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Abstract: Traffic sign recognition is a pivotal technology in the advancement of autonomous vehicles
as it is critical for adhering to country- or region-specific traffic regulations. Defined as an image
classification problem in computer vision, traffic sign recognition is a technique that determines
the class of a given traffic sign from input data processed by a neural network. Although image
classification has been considered a relatively manageable task with the advent of neural networks,
traffic sign classification presents its own unique set of challenges due to the similar visual features
inherent in traffic signs. This can make designing a softmax-based classifier problematic. To address
this challenge, this paper presents a novel traffic sign recognition model that employs angular
margin loss. This model optimizes the necessary hyperparameters for the angular margin loss via
Bayesian optimization, thereby maximizing the effectiveness of the loss and achieving a high level
of classification performance. This paper showcases the impressive performance of the proposed
method through experimental results on benchmark datasets for traffic sign classification.

Keywords: angular margin loss; autonomous vehicle; Bayesian optimization; computer vision; traffic
sign recognition

1. Introduction

With the extraordinary advancement of deep learning technology, a host of computer
vision problems have been addressed, with ample alternative solutions being developed
and researched. The enhancement of performance by impressive computer vision algo-
rithms has stimulated a plethora of new and emerging industries such as smart cities [1–3],
smart factories [4,5], autonomous vehicles [6–10], and the metaverse [11,12], all founded
on computer vision technology. Specifically, autonomous vehicles increasingly employ
various multisensory fusion technologies, including LiDAR, to simultaneously input and
process camera inputs along with other sensor inputs via neural networks. This results in
advanced autonomous driving capabilities, a trend being adopted across various industries
and in academia [6,8,10].

The application of computer vision technology to autonomous vehicles can be broadly
classified into two categories according to the application: dynamic object recognition and
static object recognition. The former involves the identification and detection of objects
that can move independently, such as people and cars. Conversely, static object recognition
pertains to the identification of stationary objects, such as road signs, road markings, and
traffic lights. These objects can provide critical information about the rules and regulations
of the road on which the vehicle is operating. Traffic sign recognition presents a unique
challenge because unlike other objects, it requires the definition of new models based
on the regions where autonomous vehicles operate. For instance, traffic sign regulations
differ between the United States and South Korea, necessitating distinct models for each.
Moreover, most traffic signs have similar visual features. Although each sign is classified
as a distinct class based on arrow direction or numbers, a straightforward neural network-
based image classifier is inadequate for yielding satisfactory recognition effects. Further, a
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traffic sign recognition model for autonomous vehicles must exhibit superior performance
to ensure the safety of all stakeholders, including the user, nearby pedestrians, and the
drivers of adjacent vehicles. This is imperative as recognition accuracy directly impacts
safety. Consequently, this paper proposes a new high-performance traffic sign recognition
algorithm that is ready for integration into current and future autonomous vehicles.

Traffic sign recognition was the subject of numerous studies prior to the surge in
the popularity of neural networks. Traditional machine learning techniques, including
support vector machine-based methods [13–15], principal component analysis-based meth-
ods [16–18], and k-nearest neighbor-based methods [19], have been suggested for traffic
sign recognition. However, the performance of traffic sign recognition employing conven-
tional machine learning (such as SVM, PCA, and k-NN) severely deteriorates under various
environmental changes, such as low light or rain. Therefore, these methods prove challeng-
ing to implement in practical autonomous vehicles. Past studies have only applied various
machine learning techniques to traffic sign recognition without further investigating more
advanced approaches.

Following the emergence of neural networks and the verification of the high perfor-
mance and effectiveness of computer vision using convolutional neural networks, traffic
sign recognition has surpassed its previous limitations [20–23], much like other image
recognition fields. Early neural network-based traffic sign recognition methods suggested
ways to deduce the traffic sign class of a given input image by processing a cropped image
containing only the traffic sign. More recently, object detection has broadened the scope
of traffic sign recognition, enabling the extraction of traffic sign positions from various
locations in driving images and the concurrent inference of their respective classes [24–26].
Although deep learning-based traffic sign recognition has outperformed conventional ma-
chine learning and signal processing-based approaches, most research has been restricted
to retraining other computer vision models using traffic sign recognition datasets or merely
applying well-known object detection models like You Only Look Once (YOLO) [27–29].
Hence, while the field of traffic sign recognition has achieved a degree of good performance
and expansion, most research is confined to utilizing neural network models with high
computational and memory complexity or leveraging general image classifier losses such
as cross-entropy. We propose a neural network-based classifier specialized for traffic sign
recognition that transcends the level of prior research, which primarily relied on existing
well-known neural network models.

The proposed traffic sign recognition method comprises two principal components:
angular margin loss and Bayesian optimization. Angular margin loss is a classification
loss employed in metric learning and is a frequently used learning strategy in fields like
few-shot learning [30–33]. The objective of this loss is to optimize the angles between
classes in the feature space during the classification process. Specifically, it optimizes the
clustering of features belonging to each class around the center of that class while main-
taining a margin between classes in the feature space. This fosters clearer differentiation
between classes and is expected to enhance performance. Angular margin loss has gained
popularity in recent years, especially in areas like few-shot learning. Bayesian optimization
is a machine learning-based optimization technique commonly used in hyperparameter
optimization [34–37]. It aims to optimize a black box function, which is typically expensive
to evaluate, by iteratively selecting the next evaluation point based on the model’s posterior
distribution of the function. Bayesian optimization offers an efficient and effective means
of finding a model’s optimal hyperparameters and has been applied in various fields,
including computer vision and natural language processing. We propose a new traffic sign
recognition model utilizing both angular margin loss and Bayesian optimization to inherit
the strengths of both techniques.

In the field of traffic sign recognition, signs are often visually similar, making it
challenging to distinguish between them. Consequently, we determined that using a
softmax-based classifier alone would only yield a certain performance level. To address this
limitation, we opted to employ angular margin loss. This approach allows us to achieve
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a high level of classification performance, even for signs with similar morphological fea-
tures. However, achieving a high level of classification performance with angular margin
loss involves adding margin values to the feature vector formation process in a penalty
optimization-like manner. Incorrect margin value definition can lead to various perfor-
mance degradation issues, such as limiting the neural network’s learning convergence. To
overcome this challenge and select the optimal margin value, the proposed method em-
ploys Bayesian optimization. By incorporating Bayesian optimization, we aim to improve
traffic sign recognition performance and provide a more specialized and efficient approach
in this field. We believe that our proposed method will make a significant contribution to
advancing traffic sign recognition and addressing the challenges associated with visually
similar signs.

The rest of this paper is organized as follows. Section 2 provides preliminaries,
discussing the Bayesian optimization and angular margin loss techniques in detail. Section 3
presents our proposed method, outlining the architecture and training strategy of our traffic
sign recognition model. In Section 4, we present experimental results, demonstrating
the efficacy of our approach using various benchmark datasets. Finally, in Section 5, we
summarize this paper’s main contributions and provide directions for future work.

2. Preliminaries

This section introduces the concepts of angular margin loss and Bayesian optimization,
which are integral to our proposed method. Angular margin loss, used in metric learning,
optimizes the angle between classes in feature space during classification. This results in
features of the same class clustering around their respective center, enhancing class separa-
tion and maintaining margins between classes, leading to clearer separations and improved
performance. Bayesian optimization, a machine learning-based optimization technique, is
typically employed for hyperparameter optimization. It constructs a probabilistic model
of the objective function and selects the next hyperparameters to evaluate based on their
predicted utility. This approach enables the efficient exploration of hyperparameter space,
ultimately improving model performance.

2.1. Metric Learning

Metric learning is a machine learning subfield that aims to learn a distance or similarity
metric between data points. Its objective is to transform data such that similar points are
proximate in the new metric space, while dissimilar points are distant. This transformation
often involves mapping from the original feature space to a new metric space, wherein
distances reflect the degree of similarity or dissimilarity between points.

Angular margin loss is a classification loss commonly employed in training neural
networks for metric learning tasks like face recognition [38]. It facilitates the learning of a
discriminative embedding space where similar samples map to close points and dissimilar
samples map to distant points. Angular margin loss introduces a margin between class
embeddings, enforcing a specific angular distance and therefore enhancing class separation.
By minimizing the angular margin loss, the network learns to map similar samples close to
each other while placing dissimilar samples far apart in the embedding space. This process
results in a more discriminative embedding space, which is useful for various downstream
tasks. Therefore, angular margin loss is instrumental in training neural networks to create
an embedding space that clearly separates different classes.

2.2. Angular Margin Loss

The softmax function is commonly used in classification problems to produce a prob-
ability distribution over K classes. Given a vector z of K-dimensional logits, the softmax
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function maps each element of z to a probability value between 0 and 1, such that the sum
of the probabilities over all K classes equal 1. The softmax function is defined as follows:

σ(z)j =
exp

(
zj
)

∑K
k=1 exp(zk)

, (1)

where zj is the jth element of the vector z, and σ(z)j is the jth element of the softmax output.
The angular margin loss is a loss function used in metric learning to train a neural

network to learn a discriminative embedding space. It is designed to learn mapping from
the original feature space to a new metric space, where the distances between points reflect
their similarity or dissimilarity. The angular margin loss is defined as follows:

Li = −log

(
exp

(
s(yi) ·

(
cos

(
m1θyi

)
−m2

))
exp

(
s(yi) ·

(
cos

(
m1θyi

)
−m2

))
+ ∑K

j=1,j 6=yi
exp

(
s(j) · cos

(
θj
))) (2)

where yi is the true class label of the ith sample, θyi is the angle between the embedding of
the ith sample and the weight vector of its true class, θj is the angle between the embedding
of the ith sample and the weight vector of the jth class, m1 and m2 are the margins, and s(.)
is a scaling factor.

The softmax function’s numerator reflects the cosine similarity between the ith sam-
ple’s embedding and its true class’s weight vector, multiplied by a margin-based angular
scaling factor. The denominator represents the cumulative cosine similarities between the
ith sample’s embedding and the weight vectors of all other classes. Taking the softmax
function’s negative logarithm derives the ith sample’s loss, Li. This loss penalizes the
network when the angular distance between a positive sample’s embedding and a negative
one is smaller than the margin. It encourages the network to learn embeddings with large
angular separations between different classes while keeping similar samples close. The
angular margin loss is formulated using the softmax function in which the numerator
corresponds to the cosine similarity between the embedding of the ith sample and the
weight vector of its true class, multiplied by a margin-based angular scaling factor. The
denominator corresponds to the sum of the cosine similarities between the embedding of
the ith sample and the weight vectors of all other classes.

The hyperparameters m1 and m2 regulate the margin and scaling factor in the angular
margin loss formula. The margin m1 controls the minimum angular distance between the
embeddings of a positive sample a negative sample. A larger margin increases the angular
separation between embeddings of different classes, making the embedding space more
discriminative. The scaling factor m2 adjusts the scale of cosine similarities in the loss
function, allowing the network to fine-tune the separation of similar classes while keeping
their embeddings close. These hyperparameters play important roles in controlling the
discriminative power and scaling of the loss function.

If the margin m1 is too small, the network may fail to separate different classes, causing
overlaps in the embedding space. Conversely, a large margin makes the network too
conservative, leading to excessively distant embeddings for similar samples. It is important
to set an appropriate margin that balances class separation and the compactness of similar
samples. If the scaling factor m2 is too small, the loss function may focus too much on
cosine similarities and not enough on angular separation, resulting in poor discriminative
ability. Conversely, a large scaling factor overemphasizes angular separation and may
miss opportunities to separate similar classes. Tuning m1 and m2 carefully is crucial for
optimizing the balance between class separation and the compactness of similar samples,
ensuring optimal performance in downstream tasks.

2.3. Bayesian Optimization

Bayesian optimization is a machine learning-based optimization strategy that is partic-
ularly effective for optimizing costly, black box, and derivative-free functions. It consists of
two main components: a Bayesian statistical model and an acquisition function [34,36]. The
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Bayesian statistical model, usually a Gaussian process, models the objective function and
measures the uncertainty of the function at unobserved data points. Initially trained on a
small set of input–output pairs, this model is updated iteratively with new data. It predicts
the objective function values at new input points and estimates the associated uncertainties.
The acquisition function guides the selection of the next input point to evaluate, balancing
exploration and exploitation by evaluating the predictive improvement at unobserved
points. Common acquisition functions include the probability of improvement, expected
improvement, and the upper confidence bound.

Bayesian optimization has several advantages over other optimization techniques. It
does not require structural information about the objective function, rendering it suitable
for black box optimization in which the underlying function is unknown or complex. It
can operate without observing the derivatives of the objective function, which is ideal for
derivative-free optimization. Furthermore, it can identify the global optimum by estimating
uncertainty at unobserved points, making it effective for global optimization problems.
Widely applied to various optimization problems, Bayesian optimization has significantly
improved the performance of machine learning algorithms, including deep neural net-
works, via optimal hyperparameter determination [35,37]. The process of hyperparameter
optimization using Bayesian optimization begins with defining the hyperparameter search
space. An acquisition function is selected to guide the search. This function measures the
potential benefit of evaluating each set of hyperparameters and decides the next set to
evaluate. Common choices include expected improvement, the probability of improvement,
and the upper confidence bound. The Bayesian optimization process iterates. The initial
set of hyperparameters is randomly sampled from the search space, and the corresponding
loss function is evaluated. Evaluation results update the Bayesian statistical model, which
then selects the next set of hyperparameters for evaluation. This continues until a stopping
criterion, such as the maximum number of iterations or hyperparameter convergence, is
met. The final set of hyperparameters is selected based on the best performance on the
validation set.

Overall, employing Bayesian optimization to tune the hyperparameters of the angular
margin loss can improve performance across tasks like image classification, object detec-
tion, and face recognition. By automating the hyperparameter tuning process, Bayesian
optimization can save substantial time and resources, enabling more efficient development
and deployment of machine learning models.

3. Proposed Method

This chapter aims to describe a new traffic sign recognition model that combines
angular margin loss and Bayesian optimization. By combining these two techniques,
the proposed model achieves greater performance and efficiency compared to traditional
softmax-based classifiers. The entire process of the proposed method has been summarized
in Algorithm 1 as a pseudo-code.
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Algorithm 1. Basic Pseudo-Code for Proposed Method

Input: Validation dataset V, Initial hyperparameters m1 and m2.
Initialize:
Angular margins m = [m1, m2]
Define objective function L(m) as average classification error on validation dataset
Initialize Gaussian process with mean µ and covariance Σ
While stopping criteria is not met:

For t = 1 to T:
Compute prior distribution: L(m1:t) ∼ N (µ0(m1:t), Σ0(m1:t, m1:t))
Calculate the conditional distribution: L(m)|L(m1:t) ∼ N

(
µt(m1:t), σ2

t (m)
)

Calculate µt(m) :
µt(m) = Σ0(m, m1:t)Σ0(m, m1:t)

−1(L(m1:t)− µ0(m1:t)) + µ0(m1:t),
Calculate σ2

t (m): σ2
t (m) = Σ0(m, m)− Σ0(m, m1:t)Σ0(m1:t, m1:t)

−1Σ0(m1:t, m)
Define expected improvement function Et(m) = E[max(L(mbest)− L(m))],
Compute Et(m) for all m in the search space
Select mnext with highest Et(m)
Evaluate L(mnext) to get new observation
Update Gaussian process with new observation
Set mbest to mnext if L(mnext) < L(mbest)

End While
Output: Optimal hyperparameters mbest

Bayesian Angular Margin Loss

The proposed system in this paper utilizes Bayesian optimization to optimize the
hyperparameters of the angular margin loss, aiming to maximize its discriminative perfor-
mance. Specifically, Bayesian optimization is used to optimize the margin m1 and scaling
factor m2 in the angular margin loss, automatically searching for the best hyperparameter
values. By optimizing the hyperparameters through Bayesian optimization, the system
achieves better separation between different classes of traffic signs while maintaining com-
pactness for similar signs. Bayesian optimization is particularly suitable for this task as
it efficiently explores the high-dimensional hyperparameter space and identifies the best
hyperparameters with a limited number of evaluations. This is valuable in traffic sign
recognition, in which hyperparameter optimization can be time-consuming and computa-
tionally expensive. The combination of Bayesian optimization and angular margin loss is
referred to as Bayesian angular margin loss.

The objective function for the proposed method is defined as finding the hyperpa-
rameters m1 and m2 that result in the lowest classification error on the validation dataset.
It involves a vector m consisting of m1 and m2, and Bayesian optimization is employed
to search for the optimal values of m. Formally, the objective function can be defined as
follows:

minL(m) = min
m

1
Nval

Nval

∑
i=1

Li(m). (3)

The objective function minimizes the loss value L(m) averaged over the instances in
the validation dataset, denoted as Li(m). By maximizing the discriminative power of the
angular margin loss, the proposed method aims to achieve a high level of performance in
traffic sign recognition tasks that involve datasets with mixed visual representations.

The Gaussian process provides a way to model the distribution of the objective func-
tion L(m) at unobserved margin values m, based on the distribution obtained from previ-
ously observed margin value combinations m1:t = {m1, m2, · · ·mt}. By applying Bayesian
inference, we can define the prior distribution L(m1:t) and obtain the conditional distri-
bution L(m)|L(m1:t) . To define the prior distribution L(m1:t), we assume that it follows
a multivariate normal distribution with a mean and covariance that can be learned from
the observed data. This allows us to complete the correlation between different hyper-
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parameters and make informed predictions about the objective function at unobserved
hyperparameters. Therefore, the prior distribution of the proposed objective function can
be defined as follows:

L(m1:t) ∼ N (µ0(m1:t), Σ0(m1:t, m1:t)), (4)

where µ0(m1:t) ∈ Rt is the mean vector, and Σ0(m1:t, m1:t) ∈ Rt×t denotes the Mahalanobis
covariance matrix, both of which are t-dimensional. The multivariate normal distribution
function is denoted byN (·, ·). Using the prior distribution, we can calculate the conditional
distribution of L(m) given the observed hyperparameters m1:t as follows:

L(m)|L(m1:t) ∼ N
(

µt(m1:t), σ2
t (m)

)
, (5)

where µt(m1:t) and σ2
t (m) are the mean and variance of the conditional distribution, respec-

tively. The mean µt(m1:t) is given by:

µt(m) = Σ0(m, m1:t)Σ0(m, m1:t)
−1(L(m1:t)− µ0(m1:t)) + µ0(m1:t), (6)

where Σ0(m, m1:t)
−1 denotes the inverse of the Mahalanobis covariance matrix, and µ0(m1:t)

is the mean vector of the prior distribution. The variance σ2
t (m) is given by:

σ2
t (m) = Σ0(m, m)− Σ0(m, m1:t)Σ0(m1:t, m1:t)

−1Σ0(m1:t, m) (7)

where Σ0(m, m) is the covariance of the prior distribution. By using the conditional distri-
bution, we can estimate the uncertainty of the objective function at unobserved hyperpa-
rameters, which allows us to efficiently search the hyperparameter space using Bayesian
optimization. After applying a Gaussian process to the observed margin combinations
m1:t, we can estimate the potential values of the objective function at unobserved margin
combination m using a conditional distribution. To determine the next margin combination
to evaluate, we use the expected improvement acquisition function.

The expected improvement compares the loss of the current best margin combination,
denoted as mbest, with the estimated objective error of the candidate margin combinations
m. The objective error is defined as the difference between the loss of the candidate
margin combination and the loss of the current best margin combination. The expected
improvement can be expressed as:

Et(m) = E[max(L(mbest)− L(m))], (8)

where E[·] denotes the expected value, L(mbest) is the loss of the current best margin
combination, and L(m) is the estimated loss of the candidate margin combination m based
on the conditional distribution. By using the expected improvement acquisition function,
we can identify the margin combination that is expected to yield the largest improvement in
the objective function and evaluate it in the next iteration. By repeating this process, we can
efficiently search the space of margin combinations and find the optimal combination that
yields the lowest loss. It should be noted that the proposed objective function computes
the loss of the observed margin combination without noise, which allows us to determine
the current best margin combination mbest as the one that yields the lowest loss among the
observed margin combinations.

Based on the process described above, the proposed technique effectively determines
optimal margin values for the angular margin loss, resulting in the improved utilization
of the loss function for traffic sign recognition. Despite Gaussian processes imposing con-
straints on hyperparameter dimensionality, the number of margins in the angular margin
loss is sufficient for convergence, making Bayesian optimization capable of providing
globally optimal margin values.
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In summary, this paper introduces a traffic sign recognition system that employs
Bayesian optimization to optimize the hyperparameters of the angular margin loss. The
primary objective is to maximize the discriminative performance of the system by achieving
better separation between different classes of traffic signs while maintaining compactness
for similar signs. The combined approach of Bayesian optimization and angular margin
loss is referred to as Bayesian angular margin loss. The proposed objective function
aims to find the optimal values of m1 and m2 in the angular margin loss, leading to the
lowest classification error on the validation dataset. By utilizing Gaussian processes and
Bayesian inference, the distribution of the objective function at unobserved margin values
can be modeled, allowing for the definition of prior and conditional distributions. This
technique provides optimal margin values for the angular margin loss, thereby improving
its effectiveness for traffic sign recognition.

4. Experimental Results

This chapter covers various experimental results and their analysis for evaluating the
performance of the proposed technique for recognizing traffic signs.

4.1. Implementation Details

In this paper, we conducted quantitative evaluations of the proposed technique using
a total of two benchmark datasets. The first dataset used was the German Traffic Sign
Recognition Benchmark (GTSRB) [39], and the second was the Traffic-Sign Detection and
Classification in the Wild (TT100K) dataset [40]. GTSRB is a dataset containing traffic
sign images that is widely used for benchmarking traffic sign recognition algorithms. The
dataset contains more than 50,000 images of traffic signs from 43 different classes. The
images were captured under various lighting and weather conditions, and they include a
wide range of traffic sign variations such as occlusion, blur, and different viewing angles. In
the experiment in this paper, we constructed a training set containing 8514 images from the
GTSRB and a validation set containing 2157 images. TT100K is a large-scale dataset of traffic
sign images that is designed to evaluate traffic sign detection and classification algorithms
under challenging real-world conditions. The dataset contains more than 100,000 images of
traffic signs captured from various locations and in various weather and lighting conditions.
The images include a wide range of traffic sign variations, such as occlusion, blur, and
deformation, and they cover a wide range of traffic sign types and shapes. The training set
has 6107 images, and the validation set has 3073 images. The samples from the GSRB and
TT100K dataset are shown in Figure 1.
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Figure 1. The samples from the GTSRB and TT100K datasets are composed of (left) images from
the GTSRB, which include a variety of conditions, such as different lighting environments, camera
shakes, and occlusions like those from tree coverage, and (right) samples from the TT100K dataset,
which is designed to detect traffic signs from images captured in diverse road conditions. The TT100K
dataset is more varied in comparison to the GTSRB, even containing images taken from the sides of
traffic signs.
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The implementation of the proposed method leveraged the BoTorch framework [41]
for the Bayesian optimization algorithm, and the PyTorch framework [42] was used for the
training and inference of the neural network. In experiments using the TT100K dataset,
not only the performance indicators but also the memory complexity of the model and
inference time had to be compared with other recent techniques; hence, an RTX 3080 GPU
device was used. The number of iterations in the Bayesian optimization was set to a
total of 50, and the ranges of the values m1 and m2, which must be obtained in Bayesian
optimization, were set from 0.5 to 1.0 and from 0.1 to 0.5, respectively. This is because if
each margin is smaller or larger than the range, performance degradation occurs [30–32].
By controlling the search area of the Bayesian optimization to an appropriate size, we can
induce rapid convergence.

4.2. Experimental Results on the GTSRB

Due to its small size and the well-curated images in the training dataset, the GTSRB
has already achieved high classification performance using neural networks. Therefore, in
this paper, we aimed to visualize the logits of the neural network rather than conduct a
quantitative performance evaluation on GTSRB to visually analyze the performance of the
proposed technique. We present the visualization of logits from each neural network trained
on the GTSRB via a principal component analysis in Figure 2. This experiment utilized the
ResNet-18 model, serving as an ablation study on Bayesian optimization. The proposed
technique incorporates Bayesian optimization to enhance the discriminative performance of
the angular margin loss, an effect that is readily observable in the figure. The sub-figure on
the left depicts results using only the angular margin loss. In contrast, the right sub-figure
demonstrates the results of the neural network trained using the proposed technique. The
comparison between the two figures clearly reveals that our method achieves superior
intraclass compactness and interclass discrepancy compared to the traditional approach.
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from the proposed traffic sign recognition without Bayesian optimization (test accuracy: 96.74%);
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These findings emphasize the crucial role of appropriate margin settings in angular
margin loss-based traffic sign recognition. Furthermore, they affirm that the proposed
method can significantly improve traffic sign recognition performance. The technique’s
effectiveness in enhancing the discriminative capability of the angular margin loss in traffic
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sign recognition is clearly demonstrated through the experimental results on the GTSRB.
In summary, our technique has great potential to substantially boost the performance of
traffic sign recognition systems. It could serve as a valuable tool for a plethora of real-world
applications (Table 1).

Table 1. Detection performance of different methods on the TT100K.

Method Input Size Backbone FPS MAP@.5

YOLOv5s [27] 640 × 640 CSPDarknet 136 80.1
YOLOv7-tiny [28] 640 × 640 E-ELAN 142 84.3

YOLOX [43] 640 × 640 CSPDarknet 55 84.9
AIE-YOLO [44] 640 × 640 CSPDarknet 87 83.5
TRD-YOLO [45] 640 × 640 CSPDarknet 73 86.5
Ours (YOLOv5s) 640 × 640 CSPDarknet 130 83.2

Ours (YOLOv7-tiny) 640 × 640 E-ELAN 138 87.9

4.3. Experimental Results on TT100K

The TT100K dataset, as illustrated in Figure 1, comprises numerous diverse traffic signs
within a single image. Thus, it is better to consider this dataset a detection benchmark that
evaluates both classification and localization instead of merely a classification benchmark.
The primary aim of the experiment was to ascertain the performance enhancement achieved
by our proposed technique, which improves sign recognition, when applied to YOLOv5s
and YOLOv7-tiny models. For the performance evaluation, we used two crucial metrics:
frames per second (FPS) and mean average precision at an intersection over union threshold
of 0.5 (MAP@.5).

FPS indicates how many frames the model can process within a second. A higher FPS
suggests a faster model capable of handling more data in less time. MAP@.5, on the other
hand, is an evaluation metric for object detection models that represents the average pre-
cision of the model at various recall levels when the intersection over union (IoU) is
0.5 or above. A higher MAP@.5 suggests a more accurate model. All experiments
were carried out on an RTX 3060 GPU with a configured input size of 640 × 640 for all
the models.

The baseline YOLOv5s model, leveraging the CSPDarknet backbone, achieved an
FPS value of 136 and a MAP@.5 score of 80.1. YOLOv7-tiny, using E-ELAN as its back-
bone, outperformed YOLOv5s, reaching an FPS value of 142 and a MAP@.5 score of 84.3.
Other models such as YOLOX and AIE-YOLO, also employing the CSPDarknet backbone,
achieved FPS values of 55 and 87, respectively, with corresponding MAP@.5 scores of
84.9 and 83.5. Notably, TRD-YOLO achieved the highest accuracy, with a MAP@.5 score
of 86.5 but at a slightly slower FPS of 73. Upon integrating our proposed method with
the YOLOv5s and YOLOv7-tiny models, we observed substantial improvements. The
enhanced YOLOv5s model, referred to as “Ours (YOLOv5s),” achieved an FPS value of
130 and a MAP@.5 score of 83.2, indicating improved accuracy despite a slight decrease in
speed. Our modified version of the YOLOv7-tiny model, denoted as “Ours (YOLOv7-tiny),”
achieved the highest performance with an FPS value of 138 and an outstanding MAP@.5
score of 87.9. As depicted in Figure 3, our proposed method improved the confidence scores
of the models in correctly identifying and drawing the bounding box around the signboard
class. This enhancement led to an increase in accuracy, especially for the YOLOv7-tiny
model, without significantly affecting the processing speed. The balance between speed
and accuracy is crucial for object detection models’ real-world applications, proving that
our method is effective at achieving this equilibrium.
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Figure 3. The TT100K test dataset sample provides the results for traffic sign detection as follows: the
first set of results represent detection by the YOLOv5s model; the second set showcases the detection
performance of YOLOv5s enhanced with our proposed technique; the third set of results were
produced by the tiny-YOLOv7 model; and the fourth set represents the output of the tiny-YOLOv7
model when our proposed technique was applied. All these images are presented in vectorized
versions, allowing you to zoom in for a more detailed examination of the experimental results.

5. Conclusions

This paper introduces a novel approach to traffic sign recognition by integrating
angular margin loss and Bayesian optimization. The angular margin loss is central to
addressing the challenge of morphological similarity among traffic sign classes. Through
experimental validation, we established that this approach outperforms the traditional
softmax-based classifier. Additionally, we used Bayesian optimization to fine-tune the
margin value, a hyperparameter in angular margin loss. This key technological implemen-
tation significantly enhances the discriminative power of the proposed model. Our method
demonstrated the potential to boost intra-class compactness and overall performance by
replacing the softmax loss in the prevailing traffic sign detection models. Future work
will focus on enhancing traffic sign detection by merging object detection with traffic sign
classification. We also plan to apply a more efficient Bayesian optimization strategy and
extend our proposed Bayesian angular margin loss to other computer vision models used
in autonomous vehicles, opening up new avenues for improved performance.
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