
Citation: Wang, H.; Zhu, X.; Sun, H.;

Qian, T.; Chen, Y. A Multi-Path

Inpainting Forensics Network Based

on Frequency Attention and

Boundary Guidance. Electronics 2023,

12, 3192. https://doi.org/10.3390/

electronics12143192

Academic Editor: Chiman Kwan

Received: 11 June 2023

Revised: 14 July 2023

Accepted: 19 July 2023

Published: 24 July 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

electronics

Article

A Multi-Path Inpainting Forensics Network Based on Frequency
Attention and Boundary Guidance
Hongquan Wang 1, Xinshan Zhu 1,* , Hao Sun 1, Tongyu Qian 1 and Ying Chen 2

1 School of Electrical and Information Engineering, Tianjin University, Tianjin 300072, China;
wanghongquan@tju.edu.cn (H.W.); sunhao17@baidu.com (H.S.); tongyuqian0115@hotmail.com (T.Q.)

2 Beijing SGITG-ACCENTURE Information Technology Co., Ltd., Beijing 100052, China;
cheny15@tsinghua.org.cn

* Correspondence: xszhu@tju.edu.cn

Abstract: With the continuous advancement of image-editing technologies, it is particularly important
to develop image forensics methods for digital information security. In this study, a deep neural
network called multi-path inpainting forensics network (MPIF-Net) was developed to locate the
inpainted regions in an image. The interaction of shallow and deep features between different paths
was established, which not only preserved detailed information but also allowed for the further
mining of deep features. Meanwhile, an improved residual dense block was employed as the deep
feature extraction module of each path, which can enhance the feature extraction ability of the model
by introducing a frequency domain attention mechanism. In addition, a boundary guidance module
was constructed to alleviate the prediction distortion in the boundaries of the inpainted region.
Finally, extensive experimental results regarding various deep inpainting datasets demonstrated that
the proposed network can accurately locate inpainted regions, exhibit excellent generalization and
robustness, and verify the effectiveness of the designed module.

Keywords: image-inpainting forensics; deep learning; attention mechanism; ffrequency domain

1. Introduction

With the advancement of deep learning (DL), especially with respect to image genera-
tion technology, many novel image-tampering methods, such as inpainting and deepfakes,
have rapidly developed. These methods leave weak tampering traces and thus their in-
fluence is more difficult to recognize. This poses a serious threat to the security of digital
media, which, in turn, negatively impacts fields such as science, politics, and commerce
and, ultimately, may even undermine social stability. On the contrary, existing research
on image-tampering forensics is still relatively limited, and it is difficult to cope with the
emerging image-tampering technologies. Therefore, in the field of information security,
the demand for digital image forensics technology continues to increase. It is critical to de-
velop practical forensic methods to counter these rapidly improving digital image-editing
technologies [1].

Image inpainting is a fundamental research topic in the field of computer vision
and image processing. The aim of this process is to repair damaged image information
or remove unwanted content in an imperceptible way [2–4], as shown in the example
in Figure 1. In the past two decades, academia has proposed a large number of image-
inpainting algorithms. In particular, the rapid development of deep learning technology
has greatly accelerated the progress of this technology in recent years [5–8]. Many mature
inpainting technologies have not only been widely used but also integrated into some
advanced image-editing software. However, image-inpainting technologies have also
become convenient tools for maliciously tampering with images, so the development of
forensic methods for inpainting has become a major topic in the field of digital image
forensics. Due to the diversity and continuous innovation of inpainting technologies,
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along with the joint effect produced by their combination with other image manipulations,
inpainting forensics is more problematic and more complex than other areas of image
manipulation forensics [1].
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The existing forensic methods for image inpainting can be divided into two cate-
gories: conventional inpainting forensics methods and deep-learning-based inpainting
forensics methods.

1.1. Conventional Inpainting Forensics Methods

Traditional forensic methods rely on manually designed feature extraction. Initially,
Wu et al. [9] proposed the zero-connectivity length (ZCL) feature to measure the similarity
between image patches; however, a significant drawback of this feature was that it requires
the manual selection of suspicious regions in advance. Bacchuwar et al. [10] and Chang
et al. [11] proposed similar nearest neighbor image patch search methods that can accelerate
the search process, but they can also lead to a decrease in search accuracy. The maximum
zero-connectivity component was constructed to label features in [12], which can improve
the search speed of suspicious image patches through central pixel mapping, but the
inpainted region is easily identified as some isolated and suspicious regions that should be
ignored, leading to a decrease in accuracy.

Jin et al. [13] designed a robust inpainting forensic method based on canonical corre-
lation analysis (CCA); however, it could not locate the tampered region. Zhang et al. [14]
established a joint probability density matrix (JPDM) to represent the correlation of adjacent
discrete cosine transform (DCT) coefficients. This method has good robustness against
post-processing operations, but like the method presented in [13], it also fails to achieve the
localization of inpainted regions.

The above forensics methods are all proposed for exemplar-based inpainting [2]. For
diffusion-based inpainting technology [4], Li et al. [15] proposed constructing feature
vectors using local variances within and between color channels, and an ensemble classifier
was trained to locate inpainted regions. This method is effective, but its robustness needs
to be further improved. On this basis, the method’s forensic performance was further
improved via weighted least squares filtering [16].

Since image inpainting, especially deep-learning-based inpainting, does not leave
apparent traces of manipulation, it is often quite difficult to manually design the corre-
sponding forensics features. In addition, the features of traditional forensics are generally
designed based on the principles of inpainting approaches and the observation of a small
number of sample images. Therefore, the limitations of manually designing features result
in the unsatisfactory effectiveness and robustness of the corresponding forensics methods.

1.2. Deep-Learning-Based Inpainting Forensics Methods

Regarding exemplar-based inpainting [2], Zhu et al. [17] developed a full convolutional
network (FCN) based on the encoder–decoder structure and adopted pixel-level labelling
and a weighted cross entropy loss function to determine the location of the inpainting
region. This method is significantly superior to conventional inpainting forensics in terms
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of detection accuracy and robustness and can further improve performance by introducing
a skip structure [18]. An inpainting forensics method combining a CNN and a long short-
term memory (LSTM) network was proposed in [19]; it helped to improve robustness
and reduce the false alarm rate. Wang et al. [20] constructed a forensic network based
on Mask R-CNN. This method enables location, recognition, and density prediction for
exemplar-based inpainting. Further, considering that the FPN of Mask R-CNN cannot fully
utilize all scale feature information, a multi-task deep learning method [21] was designed
by combining feature pyramid networks and back connections, allowing for the acquisition
of more feature information.

Li et al. [22] proposed the first forensic network for deep inpainting approaches.
The network uses residual blocks to construct the backbone for feature extraction, and
high-pass filters were designed as a preprocessing module to enhance inpainting traces
and improve localization performance. For diffusion-based inpainting, Zhang et al. [23]
designed a U-Net-based forensics network that utilizes a feature pyramid network to
enhance multi-scale feature representation and constructs a stagewise weighted cross
entropy loss function to improve localization accuracy. Liu et al. [24] proposed a progressive
spatial channel correlation network (PSCC-Net) based on the backbone network of a multi-
stream structure [25] that can locate the tampered regions in images that are spliced,
copy-moved, and inpainted. Recently, Wu et al. [26] proposed an end-to-end inpainting
detection network that was dubbed IID-Net. IID-Net includes a feature enhancement
module, a feature extraction module, and a decision module, and uses a neural structure
search algorithm [27] to automatically design the structure of the feature extraction module,
thereby significantly improving forensic accuracy and robustness. Finally, Wu et al. [28]
constructed a general forensic network, known as ManTra-Net, which is composed of two
parts: a manipulation-trace feature extractor and a local anomaly detection network. This
network can detect multiple types of image manipulation, such as splicing, copy-moving,
inpainting, etc.

Through end-to-end learning, DCNN can directly learn features and optimize final
decisions from a set of data. Therefore, the DL-based inpainting forensics method can
circumvent the difficult process of manually extracting features and achieve significantly
better performance than conventional forensics methods. However, in response to the
continuous development of inpainting technology, there are still some issues that need
to be addressed with respect to the current deep forensic methods, such as the lack of
discriminative inpainting features, significant false alarms and missed detections, loss of
detail information, distorted boundary localization, robustness that needs further improve-
ment, etc.

In order to enhance inpainting forensics, the employed network should be able to
effectively capture traces of inpainting procedures and accurately locate the boundaries of
the inpainted region. Thus, in accordance with the above consideration, this paper proposes
a multi-path inpainting forensics network (MPIF-Net) based on frequency attention and
boundary guidance. The main contributions of this work are as follows.

First, a network structure with multiple parallel paths is proposed that facilitates
the capture of more abundant detail information, and connections between shallow and
deep layers on different paths are constructed to fuse features and promote the reuse of
deep features.

Second, by introducing an improved attention mechanism, a deep feature extraction
module is designed to further enhance the feature extraction ability in relation to inpainting
traces. Then, a boundary guidance module is designed to make the network more attentive
to the boundaries of the inpainted region.

Finally, the proposed inpainting forensics method is compared with state-of-the-art
methods with respect to their performance when applied to established deep inpainting
datasets, and the robustness and generalization of the model are verified.

The remainder of this paper is organized as follows. In Section 2, the design concept
and details of MPIF-Net are carefully described. Next, Sections 3 and 4 introduce two spe-
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cially designed modules in the network, respectively, while the loss function for training
the network is proposed in Section 5. Then, a series of experiments performed to evaluate
the proposed MPIF-Net is presented in Section 6. Finally, Section 7 concludes this paper.

2. The Multi-Path Inpainting Forensics Network

In this section, the design concept of the MPIF-Net is described in detail, followed by
its structure, and the decoder and encoder designs of the MPIF-Net are introduced.

2.1. Overview of MPIF-Net

In this paper, a network structure with a multi-path framework designed in parallel
is proposed (as shown in Figure 2). The network structure can combine information from
different paths to reduce the loss of detail information, thereby improving the ability of the
model to capture detail information. Considering the great success of the encoder–decoder
structure [29] in image segmentation and generation and other visual tasks, this structure
is employed as the basic structure of each path in this paper.
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At the same time, an attention-aware residual dense block (AARDB) with an attention
mechanism is designed as the deep feature extraction module of the network. This module
combines the attention mechanism with a Residual Dense Block (RDB) [30] to effectively
enhance the feature extraction ability of the network.

In addition, due to the importance of boundary information in inpainting forensics
tasks, a boundary guide module (BGM) is proposed to further improve the forensics
performance of the proposed model. The BGM is utilized to encourage the model to pay
more attention to the boundaries of the inpainted region.

In the conventional encoder–decoder network, progressive down-sampling operations
are usually used to capture high-level semantic features, but this inevitably causes the
loss of detail information. This is unfavorable for image inpainting forensic tasks. To
address the issue and improve feature expression, a network for inpainting forensics was
established in a parallel multi-path style, and the connections between shallow and deep
layers on different paths were constructed for information exchange and the reuse of deep
features. Shallow features that do not lose resolution retain abundant detail information,
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while deep features contain higher-level semantic information, allowing for the acquisition
of more discriminative features through their fusion. Finally, the efficient feature extraction
module AARDB was employed to further mine deep features related to inpainting traces
from fused features while providing them to the next path for reuse.

2.2. Design of Encoder

The three paths of the encoder were developed using the same structure, that is, a
convolution block, an independent convolution layer, and an attention-aware residual
dense module (AARDM).

Firstly, given an image I ∈ RW×H×3 that is considered forensic, low-level features
with 16 channels are extracted through a convolutional block for each path, which consists
of a convolution layer with a kernel size of 3 × 3, a batch normalization layer, and a ReLU
activation layer. The process of generating low-level features XLi on the i-th path can be
expressed as

XLi = FCi(I)i ∈ {1, 2, 3} (1)

where FCi(·) represents the composite operation performed by the above convolution block
on the i-th path. Then, excluding the first path, the currently obtained shallow features
in path 2 and path 3 are concatenated and fused with the deep features input from the
previous path, which is implemented through an independent 3 × 3 convolutional layer.
Although the first path does not introduce high-level features, the first path is also set
with the same convolutional layer at the same location to ensure a balance of structure
and performance. Let FFi(·) represent the feature fusion performed by the independent
convolutional layer on the i-th path; then, the process of obtaining fused features XFi
described above can be written as follows:

XFi = FFi([XLi, XHi−1])i ∈ {2, 3} (2)

where XLi and XHi−1 represent low-level features generated in the shallow layer of the i-th
path and high-level features generated in the deep layer of the previous path (i.e., the i− 1-
th path), respectively, and [·] denotes the concatenation of features along the channel. Next,
feature down-sampling is performed through convolution with a kernel size of 3 × 3 and a
stride of 2, reducing the resolution of the feature maps by 1/2 and expanding the channel
number of feature maps to 32. Finally, the feature maps are fed into an efficient feature
extraction module, namely, AARDM, to further extract deep features. The extracted deep
features are fed into the decoders in their respective paths to generate the final localization
prediction results and are also provided to a boundary guidance module for additional
supervision of the inpainted region boundary.

2.3. Design of Decoder

The decoder for each path is also designed using the same structure. First, the fea-
ture maps are bilinearly interpolated using the up-sampling layer to restore their spatial
resolution. Then, two consecutive convolutional blocks are utilized to gradually convert
the feature maps into 16-channel and 2-channel feature maps in sequence, while further
refining the feature representations regarding the localization results.

In addition, it should be noted that the feature maps output by the first convolutional
block of the decoders in path 1 and path 2 are input to the next paths of the network (namely,
path 2 and path 3, respectively), which are concatenated with the output features of the first
convolution block of the encoder in the next path to carry out feature fusion and feature
learning. This design can further expose the inpainting traces by reusing deep features
from previous paths, and it can reduce the loss of detail information through shallow and
deep feature fusion.

Finally, the two-channel feature maps obtained from the three paths are fused through
pixel-wise addition, and the fused results are fed to a Softmax layer, yielding the final
probability map ŶL for localization.
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3. Attention-Aware Residual Dense Module
3.1. Detailed Design of Module Structure

Residual dense blocks [30] constitute a feature extraction module with excellent feature-
learning ability. They are designed through combining dense connections [31] with residual
learning [32]. This study designed an improved attention module based on frequency in-
formation, namely, the frequency convolutional block attention module (FCBAM), which is
introduced into the RDBs to enhance the representation of output features. We refer to these
RDBs introduced into the FCBAM as attention-aware residual dense modules (AARDMs)
and place them at the end of the decoder in each path to extract more discriminative
deep features.

As shown in Figure 3, an AARDM consists of four densely connected 3× 3 convolution
blocks with a ReLU layer, one convolution layer that reduces the channel number of features,
one FCBAM for improving feature representation, and one residual connection.
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Firstly, each convolutional block can utilize the input features X0 of AARDM and
the ones extracted by all previous convolution blocks to facilitate feature learning and
yield 16 feature maps (i.e., a growth rate of 16). Taking the fourth convolution block as an
example, the above process can be expressed as follows:

Xi
4 = FC([Xi

0, Xi
1, Xi

2, Xi
3]) (3)

where Xi
n, n ∈ {1, 2, 3, 4} denotes the output of the n-th convolutional block of AARDM in

the i-th path, and Xi
0 denotes the input features of this AARDM. FC(·) and [·] represent the

composite operation performed by the convolution block and the feature concatenation
along the channel dimension, respectively.

Then, after all generated features and the input features are concatenated, and a
1 × 1 convolutional layer is used to fuse the connected features and convert the channel
number of connected features into the same values as the input features. Subsequently, in
order to improve the representation of fused features, FCABM is employed to recalibrate
them in order to obtain enhanced features Xi

R:

Xi
R = FFA(FC1([Xi

0, Xi
1, . . . , Xi

4])) (4)
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where FC1(·) and FFA(·) indicate the operation performed by the convolution layer with
the kernel size of 1 × 1 and the FCBAM, respectively. The specific design of the FCBAM
will be comprehensively described later.

Finally, the input features of the AARDM are introduced through residual connections
and added to the enhanced features, which can ensure stable network training and further
promote network convergence; this process can be expressed as follows:

Xi
out = Xi

R ⊕Xi
0 (5)

where ⊕ denotes pixel-wise addition, and Xi
out denotes the final output of the AARDM in

the i-th path. In MPIF-Net, the resolution of the output and input feature maps of AARDM
is consistent in each path, and their channel number is also set to 32 in order to perform
residual learning through direct addition.

Unlike RDBs, we employ the improved attention mechanism to optimize the feature
fusion, which can be beneficial for enhancing the representation of deep features.

3.2. Improved Attention Mechanism

As shown in Figure 3, all features in the AARDM are fused into a feature response
containing abundant information through a 1 × 1 convolutional layer in the AARDM.
In order to further enhance the features closely related to forensic tasks and suppress
redundant information, an improved attention module FCBAM is introduced at the end of
the AARDM to improve the representation of fused features.

An FCBAM includes two parts, namely, frequency channel attention (FCA) and spatial
attention (SA), which recalibrate the input features on the channel and spatial dimensions,
as shown in the orange box of Figure 3. An FCBAM has a similar structure to a CBAM [33],
except that it utilizes channel attention based on frequency to enhance features.

Qin et al. [34] found that only the lowest frequency component is preserved through
global average pooling (GAP) in the channel attention, while other frequency information
is completely discarded. Inspired by this, we adopt abundant frequency information in the
frequency channel attention of the FCBAM to generate channel attention maps. Specifically,
the implementation process of FCA is as follows:

(1) Firstly, the input X is evenly divided into n parts along the channel dimension, which
are denoted by the set

{
X0, X1, . . . , Xn−1}, Xi ∈ RW×H×C′ , and C′ = C/n. Each part

is assigned a corresponding 2D DCT frequency component, which is used to calculate
the 2D DCT results of that part.

(2) Then, the 2D DCT results of all the parts are concatenated as the multi-spectral channel
descriptors FC of the input X, which contains more information, and the process can
be expressed as

FC = [F0
C, F1

C, · · ·, Fn−1
C ] (6)

where Fi
C ∈ RC′ is a C′-dimensional vector that denotes the 2D DCT results of the i-th

parts Xi, and [·] represents the concatenation of features along the channel dimension.
(3) Finally, the channel attention maps MMSC based on a multi-spectral descriptor FC are

obtained as follows:
MMSC = σ(FMLP(FC)) (7)

where σ(·) is a Sigmoid function, and FMLP(·) denotes a multi-layer perceptron (MLP)
with a hidden layer and an output layer.

Based on the above design, the FCBAM module in the AARDM processes the fused
features X, and this procedure can be expressed as follows

X′ = MS ⊗ (MMSC ⊗X) (8)
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where ⊗ denotes element-wise multiplication, and X′ represents the enhanced feature
output by the FCBAM. An ablation experiment demonstrated the effectiveness of the
FCBAM in the AARDM.

4. Boundary Guidance Module

The target of image forensics is very similar to the target of semantic segmentation,
and accurately fitting the boundary of the mask is one of its main challenges. Therefore, we
have designed a boundary guidance module to enhance the localization of the boundary of
the inpainted region in order to further improve forensic performance.

As shown in Figure 4, the final feature responses generated by the decoders of the
three paths are fused via the boundary guidance module (BGM); then, the fused features
are utilized to predict the boundary of the inpainted region. By monitoring the prediction
results, the network can pay more attention to the boundary of the inpainted region; thus,
the prediction distortion of the boundary can be effectively alleviated.
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Specifically, through the proposed network structure, shallow and deep features on
different paths are fused and fed to the specially designed AARDB to further improve
feature expression. Let XB1, XB2, and XB3 represent the deep features extracted by the
AARDM module of each path. In this process, the shallow features on the current path
can compensate for the detail information, while the deep features introduced from the
previous path can be further utilized. The resolution of the above features is first restored
to the size of the input image through the up-sampling layers as follows:

X′Bi = FUS(XBi)i ∈ {1, 2, 3} (9)

where FUS(·) denotes the up-sampling operation, and X′Bi represents the result of up-
sampling the corresponding feature XBi. Afterward, all the restored resolution features are
concatenated along the channel dimension and then fused through a convolutional layer
with a kernel size of 3 × 3, as follows:

X′′ = Conv([X′B1, X′B2, X′B3]) (10)

where [·] represents the features’ concatenation along the channel dimension, Conv(·)
denotes the convolutional operation, and the dimensions of the fused features X′′ are
consistent with those of X′Bi. Therefore, the fused features X′′ contain abundant spatial
details and high-level semantic information obtained through different paths.



Electronics 2023, 12, 3192 9 of 17

It is worth noting that the BGM is only used during the training phase of the model,
so the application of this module will not increase the inference time during the testing
phase. An ablation study verified the effectiveness of BGM.

5. Loss Function

In order to obtain an optimal forensics model, it is necessary to design a loss function
to measure the consistency between the predicted results yielded by the model and the true
values and provide a basis upon which the optimizer can update the network parameters
simultaneously. An appropriate loss function can promote convergence and improve the
forensic performance of a network. As a loss function commonly used in various dense
prediction tasks, including inpainting forensics [17,24], this paper employs cross-entropy
loss as the main component in order to propose a loss function consisting of three parts.
Firstly, loss L1 indicates the difference between the final localization prediction results of
the inpainting region ŶL obtained via the pixel-wise addition of the outputs of the three
decoders and the ground truth mask YL:

L1 = LCE(ŶL, YL) (11)

where LCE(·, ·) denotes the cross-entropy loss (CE) function. Then, the cross-entropy loss
L2 between the output ŶB of the boundary guidance module and the boundary label YB is
introduced to enhance the ability to learn information about the pixels near the boundary of
the inpainting region during training, which can be obtained using the following expression:

L2 = LCE(ŶB, YB) (12)

Further, after adding the prediction results ŶL and XB, the cross-entropy loss L3 can be
used to calculate the difference between the sum result and the ground truth mask, and L3
can be expressed as

L3 = LCE(ŶL + ŶB, YL) (13)

Finally, the overall forensics loss function L of MPIF-Net is as follows

L = α ∗ L1 + β ∗ L2 + γ ∗ L3 (14)

where α, β, and γ are the hyperparameters indicating the weights of each loss.

6. Experimental Results and Analysis

In order to validate the forensic performance of the proposed MPIF-Net, we estab-
lished an inpainting forensics dataset on which extensive experiments were carried out.
Intersection over Union (IoU), the F1 score, the true positive rate (TPR), and the false
positive rate (FPR) were employed as performance metrics. Finally, an ablation study was
conducted to verify the main components of our proposed network.

6.1. Dataset

In this paper, 19,350 color images with dimensions of 256 × 256 were randomly se-
lected from the Places2 [35] dataset. A random region was removed from each image,
and these regions were tampered with using image-inpainting approaches. In addition,
there were three different shapes of the removed regions, namely, circular, rectangular,
and irregular regions, with the sizes equal to 1%, 5%, and 10% of the original image.
To fully verify the forensic performance of MPIF-Net, several trained inpainting mod-
els [5–8] based on deep learning were utilized to inpaint each image, resulting in a total
of 19,350 × 4 inpainted images. The final obtained dataset was randomly divided into a
training set with 18,000 × 4 images, a validation set with 450 × 4 images, and a test set
with 900 × 4 images. Several sample images with random masks (marked in green) are
shown in Figure 5.
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6.2. Training Details

The proposed MPIF-Net with an input with dimensions of 256× 256 was implemented
using PyTorch. It was trained and tested on an NVIDIA GeForce GTX 3080Ti GPU with
12 GB of memory using the Adam optimizer. The mini-batch was set to 24. The momentum
decay parameters β1 and β2 of ADAM were set to 0.9 and 0.999, respectively. Training was
executed for 100 epochs, and the learning rate of the model was initialized to 3× 10−3,
decreasing by 50% every 10 epochs.

For comparison, several comparative methods were selected, including those pro-
duced by Zhu et al. [17], Chen et al. [36], Li et al. [22], and Wu et al. [26]. The methods
presented in [26,36] were trained as described in their papers, while the methods presented
in [17,22] were trained using the same training method as that of MPIF-Net.

6.3. Forensic Performance Evaluation for Inpainted Images without Post-Processing Operations

The proposed network MPIF-Net was first subjected to qualitative and quantitative
evaluations using inpainted images without post-processing operations. Figure 6 shows the
visualized forensic results for all the methods with respect to the deep inpainting dataset
produced using the inpainting approach [6]. The forensic results of the comparison methods
are shown in Figure 6c–g, and the real inpainted regions are shown in Figure 6b. It can
be clearly observed that all the forensic methods were capable of localizing the inpainted
regions to some extent. When the inpainted region was relatively large, regardless of its
shape, all methods were able to achieve a rough localization of the inpainted region to some
extent. However, as the inpainted region became smaller, the forensic difficulty gradually
increased (e.g., rows 1, 4, and 7 in Figure 6). Taking the first row as an example, the first
row of Figure 6c shows the results of the method presented in [17], which only locates a
part of the inpainted region, and there are also obvious false alarm regions. The method
presented in [36] did not capture the correct inpainting features, resulting in the recognition
of the inherent pixels in the image as inpainted ones, as shown in the first row of Figure 6d.
Then, the method presented in [22] located fewer inpainted pixels compared to the other
methods, but there were basically no false detections. As for the method presented in [26],
although most of the inpainted pixels were captured, a large number of false alarm pixels
appeared in the forensic results. Surprisingly, MPIF-Net (the last row of Figure 6f) was able
to locate almost every real inpainted region with relatively few false alarms. Overall, the
forensic results of the proposed MPIF-Net not only better fit the real inpainted regions in
terms of size and shape but also present fewer false alarms, while the results regarding
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the other compared methods all exhibit varying degrees of distortion, false alarms, and
even omissions.
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Figure 6. Qualitative comparison results of different forensic methods regarding deep inpainting
approach [6]. The original uninpainted images, mask images, forensic results obtained by the methods
in Ref. [17], Ref. [36], Ref. [22], Ref. [26] and proposed MPIF-Net are respectively shown in (a–g),
where the pixels in white, black, green, and red indicate true positive, true negative, false positive,
and false negative, respectively.

The quantitative forensic results for all the forensic methods applied to the deep in-
painting dataset produced using the inpainting approach [6] are presented in Tables 1 and 2,
and the best results are indicated in bold.
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Table 1. Average IoU (%) and F1 (%) score of different forensic methods with respect to deep
inpainting approach [6].

Method Metric
Circular Rectangle Irregular

Mean
1% 5% 10% 1% 5% 10% 1% 5% 10%

Ref. [17]
F1+ 43.14 82.62 90.33 44.93 78.94 88.52 50.41 78.43 86.37 71.52

IoU+ 34.71 73.39 83.45 35.26 68.78 80.60 40.00 66.93 77.63 62.30

Ref. [36]
F1+ 76.71 94.24 97.59 73.47 93.58 94.72 72.79 87.45 89.46 87.02

IoU+ 66.76 90.58 95.37 62.91 88.68 90.79 61.83 78.84 81.71 80.27

Ref. [22]
F1+ 55.30 91.15 94.46 56.08 90.02 92.78 61.09 86.09 90.37 79.71

IoU+ 46.16 84.26 89.64 46.32 82.74 87.05 50.18 76.85 83.20 71.83

Ref. [26]
F1+ 78.48 95.50 97.12 75.39 94.18 96.42 76.42 87.59 91.35 88.05

IoU+ 68.84 91.54 94.66 64.55 89.19 93.16 64.55 78.72 84.79 81.11

MPIF-Net
F1+ 93.39 97.10 98.49 93.96 98.13 98.34 90.12 95.30 96.68 95.73

IoU+ 88.08 94.78 97.03 88.95 96.36 96.83 82.71 91.07 93.59 92.17

Table 2. Average TPR (%) and FPR (%) scores of different forensic methods with respect to deep
inpainting approach [6].

Method Metric
Circular Rectangle Irregular

Mean
1% 5% 10% 1% 5% 10% 1% 5% 10%

Ref. [17]
TPR+ 39.85 80.71 89.45 44.56 76.85 87.06 47.97 75.70 86.29 69.82
FPR− 0.10 0.48 0.81 0.21 0.60 0.89 0.16 0.66 1.21 0.57

Ref. [36]
TPR+ 77.58 93.99 97.08 71.86 93.63 94.64 71.41 87.93 89.73 86.74
FPR− 0.16 0.20 0.20 0.17 0.31 0.32 0.16 0.65 0.78 0.35

Ref. [22]
TPR+ 50.51 93.66 97.56 52.53 92.40 94.78 57.08 87.89 93.39 79.98
FPR− 0.07 0.62 1.02 0.14 0.63 0.99 0.12 0.75 1.37 0.63

Ref. [26]
TPR+ 77.12 94.56 96.14 70.80 92.51 95.62 71.53 84.92 89.40 85.85
FPR− 0.19 0.18 0.18 0.12 0.21 0.30 0.12 0.41 0.60 0.26

MPIF-Net
TPR+ 93.25 97.74 98.43 93.70 98.05 98.10 88.61 95.20 96.65 95.53
FPR− 0.05 0.12 0.16 0.06 0.09 0.15 0.07 0.24 0.36 0.16

By referring to the results regarding the test images with circular masks, it can be
found that the proposed MPIF-Net has achieved the best performance among all the other
forensic methods. For example, when the size of the inpainted region was 10% of the image,
MPIF-Net presented the highest F1 score of 98.49% and an IoU of 97.03%. Simultaneously,
its TPR also corresponded to the highest value, namely, 98.43%, and its FPR was the
lowest, namely, only 0.16%. Although the various metrics of all the compared methods
show obvious degradation as the size of the inpainted region decreases, MPIF-Net still
has the best performance among all the forensic methods. Similarly, for masks of other
shapes, the proposed MPIF-Net also exhibits a significantly superior IoU, F1 score, and TPR
and maintains the lowest FPR compared to the other comparison methods. Specifically,
for inpainted images with a tamper rate of only 1%, the network appears to have more
outstanding performance advantages. Taking the F1 score as an example, MPIF-Net’s scores
are about 14.9%, 18.6%, and 13.7% higher than the suboptimal method presented in [26] for
circular, rectangular, and irregular masks, respectively. It can be seen that even for smaller
inpainted regions that are more difficult to detect, MPIF-Net can obtain relatively accurate
localization results, indicating that the proposed network can mine abundant inpainted
features and retain more details.

6.4. Robustness against Post-Processing Operations

In order to prevent inpainting traces from being easily detected, malicious tamperers
generally perform post-processing operations, such as JPEG compression and additive
white Gaussian noise (AWGN) procedures, on inpainted images. Therefore, the robustness
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of MPIF-Net against JPEG compression and AWGN was evaluated in relation to the dataset
produced through the inpainting approach [6].

Firstly, the testing images were JPEG-compressed by quality factors (QF) of 95 and
75, and all the analyzed forensics methods were performed on the compressed images
with an inpainted ratio greater than 1%. The average values of the IoU and F1 scores
are listed in Table 3. Apparently, due to the influence of JPEG compression, the forensic
performances of all methods were significantly weakened with the decrease in the QF. For
instance, MPIF-Net obtained an IoU of 81.72% and an F1 score of 89.81% for a QF of 95.
When the QF was further decreased to 75, the IoU and F1 of MPIF-Net decreased to 62.13%
and 74.32%, respectively. It can be seen that some high-frequency information containing
inpainting traces was lost due to JPEG compression, which led to a decrease in forensic
performance. However, MPIF-Net exhibited good robustness against JPEG compression
and still significantly outperformed the other methods.

Table 3. Average IoU (%) and F1 (%) scores of different forensic methods under the influence of JPEG
compression and additive white Gaussian noise.

Types of
Distortions

Ref. [17] Ref. [36] Ref. [22] Ref. [26] MPIF-Net

IoU+ F1+ IoU+ F1+ IoU+ F1+ IoU+ F1+ IoU+ F1+

w/o Dis. 75.13 84.20 87.66 92.84 83.92 90.81 88.68 93.69 94.94 97.34
JPEG95 52.78 63.94 77.02 86.09 76.29 85.84 71.23 81.13 81.72 89.81
JPEG75 45.89 58.71 54.85 65.47 53.32 65.49 55.98 66.55 62.13 74.32
50 dB 46.09 58.86 55.15 65.69 52.77 64.68 56.38 67.07 62.15 74.27
40 dB 46.22 59.05 55.21 65.78 53.06 65.05 56.30 66.95 62.24 74.29
30 dB 44.54 58.34 53.11 63.70 51.81 64.60 53.51 64.13 57.36 69.74

Then, we further tested the robustness of the forensics methods against AWGN under
a QF = 75. Specifically, the forensic results of all the compared methods for inpainted
images with signal-to-noise ratios (SNR) of 50 dB, 40 dB, and 30 dB when the QF was
equal to 75 are shown in Table 3. Robustness was further tested under the influence of
AWGN with signal-to-noise ratios (SNRs) of 50 dB, 40 dB, and 30 dB. It can be seen that
when the SNR is 50 dB or 40 dB, the forensic performance of each method is basically the
same as that without AWGN. Even if the SNR decreases to 30 dB, the IoU and F1 scores of
different forensic methods only appear to experience slight attenuation. In addition, the
proposed method not only consistently maintained the best performance compared to all
the methods in all the above cases but it was also almost unaffected by AWGN.

6.5. Generalization Performance Evaluation of Networks

We further compared the forensic performance of all forensic methods with respect to
the inpainting dataset produced using other deep inpainting approaches [5,7,8] to verify
the generalization of the proposed MPIF-Net. The experimental results of all the methods
when applied to the three datasets are presented in Tables 4–6 and the best results are
indicated in bold.

Table 4. The forensic performance of different methods in relation to the deep inpainting approach [5].

Method TPR+ FPR− F1+ IoU+

Ref. [17] 88.95 0.23 90.93 84.53
Ref. [36] 94.88 0.17 94.83 90.73
Ref. [22] 94.93 0.08 95.52 92.42
Ref. [26] 95.18 0.11 95.99 92.53

MPIF-Net 97.58 0.04 98.22 96.59
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Table 5. The forensic performance of different methods in relation to the deep inpainting approach [7].

Method TPR+ FPR− F1+ IoU+

Ref. [17] 86.53 0.69 83.78 74.64
Ref. [36] 82.69 0.34 84.13 76.45
Ref. [22] 71.52 0.29 75.12 66.61
Ref. [26] 86.70 0.27 88.70 81.46

MPIF-Net 90.08 0.34 89.89 82.80

Table 6. The forensic performance of different methods in relation to the deep inpainting approach [8].

Method TPR+ FPR− F1+ IoU+

Ref. [17] 81.53 0.36 83.12 75.40
Ref. [36] 89.98 0.23 90.26 85.39
Ref. [22] 96.23 0.13 94.70 90.77
Ref. [26] 90.32 0.20 91.60 86.28

MPIF-Net 98.18 0.03 98.57 97.28

Regarding the inpainting approach [5], the forensics method presented in [26] achieved
the best performance from among the four methods, presenting values of 95.99%, 92.53%,
95.18%, and 0.11% for the F1 score, IoU, TPR, and FPR, respectively. The proposed MPIF-
Net’s performance was approximately 2.2%, 4.1%, and 2.4% higher than that of the first
three metrics of the method presented in [26], and MPIF-Net also maintained the lowest
false alarm rate, i.e., FPR. Additionally, compared to the remaining two inpainting ap-
proaches, i.e., the methods presented in [7,8], the proposed MPIF-Net still presents almost
optimal forensics performance, except for its slightly higher FPR compared to the method
presented in [26] when conducting forensics for the inpainting approach [7]. It is evident
that MPIF-Net offers a preferable degree of generalization and can be applied to detect
multiple inpainting approaches.

6.6. Ablation Studies

To investigate the effects of the FCBAM and BGM on MPIF-Net, an ablation study
was conducted on a dataset produced via deep inpainting [6]. Firstly, we designed the
following five variants of MPIF-Net to test the influence of FCBAM, as follows:

(1) MPN: A network with three parallel paths was set as the basic model (a multi-path
network (MPN)), where the MPN does not include a BGM, and the FCBAM in the
AARDM is removed;

(2) MPN-C: This network was established by introducing a CBAM based on an MPN to
replace the FCBAM in the original AARDM;

(3) MPN-F4: In this case, the MPN extracts deep features through an AARDM, which
employs the four highest DCT components in frequency domain channel attention to
fuse feature maps;

(4) MPN-F16: This network has settings similar to those of MPN-F8, except it uses the
16 highest DCT components;

(5) MPN-F32: This network utilizes more DCT components (32) in frequency domain
channel attention to improve the representation of deep features extracted via AARDM.

The five network models given above apply the same loss function and training
method as MPIF-Net during training.

The results of all the variants are listed in Table 7. It can be seen that compared to the
MPN, MPN-C achieved 0.28% and 0.13% improvements in IoU and F1 scores, respectively,
through the application of a CBAM. Obviously, by setting the attention mechanisms in
the AARDM, the representation of features can be enhanced, thereby improving network
performance, but the degree of improvement is limited. If an FCBAM is adopted and the
highest DCT component is gradually increased, the forensic performance begins to signifi-
cantly improve. When the highest DCT component reaches 16, the variant achieves the best
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forensic performance, with IoU and F1 scores increased by 1.31% and 0.8%, respectively,
compared to the MPN. It is worth noting that this performance cannot be further improved
by continuously increasing the highest DCT component, as shown in the results regarding
MPN-F32. This may be because the effect of higher-frequency information on improving
attention mechanisms is not obvious or possibly even redundant. In summary, an FCBAM
is beneficial in terms of improving model performance and can produce the best results
among all the variants when using 16 highest DCT components.

Table 7. Average IoU (%) and F1 (%) scores of different variants related to FCBAM of MPIF-Net
regarding the deep inpainting approach [6].

Metric MPN MPN-C MPN-F4 MPN-F16 MPN-F32

IoU+ 89.92 90.20 90.78 91.23 90.83
F1+ 94.45 94.58 94.95 95.25 94.97

For the boundary guidance module (BGM), several variants of MPIF-Net were de-
signed to verify the effect of this module; these variants are as follows:

(1) MPN-B: This variant was derived by introducing a BGM into the base model MPN;
(2) MPN-F16-B (full model): This network was implemented by applying a BGM to

variant MPN-F16, which is the proposed full model.

The results for all the variants are listed in Table 8. Taking the IoU metric as an
example, when the BGM module was added to the base network MPN, the prediction
result of the MPN-B model was 1.24% higher than that of the MPN. Similarly, when we
added a BGM to MPNF-16, i.e., MPIF-Net (MPNF-16-B), the full model exhibited increase
that was approximately 1% higher than that of MPNF-16 and was even higher than that
of the MPN by over 2%. Therefore, it can be concluded that the BGM is effective for the
current task.

Table 8. Average IoU (%) and F1 (%) scores of different variants related to BGM of MPIF-Net
regarding the deep inpainting approach [6].

Metric MPN MPNB MPNF-16 MPNF-16-B

IoU+ 89.92 91.16 91.23 92.17
F1+ 94.45 94.97 95.25 95.73

7. Conclusions and Future Work

In this paper, we propose a novel deep network for inpainting forensics called MPIF-
Net. The proposed MPIF-Net consists of three feature learning paths with the same
structure in parallel and promotes feature reuse through fusion between shallow and
deep features of different paths. After a description of the network was provided, an
attention-aware residual dense module was designed using an improved attention module
to enhance the representation ability of deep features; it was employed to efficiently extract
deep features in the encoder of each path. Finally, we developed a boundary guidance
module, which encourages the model to pay close attention to the boundaries of inpainted
regions and reduces boundary distortion of localization results.

MPIF-Net has been extensively tested with regard to multiple inpainting datasets and
compared with many state-of-the-art methods. Both the qualitative and quantitative results
demonstrate that the proposed network can accurately locate inpainted regions with various
sizes and shapes. In addition, the proposed method exhibits excellent generalization for
different inpainting approaches and is robust against common post-processing operations,
such as JPEG compression and AWGN.

At present, the robustness and generalization of the proposed forensics network
still need to be further improved. In future work, we expect that the forensics network
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could achieve superior robustness and acquire the ability to detect unknown inpainting
technologies by learning directly from inpainted images without post-processing.
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