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Abstract: A low-profile high-efficiency transmitarray antenna (TA) for beamforming applications
is proposed and investigated in this paper. The partial H-plane waveguide slot array antenna is
employed as the compact low-profile feeding structure of the beamforming TA. The designed TA
can achieve a high taper efficiency due to the multi-array sources and the compactness of the partial
H-plane waveguide. Moreover, the proposed TA can inherently have a high spillover efficiency
because the frequency selective surface (FSS) for beamforming is located just above the radiating slot.
The FSS with a transmission phase variation of 2π is designed by a square patch array and used to
manipulate the wave-front of the transmitted electromagnetic wave instead of a complicated feed
network and phase shifters. To verify its beamforming characteristic, three types of FSSs to operate
a forming angle of −40◦, −20◦, 0◦, +20◦, and +40◦ are designed at 12 GHz. The distance between
the FSS and the slot array antenna is 0.1λ0, and the aperture efficiency is measured to be about 69%.
The measured results, such as the reflection coefficient and the far-field radiation pattern, are in good
agreement with the simulated results. From the measured results, the proposed TA is confirmed to
have good beamforming characteristics and high aperture efficiency.

Keywords: beamforming; low profile; high efficiency; transmitarray antenna (TA)

1. Introduction

High-directivity beamforming and beam-steering antennas are very attractive and
useful in wireless technology, especially in 5G wireless communication, wireless power
transfer (WPT), and satellite communication. The most common method for beam control
is to employ a phased array antenna. The phased array antenna is composed of many
radiating elements and many phase shifters. Beams are formed by shifting the phase
of the signal radiating from each radiating element to provide constructive interference
to steer the beams toward the desired direction. Many types of phased array antennas
can achieve good performances in various applications [1–7]. However, the phased array
antennas have a complicated feed network with a loss that cannot be ignored in most
applications requiring high gain as the number of radiating elements increases. Moreover,
the employment of many phase shifters gives rise to high costs and additional losses.

To overcome these drawbacks of the conventional phased array antenna, transmitar-
ray antennas (TAs) have recently been researched as an alternative to the phased array
antenna [8–16]. TAs composed of a single source antenna and a planar metasurface (MS)
can be designed by controlling the phase and amplitude of the MS. To obtain a good beam-
forming characteristic, the MS should have good transmittance and a full transmission
phase variation of 2π. To achieve beam steering at the desired direction, the shape of the
transmission phase should be controlled using an active MS loaded by varactor, diode,
MEMS, piezoelectric, ferroelectric, liquid crystal (LC), and so on, and the shape of the
transmission phase should be controlled by changing the phase front of the feed source.
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To design a highly efficiency TA, there are two structurally important parameters, such
as the diameter (D) of the MS and the distance (F) from the feed antenna to the MS. The
spillover and taper efficiencies, which are determined by the amount of power reaching the
MS from the feed source and their uniformity, respectively, depend on the F/D ratio. As the
diameter of an MS increases, the spillover efficiency increases. Conversely, as the distance
of F increases, the taper (spillover) efficiency increases (decreases), respectively. Therefore,
F/D should be optimized to achieve high aperture efficiency. Most recently studied TAs
have an F/D ratio of 0.2 to 1, and F is greater than 1λ0. Therefore, many TAs are inherently
bulky and cannot be designed with a low profile. Another type of TA has a multi-array
source antenna and MS. Even if the MS is placed close to the source antenna, this type of
TA can inherently have high spillover efficiency and high taper efficiency because of the
uniform power distribution to reach the MS. As a result, a low-profile beam-steering TA
can be designed using a transmissive phase gradient MS. In [17], a conventional waveguide
slot array antenna is utilized to achieve the low-profile beam-steering TA for satellite
communication. To obtain a high directivity, large areas to implement many radiating slots
are required.

In this paper, a low-profile high-efficiency TA for beamforming applications is pro-
posed and investigated. The partial H-plane waveguide slot array antenna is utilized as
the compact low-profile feeding structure of the beamforming TA. The partial H-plane
waveguide is a transversely folded rectangular waveguide that has a partially inserted
metal vane in the H-plane [18]. As the partial H-plane waveguide is more compact than the
conventional waveguide, the number of radiating slots of the partial H-plane waveguide
slot array antenna is larger than that of the conventional waveguide slot array antenna in
the same design area. Therefore, the partial H-plane waveguide slot array antenna can
have a higher taper efficiency compared to the conventional waveguide slot array antenna.
To design an 8 × 10 array antenna, a series type of 8-way power divider for the partial
H-plane waveguide slot array antenna is proposed. An FSS, that is, any thin and repetitive
surface designed to reflect, transmit, or absorb electromagnetic waves, is employed to
control the phase and amplitude of the source antenna [19,20]. In particular, the FSS is
designed by a square patch array based on a metallo-dielectric FSS [21] and is formed
by four dielectric layers with equally spaced capacitive printed patches. Each unit cell
of the FSS is fed by each slot of a partial H-plane waveguide slot array antenna and is
symmetrically located above the slot. The phase set required for beamforming is controlled
by the unit cell dimension of the FSS located above each slot. To confirm its beamforming
performance, three types of FSSs to operate a forming angle of −40◦, −20◦, 0◦, +20◦, and
+40◦ are designed and integrated into the slot array antenna at 12 GHz. The organization of
this paper is as follows. In Section 2, the design procedure of the two-dimensional (2D) par-
tial H-plane waveguide slot array antenna is described. In Section 3, the unit cell of the FSS
is theoretically analyzed, and its transmittance characteristic is confirmed by a full-wave
simulation. Moreover, the beamforming performance of the partial H-plane waveguide
slot array antenna integrated with the FSS is verified by simulated and measured results.
Finally, the conclusion is presented in Section 4.

2. Design of 2D Partial H-Plane Waveguide Slot Array Antenna

The compact partial H-plane waveguide in Figure 1 was proposed in [18]. The propa-
gation constant (βy) of a longitudinal direction and cut-off frequency (fc) can be calculated
by the following [18]:

βy =

√
β2

0 − β2
z1 −

(
2mπ

w

)2

(m = 0, 1, 2, · · ·) (1)

fc =
c

2π

√
β2

z1 +

(
2mπ

w

)2

(m = 0, 1, 2, · · ·) (2)
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where c and w are the velocity of light and the width of the partial H-plane waveguide,
respectively. β0 and βz1 are the wave number in the air and the wave number of the
z-direction in the region 1, respectively.
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Figure 1. Structure of the partial H-plane waveguide.

Figure 2a shows the structure of the 1 × 10 partial H-plane waveguide slot array
antenna. The slot length is nearly λ0/2, and its width is assumed to be small. To be excited
in phase for all the slots, the array with slots spaced λg/2 apart and with alternating slots
on the opposite side of the center line is employed [22,23]. The longitudinal shunt slot does
not radiate when the slot is located at the centered line because the transverse current and
the longitudinal magnetic field are zero in the dominant mode. The longitudinal magnetic
field symmetrically increases with offset distance from the centered line of the top plane
of a partial H-plane waveguide. The slot offset is determined to be at a maximum value
of 4.25 mm considering a fabrication process so that maximum excitation level at each
slot can be achieved. The extended ground is designed to place the unit cell of an FSS
on the slot symmetrically. The unit cell of an FSS is described in detail in Section 3. The
dimensions of the designed 1 × 10 partial H-plane waveguide slot array antenna operating
at 12 GHz are listed in Table 1. In summary, the slot length (l) and the slot periodicity
(p) are nearly λ0/2 and λg/2, respectively, and are optimized for in-phase excitation at all
slots. The slot width is 0.35 mm in this paper, so that can be assumed to be small. Also,
when the slot offset (x) increases, the aperture efficiency is improved. Figure 2b shows the
structure of the 8 × 10 partial H-plane waveguide slot array antenna with power divider
operating at 12 GHz. To maintain the electric and magnetic field distribution in the divided
partial H-plane waveguide, the vane of the input port of the power divider is split and
connected to the output ports. The 8 × 10 partial H-plane waveguide slot array antenna
is designed using a seven two-way power divider, as shown in Figure 2b. To excite the
dominant mode of the designed array antenna, the coaxial transition as a feeding structure
is used considering a fabrication. A coaxial probe from the narrow sidewall is inserted into
the rectangular intaglio in the metal vane, and it is located at about a quarter wavelength
long distance from the end metal wall. After optimizing the feeding structure, we find
the dimension of a rectangular intaglio in the metal vane. The width and height of the
rectangular intaglio are 3.4 mm and 2.26 mm, respectively. We confirm that all transmission
is achieved, and the dominant mode is excited at partial H-plane waveguide at 12 GHz.
The full-wave simulated reflection coefficient and realized gain of the designed array
antenna are presented in Figure 3a and b, respectively. The simulated reflection coefficient
is−23.67 dB at the operation frequency, and the−10 dB fractional bandwidth is 0.93%. The
simulated maximum gain of the designed slot array antenna is 25.3 dBi at 12 GHz. As the
width of the partial H-plane waveguide is inherently smaller than that of the conventional
waveguide, the partial H-plane waveguide slot array antenna can have more radiating slots
than the conventional waveguide slot array antenna in the same design area. Therefore,
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the taper efficiency (ηt) of the partial H-plane waveguide slot array antenna can be higher
than that of the conventional waveguide slot array antenna. To confirm this property, we
calculate and compare their taper efficiency in the plane where the FSS is located using
Equation (3), as follows:

ηt =
1
S
·
∣∣∫ E(x, y)dS

∣∣2∫
|E(x, y)|2dS

(3)

where S is the area of the FSS [24]. The tangential electric field of the area where the FSS is
placed is calculated by the commercial ANSYS Electronics desktop software. The design
area of the 8 × 10 partial H-plane waveguide slot array antenna is nearly the same as
that of the 6 × 10 waveguide slot array antenna. The simulated taper efficiencies of the
designed 8 × 10 partial H-plane waveguide slot array antenna and the 6 × 10 conventional
waveguide slot array antenna are 77% and 71%, respectively.
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Figure 2. Structure of the partial H-plane waveguide slot array antenna. (a) 1 × 10 array and
(b) 8 × 10 array with power divider.

Table 1. Dimensions of the designed 1× 10 partial H-plane waveguide slot array antenna (unit: mm).

Cross Section
(w × h)

Slot Length
(l)

Slot Periodicity
(p)

Offset
(x)

Length of Extended
Ground (e)

9.43 × 9.43 11.2 16.145 4.25 2.5

Electronics 2023, 12, x FOR PEER REVIEW 4 of 10 
 

 

waveguide, the partial H-plane waveguide slot array antenna can have more radiating 
slots than the conventional waveguide slot array antenna in the same design area. There-
fore, the taper efficiency (ηt) of the partial H-plane waveguide slot array antenna can be 
higher than that of the conventional waveguide slot array antenna. To confirm this prop-
erty, we calculate and compare their taper efficiency in the plane where the FSS is located 
using Equation (3), as follows: 𝜂 = ∙ | , || , |   (3)

where S is the area of the FSS [24]. The tangential electric field of the area where the FSS 
is placed is calculated by the commercial ANSYS Electronics desktop software. The design 
area of the 8 × 10 partial H-plane waveguide slot array antenna is nearly the same as that 
of the 6 × 10 waveguide slot array antenna. The simulated taper efficiencies of the designed 
8 × 10 partial H-plane waveguide slot array antenna and the 6 × 10 conventional wave-
guide slot array antenna are 77% and 71%, respectively.  

 
 

(a) (b) 

Figure 2. Structure of the partial H-plane waveguide slot array antenna. (a) 1 × 10 array and (b) 8 × 
10 array with power divider. 

Table 1. Dimensions of the designed 1 × 10 partial H-plane waveguide slot array antenna (unit: mm). 

Cross Section 
(w × h) 

Slot Length  
(l) 

Slot Periodicity  
(p) 

Offset  
(x) 

Length of Extended 
Ground (e) 

9.43 × 9.43 11.2 16.145 4.25 2.5 
 

  
(a) (b) 

0 / 2l λ≈

/ 4gλ

x

z

w

h

0 / 2l λ≈

/ 4gλ

gp λ=

x

e (Extended ground)

11.5 11.6 11.7 11.8 11.9 12.0 12.1 12.2 12.3 12.4 12.5
0

5

10

15

20

25

30

G
ai

n 
(d

Bi
)

Frequency (GHz)

 Simulation

Figure 3. Full-wave simulated results. (a) Reflection coefficient and (b) realized gain versus frequency.
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3. Beamforming Partial H-Plane Waveguide Slot Array Antenna

To design the FSS for the proposed beamforming slot array antenna, a square patch
array is presented in this paper. The unit cell is based on a metallo-dielectric FSS [21] and
formed by three dielectric layers with equally spaced capacitive square-printed patches,
as shown in Figure 4. The patch array FSS has the characteristic of a low-pass filter and
can have a transmission phase variation of 2π, which can be controlled by the dimension
of a patch in the passband. If the TA has multi-array sources, both spillover and taper
efficiencies are inversely proportional to F/D ratio. When distance (F) between the FSS
and the slot array antenna becomes narrow, the aperture efficiency is improved. However,
the fabricated FSS has to be integrated with the 2D partial H-plane waveguide array
antenna, and a minimum space for the supporter is required. As a result, the distance
(F) is chosen as 2.5 mm (0.1λ0 at 12 GHz). Figure 5 shows the simulation setup to obtain
the transmittance response in the commercial ANSYS Electronics desktop software. The
operation frequency of the FSS is 12 GHz, and the utilized substrate for the FSS is TLY-5
(εr = 2.2 and tan δ = 0.0009). The thickness of one substrate (hm) and the dimension (wm)
of the unit cell are 0.8 mm and 14.43 mm, respectively. The transmittance can be obtained
by 1-Γ2 (Γ = reflection coefficient at port), and the transmission phase can be calculated by
the difference in the transverse electric field through the FSS. The unit cell is symmetrically
located above the slot, and the dimension of the unit cell is designed to be equal to the
slot periodicity to obtain the same transmission characteristics for the slot source. Table 2
shows the transmittance response of the optimized FSS against patch dimension. When
the dimension of a patch is larger than 7 mm, the transmittance is less than 0.9 and poorer
than those of others. Thus, as pw2 is larger than 7 mm, we simulated and computed
transmittances and transmission phases by changing pw1 with fixed pw2, where pw1 is
the dimension of the first and fourth patches, and pw2 is the dimension of the second
and third patches. As a result, the unit cell has a good transmittance (>0.9) and a full
transmission phase variation of about 530◦ by changing the dimensions of the patches, as
shown in Table 2.

Electronics 2023, 12, x FOR PEER REVIEW 5 of 10 
 

 

Figure 3. Full-wave simulated results. (a) Reflection coefficient and (b) realized gain versus fre-
quency. 

3. Beamforming Partial H-Plane Waveguide Slot Array Antenna 
To design the FSS for the proposed beamforming slot array antenna, a square patch 

array is presented in this paper. The unit cell is based on a metallo-dielectric FSS [21] and 
formed by three dielectric layers with equally spaced capacitive square-printed patches, 
as shown in Figure 4. The patch array FSS has the characteristic of a low-pass filter and 
can have a transmission phase variation of 2π, which can be controlled by the dimension 
of a patch in the passband. If the TA has multi-array sources, both spillover and taper 
efficiencies are inversely proportional to F/D ratio. When distance (F) between the FSS and 
the slot array antenna becomes narrow, the aperture efficiency is improved. However, the 
fabricated FSS has to be integrated with the 2D partial H-plane waveguide array antenna, 
and a minimum space for the supporter is required. As a result, the distance (F) is chosen 
as 2.5 mm (0.1λ0 at 12 GHz). Figure 5 shows the simulation setup to obtain the transmit-
tance response in the commercial ANSYS Electronics desktop software. The operation fre-
quency of the FSS is 12 GHz, and the utilized substrate for the FSS is TLY-5 (εr = 2.2 and 
tan δ = 0.0009). The thickness of one substrate (hm) and the dimension (wm) of the unit cell 
are 0.8 mm and 14.43 mm, respectively. The transmittance can be obtained by 1-Γ2 (Γ = 
reflection coefficient at port), and the transmission phase can be calculated by the differ-
ence in the transverse electric field through the FSS. The unit cell is symmetrically located 
above the slot, and the dimension of the unit cell is designed to be equal to the slot perio-
dicity to obtain the same transmission characteristics for the slot source. Table 2 shows the 
transmittance response of the optimized FSS against patch dimension. When the dimen-
sion of a patch is larger than 7 mm, the transmittance is less than 0.9 and poorer than those 
of others. Thus, as pw2 is larger than 7 mm, we simulated and computed transmittances 
and transmission phases by changing pw1 with fixed pw2, where pw1 is the dimension of 
the first and fourth patches, and pw2 is the dimension of the second and third patches. As 
a result, the unit cell has a good transmittance (>0.9) and a full transmission phase varia-
tion of about 530° by changing the dimensions of the patches, as shown in Table 2. 

 
Figure 4. Unit cell of the designed frequency selective surface (FSS). 

 

hm

wm

pw1pw2

Patch Substrate

Figure 4. Unit cell of the designed frequency selective surface (FSS).

Electronics 2023, 12, x FOR PEER REVIEW 6 of 10 
 

 

 
Figure 5. Simulation setup for the transmittance response of the unit cell of the FSS. 

Table 2. Transmittance responses of the designed FSS against patch dimensions (unit: mm). 

pw1 0.5 1 1.5 2 2.5 3 3.5 4 
pw2 0.5 1 1.5 2 2.5 3 3.5 4 

Transmittance 
(Linear) 

0.91 0.9 0.91 0.93 0.95 0.97 0.99 0.99 

Transmission phase 
(Degree) 

−73 −76.9 −77.5 −81.8 −88 −96.6 −106.3 −120.9 

pw1 4.5 5 5.5 6 6.5 6.6 6.9 7.3 
pw2 4.5 5 5.5 6 6.5 7 7.5 7.7 

Transmittance 
(Linear) 0.99 0.97 0.95 0.95 0.98 0.99 0.97 0.9 

Transmission phase 
(Degree) −134.1 −150.6 −162.1 −170.8 −181.6 −252.6 −404.9 −604.5 

Figure 6 shows the structure of the proposed beamforming partial H-plane wave-
guide slot array antenna. The distance between the FSS and the 2D partial H-plane wave-
guide array antenna is 0.1λ0. The overall dimension of the proposed beamforming array 
antenna is 120.44 mm (width) × 261.45 mm (length) × 9.43 mm (height). To achieve the 1D 
beamforming in the x–z plane, the array factor (AF) of a uniform amplitude and spacing 
can be considered because the magnitudes of the incident field at the unit cell of the FSS 
are nearly identical. When the array distance is dx in the x-axis, the AF of the array is ex-
pressed as AF = ∑ 𝑒𝑥𝑝 𝑗 𝑛 − 1 𝑘𝑑 𝑐𝑜𝑠𝜃 + 𝛽   (4)

where N and βx are the number of arrays and the phase difference between the adjacent 
units in the x-direction, respectively [24]. The phase difference for radiating toward a spe-
cific angle can be calculated from Equation (4) and controlled by the designed FSS. The 
dimensions of the cells of the FSS for eight rows against the beamforming angle of 0°, +20°, 
and +40° are listed in Table 3. Similarly, the dimensions of the cells of the FSS for −20° and 
−40° are symmetrical to the y-axis. Figure 7 shows the photographs of the fabricated beam-
forming 8 × 10 partial H-plane waveguide slot array antennas using an FSS. To verify the 
performance of the proposed beam-steering array antenna, we simulate and measure the 
reflection coefficient, far-field radiation pattern, peak gain, and aperture efficiency. The 
measured reflection coefficients at −40°, −20°, 0°, +20°, and +40° are −9.1 dB, −8.2 dB, −10.3 
dB, −7.7 dB, and −9.3 dB at the resonance frequency, respectively. The designed FSS does 
not have 100% transmittance performance and is located close to the slot array antenna. 

 Patch

Slot

Vane

Extended
GND

0.1λ0

Figure 5. Simulation setup for the transmittance response of the unit cell of the FSS.



Electronics 2023, 12, 3178 6 of 10

Table 2. Transmittance responses of the designed FSS against patch dimensions (unit: mm).

pw1 0.5 1 1.5 2 2.5 3 3.5 4

pw2 0.5 1 1.5 2 2.5 3 3.5 4

Transmittance
(Linear) 0.91 0.9 0.91 0.93 0.95 0.97 0.99 0.99

Transmission phase
(Degree) −73 −76.9 −77.5 −81.8 −88 −96.6 −106.3 −120.9

pw1 4.5 5 5.5 6 6.5 6.6 6.9 7.3

pw2 4.5 5 5.5 6 6.5 7 7.5 7.7

Transmittance
(Linear) 0.99 0.97 0.95 0.95 0.98 0.99 0.97 0.9

Transmission phase
(Degree) −134.1 −150.6 −162.1 −170.8 −181.6 −252.6 −404.9 −604.5

Figure 6 shows the structure of the proposed beamforming partial H-plane waveguide
slot array antenna. The distance between the FSS and the 2D partial H-plane waveguide
array antenna is 0.1λ0. The overall dimension of the proposed beamforming array antenna
is 120.44 mm (width) × 261.45 mm (length) × 9.43 mm (height). To achieve the 1D
beamforming in the x–z plane, the array factor (AF) of a uniform amplitude and spacing
can be considered because the magnitudes of the incident field at the unit cell of the FSS
are nearly identical. When the array distance is dx in the x-axis, the AF of the array is
expressed as

AF = ∑N
n=1 exp{j(n− 1)(kdxcosθ + βx)} (4)

where N and βx are the number of arrays and the phase difference between the adjacent
units in the x-direction, respectively [24]. The phase difference for radiating toward a
specific angle can be calculated from Equation (4) and controlled by the designed FSS.
The dimensions of the cells of the FSS for eight rows against the beamforming angle of
0◦, +20◦, and +40◦ are listed in Table 3. Similarly, the dimensions of the cells of the FSS
for −20◦ and −40◦ are symmetrical to the y-axis. Figure 7 shows the photographs of the
fabricated beamforming 8 × 10 partial H-plane waveguide slot array antennas using an
FSS. To verify the performance of the proposed beam-steering array antenna, we simulate
and measure the reflection coefficient, far-field radiation pattern, peak gain, and aperture
efficiency. The measured reflection coefficients at −40◦, −20◦, 0◦, +20◦, and +40◦ are
−9.1 dB, −8.2 dB, −10.3 dB, −7.7 dB, and −9.3 dB at the resonance frequency, respectively.
The designed FSS does not have 100% transmittance performance and is located close to
the slot array antenna. Thus, the impedance matching of a total beamforming antenna
system is not sufficiently good. It is expected to improve the reflection coefficient by
an FSS with a perfect transmittance. The far-field radiation pattern and peak gain are
measured in the full anechoic chamber system. The anechoic chamber is composed of a
shield enclosure (size: 4 m × 2.5 m × 2.5 m), 18-inch pyramidal absorber, network analyzer,
wireless communication test set, positioner, turn table, and dual-polarized transmit antenna.
Figure 8 shows the full-wave simulated and measured far-field radiation pattern in the
x–z plane. The measured results are in good agreement with the simulated results. The
measured peak gains at −40◦, −20◦, 0◦, +20◦, and +40◦ are 21.2 dBi, 23.6 dBi, 24.3 dBi,
23.6 dBi, and 21.3 dBi, respectively. The measured radiation patterns, including a forming
angle, are well matched with the simulated results, even though the measured maximum
peak gains are 1~1.5 dB lower than the simulated results. The discrepancy between both
results is caused by the loss of a coaxial transition as a feeding structure. Moreover, the high
aperture efficiencies at−40◦, −20◦, 0◦, +20◦, and +40◦ are measured as 44.2%, 62.7%, 69.2%,
62.2%, and 45.4%, respectively. Table 4 shows the comparison of the performances between
the previously published TAs and the proposed antenna. The single-source TA cannot
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achieve a low profile to obtain a relatively high aperture efficiency. However, the phase
gradient FSS for the beamforming multi-source TA can be located close to multi-sources
with a high taper and spillover efficiencies because of the uniform power distribution and
the proximity of the FSS and sources, respectively. Therefore, using multi-sources rather
than a single source is more appropriate to achieve an extremely low profile and a highly
efficient beamforming TA.
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Figure 7. Photographs of the fabricated beamforming 8 × 10 partial H-plane waveguide slot array
antennas using an FSS. (a) 0◦, (b) +20◦, and (c) +40◦.
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Table 4. Comparison of the performances between the previously published TAs and the
proposed antenna.

Ref. [16] Ref. [25] Ref. [26] Ref. [27] Ref. [28] This Work

Operation frequency (GHz) 31 10.3 18 14.25 20 12

F/D 1.27 0.49 7.1 1.4 1.37 0.013

Aperture efficiency (%) 61.3 21.8 51.4 60.3 53.5 69.2

4. Conclusions

A 2D partial H-plane waveguide slot array antenna integrated with an FSS is proposed
and designed to achieve a beamforming TA in this paper. The designed TA has a high
taper efficiency by the multi-array sources and the compactness of the partial H-plane
waveguide. Moreover, the proposed TA can inherently have a high spillover efficiency
because the FSS cell is located just above the radiating slot, which can prevent the leakage
of power. The FSS is designed by a square patch array based on a metallo-dielectric FSS
and is formed by three dielectric layers with equally spaced capacitive printed patches. To
verify its feasibility, three types of FSSs to operate a beamforming angle of −40◦, −20◦, 0◦,
+20◦, and +40◦ are designed at 12 GHz. The F/D and aperture efficiency of the proposed
antenna are 0.016 and 69.2%, respectively. From the measured results, the proposed TA is
confirmed to have good beamforming characteristics and high aperture efficiency.
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