes is the process of determining which worker node in a cluster should run a
particular pod, which is a group of one or more containers that are deployed together. When
a pod is created, Kubernetes uses a process called scheduling to determine which node in
the cluster should run it. Scheduling involves selecting a node that has enough resources
such as CPUs, GPUs, and memory available to run the pod. The scheduler also uses variety
of factors to select the best node for a pod—for example, resource limits, node affinity,
taints, tolerations, etc. However, the Kubernetes default scheduler selects nodes with-
out considering the proper network parameters, which affects distributed machine/deep
learning performance.

In this paper, we proposed a novel scheduling technique to consider the network
performance between nodes and utilized the distributed HPC platform in an optimal
way. Our proposed scheduling technique allows users to customize the way jobs are
scheduled on a computing cluster. In a computing environment, a job scheduler manages
the allocation of resources to user jobs. By using our proposed wrapper scheduler, the
users can define their own scheduling policies that are applied on top of the existing job
scheduler. This allows users to prioritize or balance jobs based on their specific needs.

A wrapper scheduler has a name for each data center identified as a zone. Since each
zone is a data center divided by country or region, there may be network delay between
zones. Therefore, when selecting nodes, the scheduler selects only nodes in the same zone if
possible. The scheduler selects a zone after first checking that the zone has enough resources
to run the job. When a zone is selected, the optimal node in the zone is selected. When
selecting the optimal node, it takes a lot of time to check the network values of all nodes
in the cloud. In the algorithm we proposed for this problem, the amount of calculation
is reduced by using a scoring process of only group data divided into zones. Optimal
node selection is done through scoring with network performance. Network performance
scoring is based on data using perfSONAR, a network performance measurement tool, and
MaDDash, a network monitoring tool.

SelectNode = Top-ranked

Top-ranked = Highest score of f(t) in (Equation(4))

The data used are bandwidth, loss, and delay. These values are collected through
network performance monitoring in MaDDash. Equations (1)-(4) define calculating scoring
as follow. Scores are calculated using an approximate ratio of 20:40:40. These values are set
so that the total sum becomes about 100 as a standard. Each ratio can be modified through
the scheduler as needed. Delay and loss are calculated as negative values because the
network performance deteriorates as the value increases. Each value can be adjusted to a
suitable value by adding a weight value separately. Finally, each calculated result is added
together to obtain a final score. In Equation (1), t«, v, and w represent loss score, loss
value, and loss weight, respectively. In Equation (2), tg, vg, and wg represent delay score,
delay value, and delay weight. In Equation (3), ty, v, and w,, represent bandwidth score,
bandwidth value, and bandwidth weight. In the case of loss and delay, the higher the value
was, the lower the network performance was, so the value was minus when calculating
the score. On the contrary, the higher the network bandwidth was, the higher the network
performance was, so the value was multiplied. In Equation (4), f(t) represent total scores.

The following is the score of an equation:

te =20 — Vo - Wq 1)

Electronics 2023, 12, 3021

10 0of 18

tﬁ Z4O—VB'Wﬁ (2)
ty =40 - vy - wy 3)
fy=Yr 4)

As illustrated in Figure 8, our proposed network-aware scheduler is selecting zones
and servers based on resource availability and network parameters as follows:

Network Aware Scheduler Kubelet

Request a Deployment :> Scheduling Pods :> Deploy Pods

Selected\

(Available zone (Filtered

Filteri Scori
iltering Jone coring nodes
| Score delay |
Score loss | I:> ‘i‘ |l‘
RAM Score bandwidth
_ J /

Figure 8. Network-aware Scheduling Technique for Node Selection Process.

Gather information about the available zones, servers, and their resources.

1. Determine the requirements of the task in terms of resources such as CPUs, GPUs,

memory, etc.
2. Filter the zones based on their proximity to the intended users and select the near-

est zone.

3. Filter the servers within the selected zone based on the required resources and their
availability.

4. Rank the remaining servers based on the network parameters such as delay, loss, and
bandwidth.

5. Select the top-ranked servers and assign the task to them.

Here is a more detailed explanation of each step:

Step 1: Gather information about the available zones, servers, and their resources.

You will need to have access to data about the available zones, servers, and their
resources. This information can be obtained from a cloud provider or a data center. You
will need to know the number of servers, the type of CPUs, GPUs, and memory available
on each server and the network parameters for each server.

Step 2: Determine the requirements of the task in terms of resources such as CPUs,
GPUs, memory, etc.

You need to define the requirements of the task in terms of the resources it needs to
execute. This information can be provided by the user or can be automatically determined
by the algorithm.

Step 3: Filter the zones based on their proximity to the intended users and select the
nearest zone.

Electronics 2023, 12, 3021

110f18

You need to filter the available zones based on their proximity to the intended users.
This will help minimize the latency and improve the user experience. Once you have
filtered the zones, you can select the nearest zone to the user.

Step 4: Filter the servers within the selected zone based on the required resources and
their availability.

Once you have selected the zone, you need to filter the available servers based on their
availability and the required resources. This will help ensure that the task is executed on a
server that has the required resources and is available to execute the task.

Step 5: Rank the remaining servers based on the network parameters such as delay,
loss, and bandwidth.

Once you have filtered the servers, you need to rank the remaining servers based on
the network parameters such as delay, loss, and bandwidth. This will help ensure that the
task is executed on a server with the best network performance.

Step 6: Select the top-ranked servers and assign the task to them.

Once you have ranked the servers, you can select the top-ranked servers and assign
the task to them. This will help ensure that the task is executed on the best available server
with the required resources and the best network performance.

The algorithm of step 5, which explains the core of the network scheduler, is the
pseudo code below. This code is an algorithm that selects the optimal node according to the
network performance score of each node. A step-by-step description of the node selection
process is as follows.

1. It receives the node list of the zone and the required number of nodes as input values.

2. When checking the network performance between nodes, it is not necessary to check
the same nodes, so the first node in the node list is included in the exclusion list.

3. Check the network performance between all nodes in the zone. At this time, both
sides are checked; high values are used for loss and delay; low values are used for
bandwidth; and scores are obtained using the formula mentioned above.

4. Scores are summed to calculate a total score. At this time, if there are previous
combined scores, they are added and stored.

5. The total score is saved again to the previous total score.

6. The node with the highest total score is selected, and that node is added to the
exclusion node list.

7. After that, the number of nodes to be selected is additionally selected through the
process of 4-6 again.

Pseudo code: Scheduling for Selecting Nodes

scheduleSelectNode(Nodelist[], NeedNodeNumber)
#Get Available NodeList[] and NeedNodeNumber

for j in range NeedNodeNumber
for i in range nodeinzone
if NodeList[i] not in ExclusionList

ifve >vgand20 — vy *wy >0
t =20 — vy *wy

elseif v <v g and 20 — vy *wy >0
toa =20 — Vg Fwgy

else
te =0

ifVﬁ > V'ﬁ and 40 — vp *WB >0
tB =40 — v * wg

elseif vg <v'gand 40 — v'g *wp >0
t|3 =40 _V,B *WB

else
tﬁ =0

ifvy > v’y
ty =40* v’y *wy

Electronics 2023, 12, 3021

12 0f 18

else
ty =40 * vy *wy
if NodeList[i] in pretotal[]
total[i] = pretotal[i] + to +tg +ty
else
total[i] = to +tg + 1ty
pretotal[] = total[]
Node = max(total[])
Selected nodes are excluded from scoring for the next selection
selectlist append Node
ExclusionList append Node

Return SelectList[]

4. Experiments and Results

This section outlines the experimental design and results obtained in a network-
aware scheduler testbed. The cluster was configured with multiple servers to utilize
Kubernetes technology.

4.1. Experimental Testbed

Figure 9 shows the network-aware scheduler testbed. The testbed consisted of a total
of 38 servers and 2 storage arrays. Of these servers, one was designated as the Kubernetes
Master node, while another server, equipped with two storage arrays, was designated as
the Kubernetes Storage node. The remaining 36 servers were designated as Kubernetes
Worker nodes, which were divided into 4 groups, each identified by the names zone A,
zone B, zone C, and zone D, to add the concept of a zone.

Zone A Zone B

Figure 9. Network-aware Scheduler Testbed.

To enable monitoring of the network performance of each node, a perfSONAR con-
tainer was created and executed through Kubernetes daemonset. The MaDDash server
collected the network performance data through the REST API and presented it in the
format shown in Figure 7.

The network-aware scheduler ran on the Kubernetes master server, taking a list of
filtered nodes and the number of nodes required to run distributed machine/deep learning
as input. The scheduler then scored nodes using network performance data retrieved from
the MaDDash server through the REST APL. The list of selected nodes was subsequently
sent to the kubelet to create pods.

Electronics 2023, 12, 3021

13 0f 18

In summary, the experimental setup comprised a cluster of 38 servers and 2 storage
arrays configured to utilize Kubernetes technology. A perfSONAR container was created
to monitor network performance, and the MaDDash server collected the data through the
REST API. The network-aware scheduler scored nodes based on this data and selected the
nodes required to run distributed machine/deep learning.

In the test, notMNIST and CIFAR-10 model images, which are open used as examples,
were used. The notMNIST dataset consisted of handwritten characters from A to J. This
dataset is often used as a benchmark for character recognition algorithms. The notMNIST
dataset contains 500,000 images, each of which is 28 x 28 pixels. The CIFAR-10 is a dataset
of labeled images used for object recognition research. The CIFAR-10 dataset contains
60,000 images, each with a resolution of 32 x 32 pixels, and each image is labeled with one
of ten classes: airplane, automobile, bird, cat, deer, dog, frog, horse, ship, or truck. The test
took these two dataset and measured time while varying network performance such as
bandwidth, delay, and loss.

Our proposed scheduler improves efficiency by excluding nodes with network perfor-
mance that adversely affect distributed machine/deep learning. To this end, the scoring of
node network performance was used in the scheduler, and it was tested that nodes with
low network performance were actually excluded. The process of scoring all the network
performance between each node takes a lot of time because it needs to be calculated as
much as N x N when N is the number of nodes. We improved and applied this to N +
(N=1)+(N—=2)+... +(N —i+1) wheniis number of Nodes required for distributed
machine/deep learning to shorten time.

4.2. Test Case I: Nodes Selection Using Scheduler

The selection test was conducted as follows. In Zone D, which has nodes 28 to 36,
the TC (Traffic Control) tool was used for nodes 33, 34, and 35 to set delay of 10 ms, loss
of 10%, and bandwidth of 10 Mbps, respectively. TC is a network quality-of-service tool
that is included in the Linux kernel. It allows network administrators to control and
prioritize network traffic on a Linux system. Zone D consists of 9 nodes, and if we enter the
scheduler to select 6 nodes, nodes 33, 34, and 35, which are set to have the lowest network
performance, should be excluded. This test proceeds as shown in Figure 10 below. In
the process of checking the first network performance N times, node 32 with the highest
score is selected. In the second network performance check, node 32 is excluded, so it is
checked (N — 1) times. In this case, the score is large because it adds the score of the first
performance check. Node 31 with the highest score is selected. It proceeds according to
this process, and at the end, (N — i + 1) network checks are performed. Finally, Node 29
was selected, and nodes 33, 34, and 35, which had the lowest network performance, were
excluded from node selection as expected. So, the final selected nodes are 28, 29, 30, 31, 32,
and 36, which add up to 6 nodes.

The test is conducted using the aforementioned distributed machine/deep learning
image and the proposed scheduler. Zones are divided into cities or countries. It is assumed
that there is a problem in network performance between different zones, so that distributed
machine/deep learning is executed mainly in the same zone. In this environment, our
scheduler’s goal is selecting nodes with optimal network performance within the zone
and excluding nodes with network problems. The zone to be tested consists of 9 nodes.
Network problems were created using TC tool on 3 nodes in the zone. We conducted the
test through scenarios assuming problems such as low bandwidth, high loss, and high
delay for 3 nodes. It then runs distributed machine/deep learning jobs that utilize 6 of the
9 nodes in the same zone.

Electronics 2023, 12, 3021 14 of 18
70 140
60 120
50 100
£ 40 L 80
o o
@A 30 A 60
20 40
10 20
0 0
32 31 36 28 29 30 33 34 35 31 36 28 29 30 33 34 35
Node Node
200 300
250
150
200
& &
g 100 g 150
5] W
B 100
50
50
0 0
36 28 29 30 33 3 35 28 29 30 33 35 34
Node Node
350 400
300
250 300
& 200 &
8 e g 200
& 150 A
100 100
50
0 0
30 29 33 35 34 29 33 34 35
Node Node

Figure 10. Selection of nodes through scoring.

4.3. Test Case II: Low Bandwidth Scenario

In the first scenario, low bandwidth is set on three nodes, and learning time is checked
after running distributed machine/deep learning. The test results are shown in Figure 11
below. Distributed machine/deep learning selected six out of nine nodes in the zone to
run. Since the default scheduler in Kubernetes does not consider network performance,
only factors such as CPU, memory, or image locality, there are too many cases, so this
test only considers the case of selecting all three worst nodes which adjusted network
performance. We call the case where the default scheduler selects all three worst nodes
as the worst case. Conversely, when the proposed scheduler was used, it was marked
as proposed. Change the network bandwidth of three nodes from 40 Mbps to 90 Mbps
and test. All other nodes operated at 100 Mbps performance on average. The proposed
scheduler in the experimental results shows constant performance regardless of changes
in the three nodes because it excluded three nodes with network performance problems.
On the other hand, since the worst case of the default scheduler assumes that all three
nodes with problems in the network are selected, different results are shown when the
three-node network changes. In particular, notMNIST shows no change in bandwidth, but
cifar10 shows the worst performance of 1041 s in 40 Mbps bandwidth. The reason for this
tendency is that the image size of the CIFAR-10 dataset is 32 x 32, which is larger than that
of notMNIST, which is 28 x 28, so it is more affected by network performance.

Electronics 2023, 12, 3021 15 0f 18

1200 . .
M cifar-10 (Worst) M cifar-10 (Proposed)

600

1000 M notmnist (Worst) notmnist (Proposed)
800
40
20
40 50 60 70 80 90

Bandwidth (Mbps)

Time (second)
S

o

(@]

Figure 11. Performance Test with Low Bandwidth.

4.4. Test Case 11I: Higher Loss Scenario

In the second scenario, high loss is set on three nodes. The test results are shown
in Figure 12 below. In the loss test, proceed while adjusting from 5 to 50. Similar to the
bandwidth test, in the worst case of default scheduler, the learning time of cifar10, which
is sensitive to network performance, increased first, and as the loss more increased, the

learning time of notMNIST also increased. The proposed scheduler succeeded in excluding
these nodes and showed consistent performance.

1200 M cifar-10 (Worst) W cifar-10 (Proposed)
B notmnist (Worst) notmnist (Proposed)
1000
—~800
e
c
o
(W]
$600
(5]
£
=400
200
0
5 10 15 20 25 50
Loss (%)

Figure 12. Performance Test with High Loss.

4.5. Test Case 1V: Higher Delay Scenario

Finally, the last scenario is high delay on three nodes. The test results are shown in
Figure 13 below. The delay was tested by adjusting from 50 to 500 ms. In the worst case in
the default scheduler, the learning time of cifar10 and notMNIST tends to increase together.
But this test has less impact on performance than loss. So even at 500 ms, the worst case
does not exceed 800 s. On the other hand, the proposed scheduler succeeds in excluding
three nodes with high delay and shows a constant learning time.

Electronics 2023, 12, 3021

16 of 18

900
H cifar-10 (Worst) m cifar-10 (Proposed)
800 B notmnist (Worst) notmnist (Proposed)
700
—~ 600
o)
c
g 500
"o 400
£
= 300
200
100
0
50 100 200 300 400 500
Delay (ms)

Figure 13. Performance Test with High Delay.

4.6. Performance Improvement

Based on the results tested through the scenarios above, we analyze the performance
gains. The result is shown in Figure 14 below. In the bandwidth graph, the average learning
speed is calculated using the time taken for learning, and the learning speed of the worst
case of the default scheduler is set as 100% and compared with the performance of the
proposed scheduler. As a result, the proposed scheduler improved by 40% in cifar10 and
by around 1% in the case of notMNIST. Like the bandwidth graph, loss and delay are also
based on the learning rate of the worst case of the default scheduler as 100%. In case of loss,
the proposed scheduler shows a performance improvement of 50% for cifar10 and 25% for
notMNIST. Finally, the proposed scheduler in delay shows a performance improvement of
21% for cifar10 and 32% for notMNIST. As these results show, if the proposed scheduler is
used, it is possible to perform distributed machine/deep learning by excluding nodes with
poor network performance in the zone, and thus, performance can be expected to improve.

200 B cifar-10 (Worst) m cifar-10 (Proposed)

180 B notmnist (Worst) ¥ notmnist (Proposed)

Bandwidth Loss Delay

[o¢]
o

Performa

[o)]
o

4

o

2

(=]

Figure 14. Performance Improvement.

Electronics 2023, 12, 3021 17 of 18

5. Conclusions

The proposed scheduler selects the optimal node in consideration of network per-
formance in node selection for distributed machine/deep learning execution in a cloud
environment such as Kubernetes. Recently, a lot of data centers are configured with
container-based clouds likes Kubernetes. Kubernetes supports scaling across multiple
regions. We classified these physically separate data centers as zones. For example, the
data center in Korea and the data center in Malaysia are far apart. Network performance
between them is low, making it difficult to run tasks where network performance is critical,
such as distributed machine/deep learning. The proposed scheduler guarantees that all
pods run in one zone as much as possible after filtering required resources such as CPU,
GPU, and memory when running distributed machine/deep learning jobs. What is espe-
cially important here is that even within the same zone, the optimal nodes must be selected
because the network bandwidth, loss, and delay are different. The proposed scheduler uses
data from network monitoring tool called MaDDash, which is used in high-speed research
networks such as PRP, APRP, and NRP, to find the optimal node through scoring. Through
this process, nodes with problems in network performance are excluded to show better
performance when running distributed machine/deep learning.

Author Contributions: Conceptualization, S.A.R.S.; methodology, S.A.R.S. and S.L.; software, S.A.R.S.
and S.L.; validation, S.A.R.S., S.L. and K.K.; formal analysis, S.A.R.S., S.L. and S.H.R.S.; resources,
WSS. and].M.; writing—original draft preparation, S.A.R.S. and S.L.; writing—review and editing, all
authors; supervision, W.S. and S.A.R.S.; funding acquisition, W.S. and].M. All authors have read and
agreed to the published version of the manuscript.

Funding: This research was supported by Quantum Cryptography Communication based Net-
working Infrastructure Project funded by Korea Institute of Science and Technology Information
(K-23-L04-C02-501).

Acknowledgments: The authors would like to extend our sincere thanks to Global Science Experi-
mental Data Hub Center at Korea Institute of Science Technology Information for supporting our
research and providing the experimental environment.

Conflicts of Interest: The authors declare no conflict of interest.

References

1.

Peng, Y.; Zhu, Y,; Chen, Y.; Bao, Y.; Yi, B.; Lan, C.; Wu, C.; Guo, C. A generic communication scheduler for distributed dnn training
acceleration. In Proceedings of the 27th ACM Symposium on Operating Systems Principles, Huntsville, ON, Canada, 27 October
2019; pp. 16-29.

Hashemi, S.H.; Jyothi, S.A.; Campbell, R. Tictac: Accelerating distributed deep learning with communication scheduling. Proc.
Mach. Learn. Syst. 2019, 1, 418-430.

Li, M.; Andersen, D.G.; Smola, A.].; Yu, K. Communication efficient distributed machine learning with the parameter server. In
Proceedings of the Advances in Neural Information Processing Systems 27: Annual Conference on Neural Information Processing
Systems 2014, Montreal, QC, Canada, 8-13 December 2014.

Yao, L.; Ge, Z. Scalable learning and probabilistic analytics of industrial big data based on parameter server: Framework, methods
and applications. J. Process Control 2019, 78, 13-33. [CrossRef]

Patarasuk, P; Yuan, X. Bandwidth optimal all-reduce algorithms for clusters of workstations. J. Parallel Distrib. Comput. 2009, 69,
117-124. [CrossRef]

Smarr, L.; Crittenden, C.; DeFanti, T.; Graham, J.; Mishin, D.; Moore, R.; Papadopoulos, P.; Wiirthwein, F. The pacific research
platform: Making high-speed networking a reality for the scientist. In Proceedings of the Practice and Experience on Advanced
Research Computing, Oregon, OR, USA, 22 July 2018; pp. 1-8.

Ki-hyeon, K.; Jeong-hoon, M.; Woo Chang, K.; Byungyeon, P.; Woojin, S.; Won-taek, H.; Sang-kwon, L.; Jinyong, J.; Taejin, Y.;
Jaehein, C.; et al. Connecting Method Research of Distributed Computing for AI Research Based on ScienceDMZ. |. Korean Inst.
Commun. Inf. Sci. 2021, 46, 1006-1022.

Asif Raza Shah, S.; Moon, J.; Kim, K.-H.; Asif Khan, M.; Wati, N.A.; Howard, A. HPC4Asia: A Distributed HPC Research Platform
for Educationists and Researchers of Asian Countries. Platf. Technol. Lett. 2023, 8. [CrossRef]

Jayarajan, A.; Wei, J.; Gibson, G.; Fedorova, A.; Pekhimenko, G. Priority-based parameter propagation for distributed DNN
training. Proc. Mach. Learn. Syst. 2019, 1, 132-145.

https://doi.org/10.1016/j.jprocont.2019.03.017
https://doi.org/10.1016/j.jpdc.2008.09.002
https://doi.org/10.23074/PTL.080403

Electronics 2023, 12, 3021 18 of 18

10.

11.

12.

13.
14.
15.
16.
17.
18.
19.
20.

21.

Shi, S.; Wang, Q.; Chu, X,; Li, B. A DAG model of synchronous stochastic gradient descent in distributed deep learning. In
Proceedings of the 2018 IEEE 24th International Conference on Parallel and Distributed Systems (ICPADS), Singapore, 11
December 2018; pp. 425-432.

Amiri, M.M,; Giindiiz, D. Machine learning at the wireless edge: Distributed stochastic gradient descent over-the-air. IEEE Trans.
Signal Process. 2020, 68, 2155-2169. [CrossRef]

Jiang, Y.; Zhu, Y;; Lan, C.; Yi, B.; Cui, Y.; Guo, C. A unified architecture for accelerating distributed {DNN} training in heterogeneous
{GPU/CPUJ clusters. In Proceedings of the 14th USENIX Symposium on Operating Systems Design and Implementation (OSDI
20), Banff, AB, Canada, 4 November 2020; pp. 463—479.

Wang, H.; Liu, Z.; Shen, H. Machine learning feature based job scheduling for distributed machine learning clusters. In [IEEE/ACM
Transactions on Networking; IEEE: Piscataway, NJ, USA, 2022.

perfSONAR. Available online: https:/ /www.perfsonar.net (accessed on 26 June 2023).

MaDDash. Available online: https://docs.perfsonar.net/maddash_intro (accessed on 26 June 2023).

Nautilus. Available online: https:/ /nautilus.optiputer.net (accessed on 26 June 2023).

Peng, Y; Bao, Y.; Chen, Y.; Wu, C.; Guo, C. Optimus: An efficient dynamic resource scheduler for deep learning clusters. In
Proceedings of the Thirteenth EuroSys Conference, Porto, Portugal, 23 April 2018; pp. 1-14.

Gu, J.; Chowdhury, M.; Shin, K.G.; Zhu, Y,; Jeon, M.; Qian, J.; Liu, H.H.; Guo, C. Tiresias: A GPU Cluster Manager for Distributed
Deep Learning. NSDI 2019, 19, 485-500.

Zhao, Y,; Liu, Y.; Peng, Y.; Zhu, Y.; Liu, X,; Jin, X. Multi-resource interleaving for deep learning training. In Proceedings of the
ACM SIGCOMM 2022 Conference, New York, NY, USA, 22 August 2022; pp. 428-440.

Zhang, Z.; Chang, C.; Lin, H.; Wang, Y.; Arora, R.; Jin, X. Is network the bottleneck of distributed training? In Proceedings of the
Workshop on Network Meets Al & ML, New York, NY, USA, 14 August 2020; pp. 8-13.

Shi, S.; Wang, Q.; Zhao, K.; Tang, Z.; Wang, Y.; Huang, X.; Chu, X. A distributed synchronous SGD algorithm with global
top-k sparsification for low bandwidth networks. In Proceedings of the 2019 IEEE 39th International Conference on Distributed
Computing Systems (ICDCS), Dallas, TX, USA, 7 July 2019; pp. 2238-2247.

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

https://doi.org/10.1109/TSP.2020.2981904
https://www.perfsonar.net
https://docs.perfsonar.net/maddash_intro
https://nautilus.optiputer.net

	Introduction
	Background and Related Works
	Container Orchestration
	Distributed HPC
	Distributed Machine/Deep Learning

	Proposed Solution
	Monitoring Architecture for Distributed HPC Platform
	An Optimal Network-Aware Scheduling Technique

	Experiments and Results
	Experimental Testbed
	Test Case I: Nodes Selection Using Scheduler
	Test Case II: Low Bandwidth Scenario
	Test Case III: Higher Loss Scenario
	Test Case IV: Higher Delay Scenario
	Performance Improvement

	Conclusions
	References

